Instrumentation in Raman Spectroscopy: Elementary...

41
Instrumentation in Raman Spectroscopy: Elementary Theory and Practice 6. Coupling with other technique Raman-LINF-LIBS JEAN DUBESSY, MARIE-CAMILLE CAUMON, FERNANDO RULL and SHIV SHARMA Measurements on the same samples with a combination of two analytical complementary techniques generally enhances analytical performance for a comprehensive characterization of a complex sample. This is referred to as ‘hyphenation’ of two techniques. Such an approach is used widely in geosciences as well as in cultural heritage, Technological improvements are enabling the coupling of Raman spectroscopy with other techniques such as Laser-induced Break-down spectroscopy (LIBS) and Laser-induced Native Fluorescence spectroscopy (LINF). EMU Notes in Mineralogy,12 (2012) Chapter 3, 83-1721

Transcript of Instrumentation in Raman Spectroscopy: Elementary...

Page 1: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Instrumentation in Raman Spectroscopy:Elementary Theory and Practice6. Coupling with other technique

Raman-LINF-LIBS

JEAN DUBESSY, MARIE-CAMILLE CAUMON, FERNANDO RULL and SHIV SHARMA

Measurements on the same samples with a combination of two analytical complementary techniques generally enhances analytical performance for a comprehensive characterization of a complex sample. This is referred to as ‘hyphenation’ of two techniques. Such an approach is used widely in geosciences as well as in cultural heritage, Technological improvements are enabling the coupling of Raman spectroscopy with other techniques such as Laser-induced Break-down spectroscopy (LIBS) and Laser-induced Native Fluorescence spectroscopy (LINF).

EMU Notes in Mineralogy,12 (2012) Chapter 3, 83-1721

Page 2: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Outlines

�Time-Resolved Raman Spectroscopy

�Coupling of Raman With LIBS Instrument

�Coupling of Raman With LINF Instrument

�Raman Instrumentation for Ocean Study

�Conclusion

Page 3: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Jablonski Energy-Level Diagram

Panczer et al. (2012) EMU Notes in Mineralogy,12 , Chapter 2, 1-22

Raman lifetime = ~10-13 s

Fluorescence lifetime= ~100 ps to several milli-sec

Page 4: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Photograph of the Compact Remote TR -Raman and Fluorescence System with Mini-ICCD

Spectral resolution 15 cm -1 (0.43 nm) in the 100-2400 cm -1 and 13 cm -1 (0.37) in 2400-4000 cm -1 region; LINF spectral range 533-700 nmSpectrograph wt. = 631 g & ICCD wt. = 620 g (fabric ated with aluminum body)dimension 10 cm (length) x 8.2 cm (width) x 5.2 cm (high) is 1/14th in volume in comparison to the commercial HoloSpec (F/1.8) spectrograph from Kaiser Optical Systems

CCD chip 1392x1040 pixelsPixel size 6.45 µm2

Page 5: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Photograph of the Compact Remote TR- Fluorescence Spectrograph

Collection Optics 25 .4 mmSpectral Range 380-800 nmSpectral Resolution ~2.3 nm

Spectrograph Dimensions 50 mm3

Spectrograph mass (Al metal body) =333 g

Mini-ICCD Mass (Al metal) = 620 gTotal mass (Al) = 953gmTotal mass (Mg body) =0.60 kgTotal mass (Be body) =0.64 kg

Collection Lens

LINF Spectrograph

Mini-ICCD

Also referred to as Planetary Compact Gatable (PCG) - LINF system with 355 and 532 nm laser excitation

Page 6: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Comparison of CW & Time-Resolved Modes of Detection

Page 7: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Raman Spectra of Water, Water-Ice and Dry Ice (CO 2Ice) from a Distance of 50 m

Raman fingerprint bands of water and ice are in the 3000-3500 cm-1 region. The Fermi doublet of CO2 ice is observed at 1277 and 1384 cm-1.

