Surface Enhanced Raman Spectroscopy (Analytical, Biophysical and Life Science Applications) || Index

9
323 Index a absorption of a material 4 acetaminophen 131 adenosine monophosphate (AMP) 78 adsorption factor, in Raman enhancement 244 Ag-coated Au particles 50–51 Ag colloid monolayers 157 aggregated colloids 105 aldrin (ALD) 114 alexa-fluorophore labelled antibodies 277 alkanethiols 44 alkylating agents 142 α, ω-aliphatic diamines (ADs) – AD–Ag NP systems 115 – AD–metal NP systems 113–114 – detection of 111–115 amine modifications 245–246 para-aminobenzoic acid (p-ABA) 167, 179 3-amino-n-propyltrimethoxysilane (APTMS) 270 6-amino-2-naphthoic acid 179 amino-terminated alkane thiols 80 amphiphiles 221 analgesics 130–138 Anatomical Therapeutic Chemical Classification 130 anisotropic silver nanoplates 55 anthracyclines 142 anti-bonding resonance 15 anticarcinogenics 142–151 antimalarial drugs 139 antimetabolites 142 antimutagenics 142–151 antioxidant vitamins 142 antipyretics 130–138 Apaf-1 protein 237 aromatic thiols 44 aspirin 131–133, 138 Au/Ag nanoshell 264, 266 Au–Ag hybrid devices 235 Au–Li Ag–Ag film substrates 157 Au–Li Ag substrates 157 b benzene 165 benzene ring 44 benzo[c]phenanthrene (BcP) 106 benzotriazoles 245 bimetallic nanoparticle SERS substrate 50–51 biomimetic devices 221 biotin 45 black hole quenchers (BHQs) 246 Blue-ray technology 181 bovine serum albumin (BSA) 47 bulk materials, optical properties of 2 c calixarenes, detection of 106–111 capillary-driven test stripes 176–178 capillary electrophoresis SERS (CE–SERS) systems 157–161 carbon nanotube composites, detection of 118–119 cardiolipin 237 centrifugal platform 180–181 cetylpyridinium salts 47 cetylquinolinium salts 47 cetyltrimethylammoniumbromide 55 chemical effect (CM), SERS 39 chemical enhancements 31 chemical reducing agents 41 chemisorption 135 chemotherapeutic drugs 142 Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications. Edited by Sebastian Schl¨ ucker Copyright 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32567-2

Transcript of Surface Enhanced Raman Spectroscopy (Analytical, Biophysical and Life Science Applications) || Index

Page 1: Surface Enhanced Raman Spectroscopy (Analytical, Biophysical and Life Science Applications) || Index

323

Index

aabsorption of a material 4acetaminophen 131adenosine monophosphate (AMP) 78adsorption factor, in Raman enhancement

244Ag-coated Au particles 50–51Ag colloid monolayers 157aggregated colloids 105aldrin (ALD) 114alexa-fluorophore labelled antibodies 277alkanethiols 44alkylating agents 142α, ω-aliphatic diamines (ADs)– AD–Ag NP systems 115– AD–metal NP systems 113–114– detection of 111–115amine modifications 245–246para-aminobenzoic acid (p-ABA) 167, 1793-amino-n-propyltrimethoxysilane

(APTMS) 2706-amino-2-naphthoic acid 179amino-terminated alkane thiols 80amphiphiles 221analgesics 130–138Anatomical Therapeutic Chemical

Classification 130anisotropic silver nanoplates 55anthracyclines 142anti-bonding resonance 15anticarcinogenics 142–151antimalarial drugs 139antimetabolites 142antimutagenics 142–151antioxidant vitamins 142antipyretics 130–138Apaf-1 protein 237aromatic thiols 44

aspirin 131–133, 138Au/Ag nanoshell 264, 266Au–Ag hybrid devices 235Au–Li Ag–Ag film substrates 157Au–Li Ag substrates 157

bbenzene 165benzene ring 44benzo[c]phenanthrene (BcP) 106benzotriazoles 245bimetallic nanoparticle SERS substrate

