Protein Complexes, Networks, and Pathways
Embed Size (px)
description
Transcript of Protein Complexes, Networks, and Pathways

Protein Complexes, Networks, and Pathways
• components of protein complexes
• interactions between protein complexes
• functional pathways

α
γ
τ
δ
δ`
ε
Ssb
χψ
Pol III SubunitAccessory Proteins
TopB
RecQ
* *
*
*
*
χ-AP
θ-AP
ψ-AP
α-APε-A
PDNA Polymerase III Core Enzyme and Clamp Loader Complexes
• purification of a core enzyme subunit (αθε) yields sub- stoichiometric amounts of the clamp-loader complex (γδδ’χψ)
• purification of a clamp- loader subunit (γδδ’χψ) yields sub-stoichiometric amounts of core enzyme
• the clamp loader is also associated with Ssb, TopB, and RecQ
• TopB and RecQ are also associated with RNaseH1, which degrades RNA primers

Core Polymerase
DnaB helicase
Clamp loader complex
β Sliding clamp
ψχ
RecQTopoisomerase III
RNase HI
α
ε θ
PrimaseSsb
RNA primer
REPLICATION FORK IN E. coli

Interaction Network for DNA Polymerase III
DNApol III

THE MOST HIGHLY CONSERVED ESSENTIAL E. coli PROTEINSTARGETS FOR NEW BROAD-SPECTRUM ANTIBIOTICS
• The 189 most highly conserved non-ribosomal E. coli proteins known to be essential in at least one bacterial species were chosen for study
• 176 of these genes were successfully tagged with SPA or TAP tags.
• 168 (89 %) of the proteins were successfully purified.
• 188 distinct interacting proteins were identified, 46 of which represent hypothetical proteins or proteins of unknown function.
CURRENT STATUS: More than 1000 proteins tagged and purified

Predicting protein functions using microarray expression data(Wu et al. (2002), Nature Genetics)
Essential
Conserved
Protein translocation (2)Cell Wall (9)
DNA Repair (11)Vesicular transport (13)
Recombination (15)Cell cycle control (17)
Phosphate metabolism (19)Protein folding (29)
Nucleotide metabolism (38)Cell Stress (39)
Protein degradation (63)Pol II transcription (65)
Protein modification (66)Mating response (79)
Meiosis (97)Chromatin chromosome structure (100)
Lipid fatty-acid and sterol metabolism (139)Carbohydrate metabolism (179)Small molecule transport (192)
Amino-acid metabolism (249)RNA processing and modification (285)
Energy generation (292)Protein synthesis (370)
80%
70%
60%
50%
40%
30%
1,655 uncharacterized yeast ORFs
456
mic
roar
ray
expe
rimen
ts
Anticipatedaccuracy(based on
characterizedgenes)
RNA processing and modification (285 genes)

RNA Processing and Modification Genes
• 91 representative genes from literature and databases
• 88 from transcriptional co-regulation
• 28 homologous to human nucleolar proteins

The Program for RNA Processing and Modifying Proteins
Mutants(deletions, TET promoters)
TAP tagged strains
MALDI-TOF MS
Trypsin digestion
Purification
Phenol extraction
Cell pellets
DNase I
Labeling of RNA
SDS PAGE
Hybridization to Microarray
Gel Densitometry LC-MS/MS