Page 8: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Laser-induced CW (continuous-wave) and Time-Resolved Fluorescence Spectra of Calcite Excited with 355-nm Laser

0

2

4

6

8

400 450 500 550 600 650 700 750 800 D=200ns, W=100nsD=300ns, W=1µsD= 1µs, W=100µsD=100µs, W=1msD=1ms, W=20msCWIn

ten

sity

(C

ou

nts

x 1

05 )

Wavelength (nm)

Calcite at 22m, 1sLaser 355 nm, 7mJ/pulse, 20 Hz

442

616

(M

n+2 )

532

574

479

442

616

(M

n+2 )

532

574

479

Band assignments:442 (Eu2+) ~100µs616 (Mn+2) ~ms574 (Dy+3) ~100µs479 (Dy+3) ~100µs532 Laser (Rayleigh scattered ~ns)

Page 9: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Time-resolved LINF spectral traces of calcite excited with 355-nm laser on an expanded scale along the Y-axis

0

5

10

15

20

25

400 450 500 550 600 650 700 750 800

D=300ns, W=1µs

D= 1µs, W=100µs

D=100µs, W=1ms

Inte

nsity

(C

ount

s x

103 )

Wavelength (nm)

CalciteLaser 355 nm, 7mJ/pulse, 20 Hz

440

582 6

16

574

479

490

Mn2+

Dy3+

Dy3+

Eu2+

0

5

10

15

20

25

400 450 500 550 600 650 700 750 800

D=300ns, W=1µs

D= 1µs, W=100µs

D=100µs, W=1ms

Inte

nsity

(C

ount

s x

103 )

Wavelength (nm)

CalciteLaser 355 nm, 7mJ/pulse, 20 Hz

440

582 6

16

574

479

490

Mn2+

Dy3+

Dy3+

Eu2+

Page 10: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Laser-Induced CW (continuous-wave) and Time-Resolved Fluorescence Spectral Traces of a Reef-forming coral

0

2

4

6

8

400 450 500 550 600 650 700 750 800 D=200ns, W=100nsD=300ns, W=1µsD= 1µs, W=100µs

D=100µs, W=1ms

D=1ms, W=20ms

CW

Inte

nsity

(C

ount

s x

105 )

Wavelength (nm)

Reef-forming Coral Laser 355 nm, 7mJ/pulse, 20 Hz

631

575529

509

494

713

758

0

2

4

6

8

400 450 500 550 600 650 700 750 800 D=200ns, W=100nsD=300ns, W=1µsD= 1µs, W=100µs

D=100µs, W=1ms

D=1ms, W=20ms

CW

Inte

nsity

(C

ount

s x

105 )

Wavelength (nm)

Reef-forming Coral Laser 355 nm, 7mJ/pulse, 20 Hz

631

575529

509

494

713

758

494 nm =cyan fluorescent protein (CFP), 509 nm = green fluorescent protein (GFP), and575 nm = orange fluorescent protein (OFP)

631, 713 and 758 nm LINF bands yet to be assigned.

Page 11: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

What is LIBS?

• By Now You Know About Raman & Fluorescence Spectroscopy

• But What is LIBS?

– A form of elemental analysis that uses a laser-generated plasma– A laser pulse is focused on a solid target with > 1 GW/cm2

• Significantly Higher Energy Density Than Raman– A small amount of the target is ablated and atomized– The resulting atoms are excited to emit light– Emitting elements are identified by their unique spectral peaks– Yields semi-quantitative abundances of major, minor, and trace elements

simultaneously– Laser ablation profiles through dust and weathering layers

LaserLaserLaserLaser----Produced Produced Produced Produced Surface PlasmaSurface PlasmaSurface PlasmaSurface Plasma

Page 12: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

LIBS Spectra

• LIBS spectrum of basalt standard taken at 3+ m during a field test using a compact echelle spectrograph.• Spectral resolution (λ/∆λ = 2500) is significantly higher than can be shown• Average of 10 laser shots.

Page 13: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Combined Micro-Raman & LIBS Instrument

“Arielle Butterfly” Echelle spectrograph (LTB Lasertechnik Berlin GmbH, Germany), specifically modified to combine LIBS and Raman.