50–51biomimetic devices 221biotin 45black hole quenchers (BHQs) 246Blue-ray technology 181bovine serum albumin (BSA) 47bulk materials, optical properties of 2

ccalixarenes, detection of 106–111capillary-driven test stripes 176–178capillary electrophoresis SERS (CE–SERS)

systems 157–161carbon nanotube composites, detection of

118–119cardiolipin 237centrifugal platform 180–181cetylpyridinium salts 47cetylquinolinium salts 47cetyltrimethylammoniumbromide 55chemical effect (CM), SERS 39chemical enhancements 31chemical reducing agents 41chemisorption 135chemotherapeutic drugs 142

Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications. Edited by Sebastian SchluckerCopyright 2011 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimISBN: 978-3-527-32567-2

Page 2: Surface Enhanced Raman Spectroscopy (Analytical, Biophysical and Life Science Applications) || Index

324 Index

chloroform 133chloroquine 139–142chrisene (CHR) 106citrate 45citrate-reduced silver colloids 163cocaine 132coherent anti-Stokes Raman scattering

(CARS) spectroscopy– coherent interference feature 306–307– enhancement factor 314– incident fields 306– intensity 306–307– local enhancement 307–309– near-field excitation 308– nonlinear susceptibility 306–307– polarization 306–308– spatial distribution of fields 308– surface-enhanced 309–315– third-order nonlinearity of 312–313– tip-enhanced 315–319coinage metals 19–20, 243– optical properties of 2colloidal SERS substrates 179colloid silver nanoparticles 42confocal Raman microspectrometer

157core–shell metal nanoparticles 41coronene (COR) 106coupled plasmon resonances 15–17cyclohexane 204cytochrome c (Cyt c)– with DOPG complexes 224–225– dynamics of interfacial processes

235–236– electron transfer processes at coated

electrodes 225–228– horse heart (HH) 233– immobilized form of 224–225– interfacial electric fields and the biological

functions of 237–239– KB2/B1 values 224–225– overall interfacial processes of 238– oxidized complex of 238– positively charged region of 222– protein–liposome complex, formation of

222– rapid-scan SEIRA spectra of 234– redox function of 237–238– RR spectrum of 222–223– stationary SERR spectra of 229– TR SERR experiments, with Soret-band

excitation 228, 236cytochrome c oxidase (CcO) 222

dDABCYL 246dacarbazine 132DCEC calixarene 106defocussing method 203–204density functional theory (DFT) 130diacetylmorphine 162dialkyl sulfides 44dibenzoanthracene (DBA) 106dielectric function (ω) 2– of Ag and Au 2–4– of a (lossless) metal 3dielectrophoresis (DEP) 181Diels Alder cycloaddition 246dihydrocodeine 1622,5-dimethoxy-4-bromoamphetamine

(DOB) 754,6-dinitrocresol 1632,4-dinitrophenol 163dioleoyl-phosphatidylglycerol (DOPG) 222dioxepine 162dipicolinic acid (DPA) 78dithiocarbamate calixarene (DTCX) 108– DTCX-functionalized Ag NPs 109, 111– marker parameters 109DNA detection techniques, quantitative– amine modifications 245–246– assays 256–259– dye labels 247–248, 255– fluorescence readout approaches

249–250– fluorescent labelling probes 245– fluorescent probes 241–242– of hospital-acquired infections (HAIs)

258– of human immunodeficiency virus type-1

(HIV-1) DNA sequence 257– limits of detection (LoDs) 246, 254–255– multiplexing capabilities, review of

253–256– multivariate analysis (MVA) approach

255– non-fluorescent labels 246, 249– propargylamine–deoxyuridines,

incorporation of 251– Raman reporter molecules 245–248– real-time polymerase chain reaction