Non-coding RNA Microarray

A0 A1 D A2 A3 B1 E C2 C1 B2
5' ETS and A2cleavage
(U3 processome-like)
3' UTRprocessing
defective(rnt1)
A2cleavage
(snoRNP-like)
D-A2 processing(RIO1-like)
A2-B1 processing(RNAseP-like)
E-C2(exosome/
pre-60S-like)
Mutated gene GO biological processA0 A1 D A2 A3 B1 E C2 C1 B2
<-0.3 -0.2 -0.1 0 0.1 0.2 >0.3
Log(ratio)
Missing data= grey
5’ETS 18S ITS1 5.8S ITS2 25S 3’ETS
RNT1 35S primary transcript processingYGR251W*** biological_process unknownECM16 processing of 20S pre-rRNAHCA4 35S primary transcript processingUTP20 biological_process unknownUTP22 biological_process unknownUTP19 biological_process unknownSAS10 establishment and/or maintenance of chromatin YOR287C biological_process unknownUTP11 processing of 20S pre-rRNAYGR272C*** biological_process unknownUTP6 processing of 20S pre-rRNAFYV7*** biological_process unknownRRP9 35S primary transcript processingRPS4A protein biosynthesisUTP4 processing of 20S pre-rRNANOP7 ribosomal large subunit biogenesisUTP9 processing of 20S pre-rRNAYHR040W biological_process unknownYOR004W biological_process unknownNAN1 processing of 20S pre-rRNACBF5 35S primary transcript processingMRD1 35S primary transcript processingBUD22 bud site selectionNSR1*** biological_process unknownBUD21 processing of 20S pre-rRNARPS1B protein biosynthesisPOL5 DNA dependent DNA replicationDBP6 35S primary transcript processingNOP4 rRNA processingPXR1 biological_process unknownYLR022C biological_process unknownMAK16 ribosomal large subunit biogenesisRNA1 rRNA-nucleus exportRRP43 35S primary transcript processingNSR1 rRNA processingDBP8 35S primary transcript processingFYV5 biological_process unknownBRX1 ribosomal large subunit assembly and maintenanceTIF6 processing of 27S pre-rRNARPL17A protein biosynthesisNOP15 ribosomal large subunit biogenesisNOC3 DNA replication initiationNUP82 NLS-bearing substrate-nucleus importYOL022C biological_process unknownPRP42 mRNA splicingYNL313C biological_process unknownLSM5 mRNA splicingSSU72 transcription initiation from Pol II promoterGLC7 glycogen metabolismYDR365C biological_process unknownCDC33 regulation of cell cyclePRP5 lariat formation, 5'-splice site cleavagePRP39 mRNA splicingRTS2 biological_process unknownKRE28 biological_process unknownYMR269W biological_process unknownEPL1 histone acetylationRRP12 processing of 20S pre-rRNARPS18B protein biosynthesisLOC1 ribosomal large subunit biogenesisYOR006C biological_process unknownRIO1 S phase of mitotic cell cycleYLR435W*** biological_process unknownFAP7*** response to oxidative stressTSR1 ribosome biogenesis and assemblyDRE3 cell growth and/or maintenanceLSM6 mRNA splicingRPS0A protein biosynthesisNOC2 biological_process unknownPTA1 mRNA cleavageRPP1 rRNA processingPOP1 rRNA processingSNM1 rRNA processingLSM1 deadenylation-dependent decappingGRC3*** cell growth and/or maintenanceMRT4 ribosomal large subunit biogenesisIPI3 biological_process unknownYDR412W*** biological_process unknownNOG2 mRNA splicingMAK5 rRNA processingSDA1 actin cytoskeleton organization and biogenesisIPI1 biological_process unknownMDN1 protein complex assemblyIPI2 biological_process unknownNUG1 biological_process unknownYDL062W biological_process unknownYDL063C biological_process unknownRAI1 RNA catabolismRRP6 35S primary transcript processingLRP1*** biological_process unknownTIF4631 translational initiationYNL227C endocytosisMPE1 mRNA cleavageRRP46 35S primary transcript processing
MICROARRAY ANALYSIS OF RNA PROCESSING DEFECTS

Ipi1
-TA
P
Ipi2
Ipi3
Ipi1-TAP
45
66
97
kDa
No
tag 35S
27S
20S
U2
25S
18S
U2
U1
7S
5.8SL
5.8SS
WT
TET-
IPI1
TET-
IPI2
TET-
IPI3
WT
C
5’ETS 18S ITS1 5.8S ITS2 25S 3’ETS 5S
IPI (Involved in Processing ITS2) Complex
BA
rRNA
TET-IPI1
TET-IPI2
TET-IPI3

Protein Complexes in RNA Processing
• 317 proteins “clustered” into complexes (~stoichiometric)
• 56 complexes (2-17 subunits)
• 36 singleton proteins
• 172 additional sub-stoichiometric proteins (possible interactions between complexes)

Diagonal-gram goes here
TAP Tagged Proteins
Pu
rifi
ed P
rote
ins
Exosome
RNA Polymerase III
RNA Polymerase II
RNA Polymerase I
TREX
RSC
MediatorTFIIIC
U1 snRNP
Arx1
mRNA Cap-Binding/eIF4F
U6 Specific snRNP
Sit4 Complex
Nop58/Sik1
Ydr117c/Rps4b Complex
U4/U6.U5 tri-snRNPNoc ComplexMdm20/Nat3 Mtr4 Complex
Dbp7/Rrp5
Gar1/Cbf5Dbp3 C
Met-Glut tRNA Synthetase
Pwp1/Nop12/Brx1Nap1UTP “C”
Spt16Casein Kinase II
Ykl088w
19S Proteosome
eIF3
tIF2Rli1
Prp19mRNA Cleavge/Polyadenylation
Imd
UTP “B”Eft2/Hgh1
Trm7 Translation Release Factor
RNase PRcl1/Bms1
Kap104/Nab2Ipi
Ccr4 Bcp1
20S Proteosome
Gir
Cbc2/Sto1 Nop7 ComplexRrb1/Rpl3
Kap95/Srp1
SRPTrm1/Nsa1
CLUSTERINGTO
ORGANIZE PROTEIN
COMPLEXES

