Student Handout 20 2014

20

Click here to load reader

Transcript of Student Handout 20 2014

Page 1: Student Handout 20 2014

CHEE 3363Spring 2014Handout 20

�Reading: Fox, 8.6--8.8

�1

Page 2: Student Handout 20 2014

1. �

3.

Page 3: Student Handout 20 2014

τturb → 0

Turbulence 1

Reynolds stress:u′ v′

wall layer �

u′ v′ x y

�3

Page 4: Student Handout 20 2014

�4

Defect law

viscous sublayer

Friction velocity

Recall ν = µ / ρ

Page 5: Student Handout 20 2014

Turbulence 3

Power-law equation

U

�5

Page 6: Student Handout 20 2014

Q − Ws − Wshear − Wother =∂

∂t

CV

eρ dV +

CS

(u + pv +v

2

2+ gz)ρv · dA

�1. �

�3. �4.

�6

Page 7: Student Handout 20 2014

�7

A

v2

2ρv dA = α

A

v2

2ρv dA = αm

v2

2

α s.t.:

Page 8: Student Handout 20 2014

3

g

�8

Page 9: Student Handout 20 2014

α1v2

1

2=

α2v2

2

2

Major losseshlm

�9

Page 10: Student Handout 20 2014

f

Page 11: Student Handout 20 2014

3Minor losses:

K1.

Le

K f

�11

Page 12: Student Handout 20 2014

f friction factor �

equivalent length of pipe Le

hl = f

L

D

V

2

2

f =64

Re

1√

f

= −2.0 log

(e/D

3.7+

2.51

Re√

f

)

hlm= K

V

2

2

hlm= f

Le

D

V

2

2

(p1

ρ

+ α1

V

2

1

2+ gz1

)−

(p2

ρ

+ α2

V

2

2

2+ gz2

)= hlT

=

∑hl +

∑hlm

Page 13: Student Handout 20 2014

1

Given Q 3

p p3; pipes are D

Determine ��

Assumptions �1. �

�3. �4.

�13

Page 14: Student Handout 20 2014

�14

Page 15: Student Handout 20 2014

Δp 1Given

QDetermine �

Assumptions �1. �

�3. �4.

�15

Page 16: Student Handout 20 2014

K = 0.56

Δp

�16

Page 17: Student Handout 20 2014

Δp 3

�17

Page 18: Student Handout 20 2014

1Given

Determine

Assumptions �1. �

�3. �4.

�18

Page 19: Student Handout 20 2014

�19

ν η ρ

ν = 1.08 × 10−5

ft2

s

Page 20: Student Handout 20 2014

f V

��

1. �

3. �

4. ��