(rt-PCR) 241– sensitive detection 252–255– SERRS DNA probes 248–251– SERS detection of glucose 244– surface-enhanced resonance Raman

scattering (SERRS) 242–245– Taqman approach 250

Page 3: Surface Enhanced Raman Spectroscopy (Analytical, Biophysical and Life Science Applications) || Index

Index 325

– use of nanoparticles in 243–244– using closed-tube formats 242droplet-based microfluidics, for SERS

183–187droplet drying 78–79drug absorption process, in human

body 136

e|E|4 approximation 27–28e-beam lithography 166, 168electrochemical cyclic voltammetry 40electrochemical surface-enhanced Raman

scattering (EC-SERS)– applications 204–213– benzene adsorption and reaction, study of

204–206– biological application of 216– cell culturing, study of 215– cell design 198–199– characterization 192– cytochrome c on a DNA-modified gold

surface, study of 208–211– detection of dopamine 211– detection sensitivity 199– discrimination of mutations in DNA

sequences, study of 212–213– electrochemical (EC) field 193–194– electrode materials and excitation energy

dependence 194–195– electrode potential 193– electrolyte solution and solvent

dependence 195– EM and EC enhancements 195–197– experimental techniques 197–204– in fabrication of well-ordered

nanostructured electrode surfaces214–215

– features 192–197– identification 192– integration with microfluidic

devices 216– measurement on bio-related systems

203–204– NADH, study of the adsorption

behavior of 207–208– overview 191–192– oxidation and reduction cycles (ORCs)

199–201– photon-driven CT states 196– perspectives 213–216– SERS-active electrode surfaces, study of

199–201

– single-stranded and double-stranded DNAon gold surfaces, study of 208

– spectral characters 194– for studying biological molecules 206–211– substrate cleaning 201–202– surface plasmon resonance (SPR) effect

194– and surface Raman enhancements 192electrokinetic effects, basic 181electrokinetic platform 181–183electromagnetic effect (EM), SERS 39– fluorescence. see fluorescence signals,

enhancement of– SERS 22–23, 27–28, 31electron microscopies 58, 105electron transfer (ET) reactions 219– in CcO 237–239– of cytochrome c, at coated electrodes

225–228– electric field effects 232–234– and protein orientation dynamics 231–232– and protein structural changes 234–235– relaxation time τrelax 229–231electro-osmotic flow (EF) 181electrophoresis (EP) 181‘emission leg’ fluorescence 28ensemble SERS/SERRS 88erythrosin B 158–159ethylbenzene 165

ffinite-difference time-domain (FDTD) method

308flavanoids 142flow management 175fluidic anchors 180fluorescence process 26fluorescence quenching 28–29fluorescence signals, enhancement of– absorption 23–24– vs Raman processes 24–26– vs SERS 29–31fluorescent labelling probes 245fluorophores 2455-fluorouracil 132, 142–150foams, microchannel systems 185Fourier transform (FT) techniques 46

gG-band 315, 318gold (Au)– absorption of 4– branched nanoparticles 52– dielectric functions of 2–4

Page 4: Surface Enhanced Raman Spectroscopy (Analytical, Biophysical and Life Science Applications) || Index

326 Index

gold (Au) (contd.)

– growth reaction in HAuCl4 43– high enhancement region 22– imaginary part of ε (λ) 3–4– LFIEF on the surface 6, 19– mirrors 5– nanoparticle colloids 243– nanoparticles 41, 43–44, 104, 183– nanospheres 266– nanostructures 89– performance 18–19– polymer-encapsulated dimers of

nanoparticles 49– poly(N-vinyl-2-pyrrolidone) (PVP) capped

dendritic nanoparticles 52– reflectance 4– self-assembled monolayers (SAMs) 221– SERS-active electrode 200– spherical nanoparticles (AuNPs) 310gold nanotags 178

hhaematin, resonance spectra of 139haemozoin 139–140high-pressure carbon monoxide (HiPCO)

technique 315hospital-acquired infections (HAIs)