For Raman, the He–Ne laser line 632.8 nm ( 35 mW) is focused on the sample (spot size diameter ~50 µm) providing the irradiance of 1.5×103W/cm2.

Spectral Resolution = 1.35 cm-1 at 700 nm;slit 120x200 µm; λ/∆λ = 10,000

For LIBS, a frequency doubled Nd:YAG laser (max 200 mJ pulse energy at 532 nm, 7 ns pulse duration,laser beam on the surface is about 50 µm yielding an irradiance of 1.8×1011 W/cm2.

Slit = 50×50 µm2, Resolving power λ/∆λ = 15,000Spectral range = 290-945 nm

Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227

Page 14: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Raman & LIBS Spectra of Quartz & Tremolite Inclusions in Iron Ores

α-quartz(α-SiO2)

Tremolite

Ca2Mg5Si8O22(OH) 2

Page 15: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Laboratory Raman & LIBS Instrumentation

Fig. TS = Transmission-grating Spectrograph, NF = Notch Filter (532 nm), T = telescope, L = Surelite Continuum Nd:YAG laser, BE = 5X beam expander, S = sample, F = fiber optic cable, CTS = Czerny-Turner spectrograph. For the Raman spectroscopy measurements, the laser was used without the beam expander and only the transmission-grating spectrograph system was used. For LIBS, both telescopes collected light into respective spectrographs and was detected with two Ocean Optics HR2000 spectrometers configured for 225-320 nm (“UV unit”) and 385-460 nm (“VIS unit”) wavelength ranges, and the TS Raman spectrograph (533-699 nm).

Page 16: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Laser Power vs Q -switch Delay Time

Total (1064 nm+532 nm) Laser Power & 532 nm Power

y = 69.983Ln(x) - 332.39

R2 = 0.982

y = 364.38Ln(x) - 1728.5

R2 = 0.9907

0

20

40

60

80

100

120

140

120 130 140 150 160 170

Q-Switch Delay (micro-sec)

Pow

er (m

J/pu

lse)

Total Laser Power vs, Q-Switch Delay

532 nm Laser Power vs. Q-switch Delay

Log. (532 nm Laser Power vs. Q-switchDelay)

Log. (Total Laser Power vs, Q-SwitchDelay)

P(1064+532nm) = 364.38Ln(t)-1728.5

P(532nm) = 69.983Ln(t) – 332.39

For Gypsum & Sulfur LIBS laser operated at: t= 132 µs Q-switch delayP(1064+532nm)= 50.7 mJ/pulse; P(532nm) = 9.3 mJ/pulse

For Chalcopyrite (t = 118 µs): P (1064+532nm) = 39.5 mJ/pulse; P(532nm) = 7.2 mJ/pulse

For Pyrite (t = 112 µs): P (1064+532nm)= 9.8 mJ/pulse; P (532nm) = 1.5 mJ/pulse

For Calcite (t=138 µs): P (1064+532nm) = 66.8 mJ/pulse; P (532nm) = 12.4 mJ/pulseat t=142 µs Q-switch delay: the PT = 77 mJ/pulse and P532=14.4 mJ/pulse

Page 17: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Remote Raman Spectra of Sulfur (S) and Gypsum (CaSO 4).2H2O

Page 18: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

•Main Cations Fe and Ca emission line detected.

•Trace amount of Na found on the surface of both gypsum and pyrite.

•No sulfur emission lines detected in air

P=39.5 mJ/pulse

P=9.8 mJ/pulse

P=50.7 mJ/pulse;P(532nm)= 9.3 mJ

LIBS Spectra of Sulfur Bearing Minerals

Page 19: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

•No Sulfur emission lines in air.