A Network Diagram Using Protein Complexes

RRP9 - Rrp9 (1)UTP13 - UTP B (6)UTP18 - UTP B (6)UTP9 - UTP A (8)UTP10 - UTP A (8)UTP8 - UTP A (8)RRP5 - Dbp7/Rrp5 (4)PRT1 - eIF3 (7)TIF35 - eIF3 (7)NIP1 - eIF3 (7)DBP3 - Dbp3/Bmh1/Nsr1 (3)HCA4 - Hca4 (1)NOP58 - Nop58/Sik1 (3)NPL3 - Npl3 (1)GAR1 - Gar1/Cbf5 (6)YGR283C - Gar1/Cbf5 (6)RRP8 - Rrp8 (1)YDR365C - Ydr365c (1)NOC2 - Noc (3)ERB1 - Nop7/Erb1/Ytm1 (3)NOP7 - Nop7/Erb1/Ytm1 (3)NOP12 - Pwp1/Brx1/Nop12 (3)PWP1 - Pwp1/Brx1/Nop12 (3)RRP45 - Exosome (12)RRP46 - Exosome (12)RRP6 - Exosome (12)IPI1 - Ipi (3)PRP19 - Prp19 (4)PUF6 - Puf6 (1)RNT1 - Rnt1 (1)YBR025C - Ybr025c (1)RPN6 - 19S Proteosome (17)PRE8 - 20S Proteosome (13)PUS1 - Pus1 (1)TRM1 - Trm1/Nsa1 (2)CBC2 - Cbc2/Sto1 (2)STO1 - Cbc2/Sto1 (2)LHP1 - SRP (3)THS1 - Ths1 (1)TSR2 - Tsr2 (1)BRR2 - U4/U6.U5 tri-snRNP (2)PRP3 - U6-specific snRNP core (14)LSM3 - U6-specific snRNP core (14)LSM5 - U6-specific snRNP core (14)KEM1 - U6-specific snRNP core (14)UTP22 - UTP22/RRP7 (2)
18S 5.8S 25S 5S
Tyr2 Ile2
Trp2
Thr3
M-Il
e
snR7
8sn
R77
snR7
6sn
R75
snR7
4sn
R73
snR7
2
RPR1
MRP
TL
C1Sc
R1
YDR0
64w
EF-1
RPL3
0
snR1
90 U14 U3
snR3
6sn
R43
snR3
8 U1 U2 U4 U5 U6
mRNAmisc.snRNAtRNAsnoRNArRNA
AB
C D
I
KJ
M
O
R
P
UTP “B”
5’ ETS ITS1 ITS2 3’ ETS
UTP “A”
eIF3
Nop58/Sik1
Nop7 Complex
Exosome
19S Proteasome20S Proteasome
SRP
U6-Specific snRNP
E F
GH
L
N
Q
Association of RNA-Processing Complexes with Specific RNAs
purified proteins
tag
ge
d p
rote
ins

Steps in the RNA Polymerase II Transcription Cycle
InitiationInitiation Elongation Elongation
Termination Termination
General General transcription transcription factorsfactors
MediatorMediator
CTD kinasesCTD kinases
Elongation Elongation factorsfactors
Cleavage, Cleavage, polyadenylation, polyadenylation, and termination and termination factorsfactors
chromatin-modifying enzymes

Elp3-TAPElp3-TAP
Elp1Elp1
Elp2Elp2
Elp4Elp4
Elp6Elp6
Elp5Elp5
Elp3-TAPElp3-TAP
Spt6-TAPSpt6-TAP
Spt6Spt6
Iws1Iws1
Chd1Chd1Spt16-TAPSpt16-TAP
Ctr9Ctr9
Pob3Pob3
Cdc73Cdc73CkaICkaI
CkaIICkaII
CkbIICkbII
CkbICkbI
Psh1Psh1
Histones Histones
Rtf1Rtf1
Paf1Paf1
Leo1Leo1
Spt16-TAPSpt16-TAP
TAP Purification of Various Elongation Factors
Elongator Spt6/Iws1FACT

-4
-3
-2
-1
0
1
2
3
-4 -3 -2 -1 0 1 2 3 4
“Old” and “New” Elongator Gene Deletions Have Similar Effects on Gene Expression
Wild type /elp1 deletion
Wil
d ty
pe /e
lp6
dele
tion

RNA Polymerase IIRNA Polymerase II Elongator (Elp1, 2, 3, 4, 5, 6)
TFIIS
TFIIF
Spt5
Spt6
Iws1
Paf1
Cdc73
Rtf1
Leo1
Spt16/Pob3 Spt16/Pob3 (FACT)(FACT)
Psh1Ctr9
Histones
Chd1
(Tfg1, Tfg2, Tfg3)
Protein Interactions Involved in Transcriptional Elongation (2002)
Casein Kinase II
Spt4
Phosphorylation?
Ctk1
Fcp1
55 Polypeptides55 Polypeptides
Iwr1
COMPASS(8 polypeptides)
Set2
Paf1-C