241, 258host–guest interaction mechanisms 105hot spots 20–21, 56, 87, 97, 112, 312–313– spatial localization of 22humic acids (HAs), detection of 119–122hydrazine 41hydrazine dihydrochloride 424-hydroxyacetanilide 134hydroxylamine hydrochloride 41hyper Raman scattering (HRS) 297

iibuprofen 131immunohistochemistry, using SERS-labelled

antibody probes 273–274index of refraction n(ω) 2indium tin oxide (ITO) electrodes 79indocyanine green (ICG) 290interband electronic transitions 4intracellular probes– challenges 285–286– cross sections corresponding to 104 GM

(Goeppert–Mayer) 297– identification of 290–292– influence of surroundings 287–290– IR-active vibrations 297– localization and targeting 286–287

– macrophage cell line J774 294–295– parameters 292–297– pH values 295–296, 299– spectra of pMBA 299– surface-enhanced hyper-Raman scattering

(SEHRS) approach 297–300– using gold or silver nanoparticles 289–290– values of Raman bands 294iodide 202isotachophoretic (ITP) focussing method 167isotopomers 77

kketo–enol tautomerism 144

llab-on-a-chip technology 173–175Langmuir–Blodgett films 32Langmuir–Blodgett method, for SERS/SERRS

substrates 151– approach 90–91– to biologically relevant systems 91–92– experimental details 93–94large-scale integration (LSI) platform

178–180laser-ablated metal colloids 44–45laser-induced fluorescence (LIF) detection

167laser-induced silver substrate (LISS) 160laser scanning microscopy 305Lee–Meisel silver colloids 55–56local field intensity enhancement factor

(LFIEF), at a surface 5–6– at ωL 27–28– at ωS 27– and power law 22– between cylinders 15–17, 20–21– caused by a coupled plasmon resonance

19–20– gold (Au) 6, 19– long-tail distributions 23– maximum 20– silver (Ag) 6, 19– spatial distribution 20–21localized surface plasmon polaritons (LSPPs)

305localized surface plasmon resonance (LSPR)

39, 87locked nucleic acid (LNA) 256long-tail distributions 21–23lossless Drude model 3–4lucigenin (LG) 115

Page 5: Surface Enhanced Raman Spectroscopy (Analytical, Biophysical and Life Science Applications) || Index

Index 327

mMalachite Green/anti-mouse/gold particles

274maleimide dye 246marker bands 222Maxwell’s equations 20mecA gene 242mefloquine 139membrane model 225membrane-based electron relays 219mercaptanes 2214-mercaptobenzoic acid (MBA) 268, 270mercaptopropanesulfonic acid (MPS) 81Met80 ligand 223metal colloids, use in SERS 40metallic cylinder– electrostatic approximation 7–9– local field enhancements 11– localized surface plasmon resonances of

9–10– shape effects 12–15– size effects 12metallic sphere– local field enhancements 11– localized surface plasmon resonances of

10–11– shape effects 12–15– size effects 12metals, optical properties of 2–4methadone 162methicillin-resistant Staphylococcus aureus

(MRSA) 2423,4-methylenedioxy-N-methylamphetamine

(MDMA) 75microfluidics, for SERS– capillary-driven test stripes 176–178– centrifugal platform 180–181– droplet-based 183–187– electrokinetic platform 181–183– large-scale integration (LSI) platform

178–180– optofluidic CD platform 181– polydimethyl siloxane (PDMS)

microchannels 178–180micro total analysis systems, concept 174micro-Raman scattering experiments 94micro-Raman system 203Mie theory 20model membranes 225molecule-specific Raman fingerprints

242monoethylene glycol (MEG) units 272mutagens 142

nN3-deprotonated tautomer 148NaBH4 solution 41NaCl-activated citrate-reduced silver colloids