•Both S emission lines & Raman lines of S detected in 7 mTorr of CO2

P (532nm) = ~5 mJ/pulse

P=50.7 mJ/pulse;P (532nm) = 9.3 mJ/pulse

Remote LIBS & Raman Spectra of Sulfur

Page 20: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Remote LIBS & Raman Spectra of Dog TeethRemote LIBS & Raman Spectra of Dog TeethRemote LIBS & Raman Spectra of Dog TeethRemote LIBS & Raman Spectra of Dog Teeth

Hematite Coated Calcite

Removal of Hematite Surface

0

10

20

30

40

50

60

70

After AblatingHematite Surface

Wavelength (nm)

390 400 410 420 430 440 450 460 470

Inte

nsity

(ar

b. u

nits

)

-50

0

50

100

150

200

250Ca

Ca

FeMnFe

CaCa

TiCa

Sr

Sr

Ca

CaCa Ca

TiCa

Sr

FeMn

Fe

Hematite Coated Carbonate

0

200

400

600

800

1000

1200

Carbonate SubsurfaceHematite Coat Removed

Raman Shift (cm-1)500 1000 1500 2000 2500

0

2e+4

4e+4

6e+4

8e+4

1e+5

152.

69

281.

67

710.

77

1085

.3

1554

2327

.9

Remote LIBS @ 9 m Remote Raman spectra @ 9 m

155

1085

711

1556

(O

2)

2331

(N

2)

1085

285

Page 21: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

LIBS & Raman Spectra ofLIBS & Raman Spectra ofLIBS & Raman Spectra ofLIBS & Raman Spectra of Dusted AnhydriteDusted AnhydriteDusted AnhydriteDusted Anhydrite

20

40

60

80

100

120

Inte

nsity

(ar

b. u

nits

)

5

10

15

20

25

Wavelength390 400 410 420 430 440 450 460 470

0

10

20

30

40

50

60

Before Dusting

LIBS on Dusted

Anhydrite

Dust Removed

by LIBS

CaCa

Sr

Sr

Ca Sr

Fe

Sr

Ca

Ca

Ca

CaCa

Ca

FeTi

2000

4000

6000

8000

10000

12000

14000

16000

100

200

300

400

500

Raman Shift (cm-1)500 1000 1500 2000 2500

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Before Dusting

LIBS on Dusted

Anhydrite

Dust Removed

by LIBS

416 49

960

9

627

677

416 49

960

9

627

677

1017

1129

1161

1017

1129

1161

1556 (O2)

2331 (N2)

LIBS Basalt Dusted Anhydrite Raman Spectra

Page 22: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Schematics of Integrated Remote Raman + LIB System

Key Components: (a) Dual Pulse Laser, 532 nm, 15 Hz, 100 mJ/pulse(b) One detector (ICCD) (c) One spectrograph with 3 high throughput VPH gratings (Range 450-850 nm)(d) 8 inch Telescope

Coaxial directly coupled system

Raman + LIBS System Design

Sharma et al. (2009) Spectrochim. Acta, A 73, 468-476

Page 23: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

8” telescope

ICCD

Dual pulse laser

Pan & Tilt

VPH spectrograph

Pulse generator

Laser power supply

ICCD controller

Computer

Beam expander

Pan & Tilt power supply

Stand -off Raman + LIBS System (532 nm)

Page 24: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

532.5 – 612.7 nm

457.3 – 530.9 nm

604.1 – 697.9 nm

736.5 – 850.2 nm

645.2 – 745.7 nm

ICCD Image (1024 x 256 pixels) Wavelength Range

Iron (Fe), at 9 m, 1 double pulse, Pulse separation 1 µs, 100 mJ/pulse gate delay 2 µs, gate width 10 µs.

0

10

20

30

40

500 550 600 650 700 750 800 850

Wavelength (nm)

Co

un

ts x

105

Raman+ LIBS Spectrograph with 3 VPH gratings

Page 25: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Magnified byx 1000Exp. Condition: Aluminum, Double pulse LIBS, Pulse separation 150 ns, 100 mJ/PulsePlot showing 2 spectra from both systems: good reproducibility.

Raman + LIBS spectrograph: 8” Telescope, 1 double pulse, gate width 1 µs, delay 500 ns.Ocean Optics Spectrograph: 8” telescope, fiber coupled, 10 double pulses (ave), gate width 1 ms, delay 1µs.

