State of the art X-ray imaging cameras - PSI

22
T. Martin / SRI Workshop-July 2012 Zürich 1 State of the art X-ray imaging cameras T. Martin on behalf of the Detector Unit and ISDD ESRF, Grenoble, France

Transcript of State of the art X-ray imaging cameras - PSI

Page 1: State of the art X-ray imaging cameras - PSI

T. Martin / SRI Workshop-July 2012 Zürich 1

State of the art X-ray imaging cameras

T. Martin

on behalf of the Detector Unit and ISDD

ESRF, Grenoble, France

Page 2: State of the art X-ray imaging cameras - PSI

T. Martin / SRI Workshop-July 2012 Zürich 2

Outline

• Indirect X-ray detection principle • X-ray to light converter screen • Front-end Optics • Imaging cameras • Detective Quantum Efficiency • Summary

Page 3: State of the art X-ray imaging cameras - PSI

T. Martin / SRI Workshop-July 2012 Zürich 3

Spoke φ=2-3mm

X-ray indirect detection in everyday life

2D image built with Linear Detector Main Constraints Spatial Resolution

Speed Dose

Courtesy: Smiths detection

Medical Imaging but … Homeland security

Compact X-ray inspection system

Courtesy: Thales

Page 4: State of the art X-ray imaging cameras - PSI

Indirect X-ray detection principle

T. Martin / SRI Workshop-July 2012 Zürich 4

CCD

Fiber Optic Taper

Converter screen

X-ray window

Cooling system Only a fraction of the photons emitted by the phosphor will propagate down the fiber optic and be detected by the CCD

X-ray photon

Visible light emitted by phosphor

Lenses

A material is used to convert the X-ray photons to visible wavelengths which

are subsequently detected by the photoreceptor in the usual manner

Page 5: State of the art X-ray imaging cameras - PSI

X-ray-to-light Converter Screen

• Role Wavelength shifter, converts the invisible spectrum of X-ray (0.12-

12Å) to visible light (400-700nm)

• Technology

• Powder screen • Single crystal: Single Crystal Film, massive crystal • Semi-structured scintillator • Structured scintillator • Ceramics

Spatial resolution (thin) vs. absorption efficiency (thick)

T. Martin / SRI Workshop-July 2012 Zürich 5

Source SCINT-X

T. Martin, IEEE/TNS, Pap. Sub.

Page 6: State of the art X-ray imaging cameras - PSI

Intrinsic Resolution of Converter Screen

T. Martin / SRI Workshop-July 2012 Zürich 6

Powder screen Single Crystal

6

Resolution = Thickness

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

MTF (5micron LSO SCF) 14keVMTF (5micron YAG SCF) 14keVMTF (5micron LSO SCF) 100keVMTF (5micron LSO SCF) 30keV275nm410nm550nm

MTF

LP/mm

5µm thick and NA=0.5

Median particle size: From 2.5µm (P43) to 30µm (Zn,Cd)S:Ag

Spatial resolution limited at 5µm

Page 7: State of the art X-ray imaging cameras - PSI

Figures of spatial resolution

T. Martin / SRI Workshop-July 2012 Zürich

7

6µm thick LSO:Tb 25µm thick LuAG:Ce

Techno Massive Single Crystal Film Thickness

and Material

25µm LuAG:Ce

25µm YAG:Ce

25µm GGG:Eu

11µm GGG:Tb

10µm LSO:Tb

CTF @1.5µm 13% 8.8% 13% 20% 21%

5.1% @600nm 1.4% @600nm

PCO.1600, 20x/0.45, 13keV

PCO.1600, 40x/0.75, 13keV

Page 8: State of the art X-ray imaging cameras - PSI

T. Martin / SRI Workshop-July 2012 Zürich 8

Comparison of X-ray to light Converter Screen X-ray

substrate

powder layer

Diffusion

halo scatter

X-ray

substrate

Luminescent thin film

totally reflected light

X-ray

Structured scintillator

Diffusion

Powder screen: • Good absorption • (Low) spatial resolution ~ t

Crystal screen: • Poor absorption • (High) spatial resolution < t

Structured Screen: • Good absorption • (Medium) spatial resolution < t

Applications Large field of view (cm) High resolution (µm) High Energy (>30keV)

2002 Mammography screen Bulk crystal (YAG) Single Crystal Film (LuAG)

Mammography screen

2012 Custom Gadox screen Bulk crystal (LuAG) Single Crystal (GGG, LSO)

Semi-structured and structured CsI(Tl)

Future

New deposition process Higher density, smaller

grain

Bulk Crystal (Ceramic) SCF (Perovskite)

Structured `new material CsI(Tl) or nano powders

t

Page 9: State of the art X-ray imaging cameras - PSI

T. Martin / SRI Workshop-July 2012 Zürich 9

Highlight Converter screen

• Liquid Phase Epitaxy Facility for production and development of thin scintillator at the ESRF, t < 40µm