161nanoparticle SERS substrates, metal-based

103– Ag/Au core–shell nanoparticles 50–51– aggregation of 47–50– aromatic molecules 44– bimetallic 50–51– characterization 57–58– charge-transfer effect and ‘active site’ effect

48– chemical reaction 41–44– colloidal gold particle aggregation on SERS,

effect of 48– colloidal spherical 41–47– dicationic ADs on 114– in different shapes 52–57– dimensions 40– dimers 49– factors influencing 41–42– functionalized 105– hydrosol activation 47– laser ablation and photoreduction method

for preparing 44–45– mercaptoacetic acid-capped spherical silver

nanoparticles 42– near-infrared (NIR) excitation 46– preparation of 40–41, 200–201– self-assembly of diamines, effect

114–115– size effects 45– stability of 40–41, 47– synthesizing of spherical metal

nanoparticles 41– on unfunctionalized solid substrates

58–60– use of ADs as linkers 113nanostructure-enhanced Raman

scattering 40nanotags 263narcotic drugs 131near-field optical interaction 305near-infrared (NIR) excitation, of

nanoparticles 46nicotine 772-nitrophenol 1634-nitrophenol 163non-fluorescent labels 246, 249nonlinear Raman spectroscopy. see coherent

anti-Stokes Raman scattering (CARS)spectroscopy

Page 6: Surface Enhanced Raman Spectroscopy (Analytical, Biophysical and Life Science Applications) || Index

328 Index

non-steroidal anti-inflammatory drugs(NSAIDs) 131

ooligonucleotide probe 246optical techniques 2oxidation–reduction cycle 40

ppain relievers. see analgesicsparacetamol 131–134paracetamol sinus solutions 135PDMS microdevices 179–180persistent organic pollutants (POPs) 103ortho-phenanthroline 179pharmaceutical compounds, SERS analysis

129–130– acetaminophen 131– analgesics 130–138– anticarcinogenics 142–151– antimalarial drugs 139– antimutagenics 142–151– antipyretics 130–138– aspirin 131–134, 138– band positions 147– bonds 148– β-carotene 150–151– chloroquine–haem complex 139–140– cocaine 132– dacarbazine 132– 5-fluorouracil 132, 142–150– ibuprofen 131– mefloquine–haematin interaction

mechanism 140– N3–H deformation 147– narcotic drugs 131– non-steroidal anti-inflammatory drugs

(NSAIDs) 131– paracetamol 131–134– of paracetamol sinus solutions

134–135– phenobarbital 132– at pH values 136–137, 148– pKa value of a base 144– preferred medium 131– using ordinary aqueous silver colloids,

issues 131–132– using poly(methyl methacrylate) (PMMA)

plastic optical fibre 132phenobarbital 132phosphoramidite 246photobleaching 32, 242photonic materials, metals as– Ag vs Au 18–19

– coinage metals 19–20– coupled plasmon resonances 15–17– electrostatic approximation 7–9– gap effects 16– local field enhancements 11– localized surface plasmon resonances of

9–11– long-tail distributions of enhancement

21–23– polarization along tips 17– shape effects 12–15– size effects 12– tip-enhanced Raman scattering (TERS)

17–18– transition metals 19–20photosensitizers 290phthalocyanines 246physisorption 135piezo-controllers 17planar surfaces 4–7plant alkaloids 142plasma frequency, of metals 3Plasmodium falciparum 139plasmonics 17plasmon resonances– shape effects 12–15– size effects 122-plex system 2575-plex system 254, 255polychlorinated pesticides (PCPs)

104polycyclic aromatic hydrocarbons (PAHs)

103– assays 106– detection using HA-functionalized systems

120– layer-by-layer deposition of 269– limit of detection (LOD) 110– pyrene (PYR) 106– selective recognition of 107– sensitivity of detection by SERS 111– SERS intensity of pollutants 108polydimethyl siloxane (PDMS) 159– microchannels 178–180poly-(l-lysine) 244polymerase chain reaction (PCR) 241poly(vinyl alcohol) 47poly(vinylpyrrolidone) 47positive real numbers 2propanethiol (PT) 81protein–protein ET processes 219pyridine 45, 77, 156, 193, 2434-(2-pyridylazo)resorcinol 160