(Sensitivity difference due to : ICCD, VPH gratings, direct coupling used in the Raman + LIBS spectrograph)

Comparison of Raman + LIBS spectrograph and Ocean Optics LIBS Spectrograph

Aluminum, at 9 m

0

5

10

15

20

25

30

550 600 650 700 750 800

Raman + LIBS

Ocean Optics

Wavelength (nm)

Co

un

ts x

104

2nd

ord

er

Al

Page 26: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Variation in aluminum LIBS spectra at 9 m as functi on of gate delay from second pulse

740 750 760 770 780 790 800

1 µs2 µs3 µs4 µs10 µs20 µs

1 double pulse excitation, Pulse separation 1 µs, 100 mJ/pulse, gate width 2µs,

O

N

0

50000

100000

150000

200000

250000

500 550 600 650 700 750 800 850

1 µs2 µs3 µs4 µs10 µs20 µs

O

N

H, N, O bands last only few micro-second.

Wavelength (nm)

Inte

nsi

ty (

a. u

.)

Wavelength (nm)

H

740 750 760 770 780 790 800

1 µs2 µs3 µs4 µs10 µs20 µs

740 750 760 770 780 790 800

1 µs2 µs3 µs4 µs10 µs20 µs

1 double pulse excitation, Pulse separation 1 µs, 100 mJ/pulse, gate width 2µs,

O

N

0

50000

100000

150000

200000

250000

500 550 600 650 700 750 800 850

1 µs2 µs3 µs4 µs10 µs20 µs

O

N

0

50000

100000

150000

200000

250000

500 550 600 650 700 750 800 850

1 µs2 µs3 µs4 µs10 µs20 µs

O

N

H, N, O bands last only few micro-second.

Wavelength (nm)

Inte

nsi

ty (

a. u

.)

Wavelength (nm)

H

Page 27: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Gate width 1 µs, 50 micron slit

NH4NO3, t = 1 s, focused laser beam 1 mm dia.

Lase

r ex

cita

tion

532

nm

170

714

1043

1288

3139

0

50000

100000

150000

200000

250000

300000

+1000 +500 0 -500 -1000 -1500 -2000 - 2500 -3000 -3500

Raman Shift (cm-1)

Inte

nsi

ty (

a.u

.)Raman spectrum of Ammonium Nitrate at 9 m

Page 28: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Ammonium Nitrate, 100 m, 1 sdouble pulse, 38.6 mJ/pulse, 15 Hz, 532 nm, 50 micron slit

Raman Shift (cm-1)

Inte

nsi

ty (

Co

un

ts)

x104

0

20

40

60

80

0 500 1000 1500 2000 2500

714

1288

1417

1460

1656

1043

170

O2

N2

Raman Spectra of Ammonium Nitrate at 100 m

Page 29: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Single pulse Detection of Sulfur and Gypsum at 120 m distance

0

5

10

15

200 400 600 800 1000 1200 1400 1600 1800 2000

S

CaSO4.2H2O

Raman Shift (cm-1)

Inte

nsi

ty (

Co

un

ts)

x 1

04

Gate 100 ns

Target at 120 m

153

219

473

440

185

248

1136

1008

414

494

620

671

* Single laser shot excitation* Good reproducibility (5 measurements shown)

110 mJ/pulse, 532 nm, 50 micron slit, laser spot size 1 cm (diameter).

Page 30: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Single pulse detection of calcite at 120 m distance

110 mJ/pulse, 532 nm, 50 micron slit, laser spot size 1 cm (diameter).Gate width 100 ns, gate delayed to measure target only (minimized atmospheric interference)

* Single laser shot excitation* Good reproducibility (4 measurements shown)

0

2

4

6

8

10

200 400 600 800 1000 1200 1400 1600 1800 2000

Raman Shift (cm-1)

Inte

nsi

ty (

Co

un

ts)

x 1

04

Gate 100 ns

Target at 120 m1085

1434

1748

711

155

282

Calcite (CaCO3)

Page 31: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

• Optimized for maximum throughput, F/2 to F/4 at the camera focus

• For LIBS, Raman and photoluminescence at multiple laser wavelengths

• Interchangeable cassettes (grating/prism), entrance slits, aperture stops

• Optimized for maximum resolution, up to R = ~50,000 (ʎ/FWHM)

Spectrograph wt. = 6.8 kg. Andore EMCCD Luca-R Camera wt. = 1,8 kg; 8x8 µ pixel, 1004x1002 pixel EMCCD camera wt. = Andore iXonX3 885 10.9 kg; ; 8x8 µ pixel, 1004x1002 pixel

EMU (Echelle Multiplex Unit) SpectrographCatalina Scientific

Page 32: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

• One echelle imagecovers a very broad wavelength range athigh resolution withhigh throughput.