Theoretical Pathways in S. cerevisiae
A
B
C
X
Y
Z
P
X
X X
= synthetic lethality

xxxset2 XMating
MAT MATa
a/wild-type
Sporulation
MATa Haploid Selection(MFA1pr-HIS3)
Double Mutant Selection

Qu
ery
Gen
es
Hits
Two Dimensional Hierachical Clustering Identifies Similar Patterns of Genetic Interactions:
Clusters of Query Genes Y axisClusters of Interacting Genes (Hits) X axis
MMS4MUS81RTT107YBR094WHST3TOP1CDC8RAD50RAD52CDC45CDC7DBF4CSM3MRC1TOF1ELG1POL32RAD27ORC2ORC5RAD9RAD53ESC2SGS1RAD24ARP1DYN1PAC1NBP2NUM1BIK1TUB3CHL1MAD2CHL4YDR332WCTF18CTF8CTF4DCC1BIM1KAR3GIM3YKE2GIM4PAC10TUB2CLB4KAR9KIP3ARP6GOD1HTZ1SET2ARC40ARP2BNI1CLA4KRE1SLT2SHS1SMY1BNI4PHO85BBC1CDC42-118YDR437WCNB1CNB1/1ERG11RIC1YPT6HST1YJR070CAPP1RAS2

IgG
INPUT
1
TATAA
PMA1
-304 -47
5
2018 2290
6
3287 3500
1(ATG) 2757(STOP)
2
168 376
3
584 807
4
1010 1250
2823 3277
ChIP Distinguishes Localization in Various Regions of a Gene ChIP Distinguishes Localization in Various Regions of a Gene
Hpr1Hpr1
1 2 3 4 5 6
Coding RegionsCoding Regions
Rna14Rna14
1 2 3 4 5 6
3‘ Untranslated 3‘ Untranslated
Tfg2Tfg2
2 3 4 5
PromoterPromoter
1 6
Spt16
1 2 3 4 5 6
All ThreeAll Three
TFIIF TREX FACTCFIA

MR
kDa
97
66
45
31
Swr1-TAP
Vps72-TAP
Swc1-TAP
No Tag
Aor1-TAP
Vps71-TAP
Act1
Vps71
Vps71-TAPAor1
Arp4/God1Rvb1/Rvb2/Arp6Aor1-TAP
Bdf1Swc1
Swc1-TAP
Swr1Swr1-TAP
Vps72Vps72-TAP
Purification of the SWR1 Complex
Yaf9Translocated
to MLL in Acute
Myeloid Leukemia

Swr1-TAP Swc1-TAP Vps71-TAP Aor1-TAP Vps72-TAP
Swr1
Swc1
Vps72
Aor1
Vps71
God1
Arp6
Act1
Arp4
Yaf9
Rvb1
Rvb2
Bdf1

ORGANIZING PROTEINS INTO PATHWAYS
• Microarray analysis
• Synthetic genetic array analysis
Concept: proteins with the same function should have similar effects on gene expression and similar genetic interactions

RX
T2
DE
P1
SA
P3
0
RA
D6
BR
E1
SD
C1
RT
F1
PA
F1
BR
E5
SW
C4
SW
C2
SW
R1
LE
O1
SIF
2
HO
S2
SE
T3
RXTC RAD6C PAF1C SWR1C SET3C
Clustering of Microarray Data Groups Proteins into Complexes and Pathways
Histone Trans-Modification Pathway

Silent Heterochromatin
H4-Ac
Bdf1SWR1C
Step 1
Step 2 Step 3Htz1

The Case of ER to Golgi Transport
• ~400 non-essential proteins localize to ER and Golgi
• purify these proteins and organize into protein complexes
• use SGA to organize the proteins and protein complexes into functional pathways
Extending Pathway Analysis to Multiple Systems

Structural Genomics of Protein Complexes
• Production of protein complexes - co-overexpression - purification from a natural source - synthesis in vitro
• Structure determination - high resolution by x-ray crystallography - low resolution by electron microscopy

Acknowledgments
Nevan Krogan Joyce Li Guaqing Zhong Grace GuoAtanas Lalev Nira DattaRobin Haw
Andrew Emili Charlie Boone Tim HughesGerard Cagney Amy Tong Mark Robinson Gareth Butland Huiming Ding WenTao Peng Owen Ryan
Greenblatt Laboratory
University of Toronto
Affinium PharmaceuticalsDawn Richards
Veronica CanadienBryan BeattieKamal Boura
Harvard UniversitySteve Buratowski
Minkyu KimMichael Keough
UCSFErin O’Shea
Jonathan Weissman