Page 7: Surface Enhanced Raman Spectroscopy (Analytical, Biophysical and Life Science Applications) || Index

Index 329

qquantitative SERS analysis– batch-to-batch reproducibility

problems 74– choice of enhancing media 72–73– of colloidal suspensions 71–72– disordered materials 72– within a gel matrix 73–74– internal standards 74–78– microfluidic system 73– plasmonic materials 72–73– reproducibility 74–78– root mean square (RMS) error 77– selectivity 78–82– shell life 73–74– of solid materials 72–73– stability 73–74quinine 139–140

rradiation efficiency 28–29Raman process 24–26Raman reporter molecules 245–248reflectance 4reflection process, of metals 7resorufin 179respiratory syncytial virus (RSV) 178rhodamine 6G (R6G) 160, 179, 268– molecules 48– SERS spectra of 76Rose Bengal (RB) 290rubicene (RUB) 106

sSAM–protein interface, electric field

strength 221scattering process 24SEIRA spectra, of calixarenes 106–107selective detection of trace pollutants, by

SERS-based sensors– α, ω-aliphatic diamines (ADs) 111–115– on assembled metallic single-walled

nanotube 118– C–C skeletal stretching modes 112– calixarenes 106–111– carbon nanotube composites 118–119– contact hosts 115–119– diquat (DQ) and paraquat (PQ) 117– of endosulfan 117– of functionalized metal NPs 105– humic acids (HAs) 119–122– inclusion hosts 106–115– limit of detection (LOD) 109–110– lucigenin (LG) 115–117

– occlusion hosts 119–122– using aggregated colloids 105– viologen dication (VGD) species 115–117self-assembledmonolayers (SAMs) 104,

267–268– of ADs 112– of arylthiols 271– silica-encapsulated 270separation techniques, using SERS– capillary electrophoresis SERS (CE–SERS)

systems 157–161– combination of western blotting and SERS

detection 166–167– e-beam lithography 166, 168– of flowing liquids 161–162– gas chromatography (GC) 164–165– HPLC–SERS study 161–163– HPTLC–SERS study 165– isotachophoretic (ITP) focussing method

167– laser-induced fluorescence (LIF) detection

167– liquid chromatography (LC) 161–164– of SERRS-active substrates 160– thin layer chromatography (TLC) 163,

165–166– using modified SERS substrates 165SERS-active nanostructures 182SERS enhancement factor 22–23– of dimers 50|E|4 approximation 27–28– vs fluorescence enhancement 29–31– gold nanoparticles 44– magnitude of 32–33– multiple-molecule 33– in non-optimized conditions 33– in resonant conditions 30– single-molecule 28, 32–33– in trace-level or single-molecule regime 88SERS labels 263SERS microscopy, biomedical application of– immunohistochemistry 273–274– immuno-SERS microscopy for tissue

diagnostics 275–278– mapping approaches 274–275– methodologies in Raman microspectroscopy

274–275– silica-encapsulated SERS probes 269–271– target-specific SERS probe 265– in vivo applications 278–279SERS nanoparticle probes– components 264–265– gold spheres as 278– metal colloids 265–267

Page 8: Surface Enhanced Raman Spectroscopy (Analytical, Biophysical and Life Science Applications) || Index

330 Index

SERS nanoparticle probes (contd.)