EMU-65 UV/VIS/NIR Image of Hg/Ar/Deuterium/Tungsten

Page 33: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Photoluminescence with the EMU -65 VIS/NIR Catalina Scientific Spectrograph

These diamond spectra at four different laser wavelengths are courtesy of Thomas Hainschwang at Gemlab (Liechtenstein) using an 8 x 80um slit with > 10,000 resolving power (ʎ/FWHM).

Page 34: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Raman with the EMU -65 VIS/NIR Spectrograph

All Raman spectra were acquired by Catalina Scientific using the EMU-65 VIS/NIR spectrograph and an EMCCD camera with an 8 x 80um slit at F/3.25 and resolution of 1 cm-1 FWHM.

Page 35: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

6.3. Raman instruments for ocean studies

1. Pasteris, J.D. et al. (2004) Applied Spectroscopy, 58, 195–208.In Collaboration with Peter Brewer’s group at Monterey Bay Aquarium Research Institute, Moss Landing CA.

1. Deep Ocean Raman in situ spectrometer(DORISS) 2.Kronfeldt, H.D. et al. (2010) Proc. S PIE, 7673, 7673B/ 1-8.

1.5 W BA DFB diode laser

Page 36: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Raman spectra of deionized water at RT and ocean water (MBARI’s DORIS System at

3600 m Depth and 4.8C).

Pasteris, J.D. et al. (2004) Applied Spectroscopy, 58, 195–208.

Page 37: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Raman Spectra of Carbon Dioxide Introduced into the Deep Ocean.

Pasteris, J.D. et al. (2004) Applied Spectroscopy, 58, 195–208.

Raman offers one important means of monitoring the composition of a CO2 stream that may be introduced into the ocean, e.g., in connection with studies of ocean sequestration of CO2. Lab study 23 C, up to 700 bar.Raman spectroscopy can be used to determine the concentration and speciation(e.g., into CO3, and HCO3 ) of CO2 dissolved in water.

Page 38: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Open view of the DORISS II system designed by Kaiser Optical System & MBARI engineers.

Zhang et al. (2012) Appl. Spectroscopy, 66, 237-249)

Page 39: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Comparison of DORIS I & II Systems

Zhang et al. (2012) Appl. Spectroscopy, 66, 237-249)

Page 40: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Raman Spectra Measured with 1 km Long Optical Fiber – 785 nm Laser

Calcite

Aragonite

Barite (BaSO4)

Gypsum (CaSO4).2H2O

Anhydrite(CaSO4)

Anhydrite)

Gypsum

Barite

2.Kronfeldt, H.D. et al. (2010) Proc. S PIE, 7673, 7673B/ 1-8

Page 41: Instrumentation in Raman Spectroscopy: Elementary …georaman2014.wustl.edu/previous/2012/georaman10.uhp-nancy.fr... · Hoehse et al. (2009) Spectrochim. Acta , B64, 1219-1227. Raman

Summary

• Combined Raman-LINF-LIBS system have been developed. The combined system uses only one laser, one telescope, one spectrograph and one ICCD.

• We have demonstrated that the combination of these remote sensing techniques are capable of identifying both the molecular and elemental signatures of geological samples.

• We have also demonstrated that the LIBS laser is a powerful tool when used to reveal the subsurface elemental and molecular structures. Consequently, surface materials can be removed that may interfere with the Raman probe, remove weathered surfaces revealing the nascent subsurface mineral, or provide a depth profile of the sample.

• Combined Raman-LINF-LIBS spectroscopy should have uses in many other research areas.

• Applications of Raman applications in deep ocean have become feasible with advancements in Raman instrumentation.