– protection and stabilization 269–272– Raman reporters 267–269SERS uncertainty principle 33silica thin layer chromatography (TLC) plate

160silver (Ag)– aggregation of nanoparticle 49– dielectric functions of 2–4– electron transfer processes 228– functionalization of NPs 109, 111,

113–114– imaginary part of ε (λ) 3–4– island films 149–151– LFIEF on the surface 6, 19– nanoparticle colloids 42, 243– nanoparticle via photoreduction of AgNO3

45– nanoparticles 41–42, 46– nanospheres 266– nanostructures 89– performance 18–19– polyol synthesis of silver nanoparticles 55– real index of refraction 4– reflectance 4– self-assembled monolayers (SAMs) 221– self-assembly of ADs on NPs 113– SERS-active electrode 200– spherical nanoparticles 52silver-quantum dots (Ag-QDs) nanoparticles

163single-molecule surface-enhanced Raman

scattering (SM-SERS) 87–88– basic elements needed 89– degree of enhancement needed 89– Langmuir–Blodgett method for 90–94– octadecyl rhodamine B (R18) samples

97–99– phospholipid, tagged 94–97– Raman cross section 89–90– requirements 89–90single wall carbon nanotube (SWCNT)

composites 118size effect, in SERS activity 45– metallic cylinder 12sodium acrylate 43sodium borohydride 41sodium citrate 41sodium dodecyl sulfate 47spatial averaging 32spatial localization, of resonance 20spectrally modified fluorescence 31spermine 244sputtered Ag substrates 157

stability of enhancing media 73–74standard boundary conditions, for

electromagnetic fields 4straight plug-flow concept 184surface-enhanced coherent anti-Stokes Raman

scattering (SECARS) 307– of adenine nanocrystals 310–314– advantages 308– experimental system 309–310– nonlinear polarization of 309– of single-walled carbon nanotubes

314–315– spectra of adenine molecules 313– spectrum of SWCNTs 315– Stokes laser frequency 313– surface-enhanced hyper-Raman scattering

(SEHRS) 297–300surface-enhanced fluorescence (SEF) 2surface-enhanced infrared absorption (SEIRA)

105surface-enhanced resonance Raman scattering

(SERRS) 30, 242– multiplexing 253– surfaces facilitating 242–245surface-immobilized SERS substrates 179surface plasmon resonance (SPR)

spectroscopy 2surfactant-stabilized sample droplets 185SWCNT/PYR systems 118SyBr Green 242

tTAMRA dye 253TCEC calixarene 106terephthalic acid 179tetraethoxy orthosilicate (TEOS) 269tetramethyl orthosilicate (TMOS) 132tetra-4-n-methylpyridyl porphyrin (TMPyP)

81–82thiols 245– alkyl 104– amino-terminated alkane 80– linkers 104thiophenol, SERS spectra of 72tip-enhanced coherent anti-Stokes Raman

scattering (TECARS) 307– advantages 308– of carbon nanotubes 318–319– of a DNA network 317–318– experimental system 315–316– G-band of SWCNTs 318– imaging of DNA molecules

316–318– metallic tips, preparation of 316

Page 9: Surface Enhanced Raman Spectroscopy (Analytical, Biophysical and Life Science Applications) || Index

Index 331

– near-field contribution 309– nonlinear polarization of 309tip-enhanced Raman scattering (TERS)

17–18Tollens’ reagent 72toluene 165topoisomerase inhibitors 142trace-level SERS 88trans-1,2-bis(4-pyridyl)ethylene and

N,N-dimethyl-4-nitrosoaniline 157transition metals 19–20transparency region, of optical

properties 24triphenylene (TP) 106TRITC–DHPE system 94–97TR SERR experiments, with Soret-band

excitation 228tyrosine kinase inhibitors 142

uuracil compounds 142UV laser irradiation 45

UV–visible absorption spectrometer 161

vviologen dication (VGD) species, detection of

115–117vitamin A 134, 142

wWatson–Crick geometry 144western blotting and SERS detection

166–167

xX-ray diffraction (XRD) technique 58X-ray energy dispersive spectrometry

(EDS) 58X-ray photoelectron spectroscopy (XPS) 58o,m,p-xylenes 165

zzirconia 132