• Production of GGG:Tb, GGG:Eu and LSO:Tb • Development of LuGG, GSO and LuAP

• Future

• Ceramics: (Gd,Lu)2O3 and GYGAG

• Colour imaging to boost absorption and achieve energy resolution

substrate

Multi-Layer thin film

X-ray C olour = f(energ y)

0.000

0.500

1.000

1.500

2.000

2.500

3.000

10 15 20 25 30 35 40 45 50

E nerg y (keV)

Ra

tio

Blu

e/G

ree

n

∆E/E=4.4% @ 22keV

BM05/Feb. 2011

J. Kindem et al., IEEE/TNS, conf. record, NP5.S-94, Spain2011

+ + Multiple-Energy Micro-CT Using Multi-Layered, Multi-Color, Thin-Film scintillators, D.S. Rigie, P.J. La Riviere, IEEE/TNS , conf. record, MIC20-6 Spain2011 ++ APS, Chicago

Page 10: State of the art X-ray imaging cameras - PSI

Front-end optics

• Role Transfer the light coming from the converter screen to the imaging

sensor with the right magnification/demagnification and efficiency

• Technology

• Fiber optic • Refractive lenses

• Macro objective • Tandem • Microscopy objective

• Reflective lenses

Pixel size (µm) vs. field of view (mm) Magnification vs. working distance

T. Martin / SRI Workshop-July 2012 Zürich 10

Page 11: State of the art X-ray imaging cameras - PSI

T. Martin / SRI Workshop-July 2012 Zürich 11

Optical Coupling Pixel size 2003 2011 Future 100-500nm Very high resolution

Refractive microscope

1 mag. 1 scint.

High Definition 16Mpixels

1-3µm High resolution

Reflective microscope

Com. Ealing

Custom optic Custom optic for enhancement of imaging contrast and speed in UV-blue band

5-30µm Medium resolution

Tandem lens

Custom optic for large field of view. Dispersive EXAFS UPBL11(TEXAS)

20-50µm Low resolution

Fiber optic input

Dem. = 3.6

Dem.= 2 FAN

Page 12: State of the art X-ray imaging cameras - PSI

Efficiency

T. Martin / SRI Workshop-July 2012 Zürich 12

ηabs= 11% @25µm & 20keV

10x-20x FO better ηcoll.~ 1.5% @ 10x/0.3 Field of view , Efficiency

Custom optics, Increase NA Commercial mirror 15x0.3 custom 10x/0.4 Com. Refractive 4x/0.16 cust. 4x/0.18 Com. Refractive 10x.0.3 cust.10x0.4

Page 13: State of the art X-ray imaging cameras - PSI

T. Martin / SRI Workshop-July 2012 Zürich 13

Highlight Optic

High Definition optic : Custom Eyepiece 3.1x + Frelon kodak

Frelon kodak: 69mm diagonal Commercial eyepiece: 55mm max Custom eyepiece 3.1x 4x MTF Distortion: ~10pixels = 0.24% Courtesy : H. Suhonen ID22

Page 14: State of the art X-ray imaging cameras - PSI

T. Martin / SRI Workshop-July 2012 Zürich 14

Highlight Optic High Definition optic : 4x/0.18 16M pixels + Radiation resistance design

High Definition Imaging: Micrometer resolution with 4kx4k camera Commercial objective: 22002 pixels max (10x, FoV:2.2mm ,R~1µm)

22mm diameter on the object 88 mm diameter on the image CCD 550nm to 750nm visible light band 16Mpixels 40mm working distance MTF @ CCD side: 50% @ 65 LP/mm Distortion 4 pixels Vignetting <20% Best scintillator: 47µm GGG:Eu on GGG

-0.5

0

0.5

1

1.5

1 11 21 31

Line Spread Function

FWHM= 7.3µm

cooled CCD

sample

mirror

Optics

scintillator lead glass

rotation camera

Courtesy: P. Tafforeau, C. Soriano

Page 15: State of the art X-ray imaging cameras - PSI

Highlight Optic

High Resolution optic : 10x + Vacuum compatible + 7keV

T. Martin / SRI Workshop-July 2012 Zürich 15

PCO edge Scientific CMOS Motorized focus

LSO:Tb scintillator in vacuum

Image: Courtesy C. Cornu, O. Hignette

Page 16: State of the art X-ray imaging cameras - PSI

T. Martin / SRI Workshop-July 2012 Zürich 16

Highlight Linear Imaging based on 2D Sensor

Large field fan taper optic to replace the FReLoN-2k taper optics Radiation hardness, better resolution, no mechanical shutter FAN (1:1)

• Input size: 14.3 cm x .57 cm • 2 x or 3x F_A7899T or 1 ? • Fan • 10k x 0.41k pixels • 14µm input pixel size • 16fps • ≤5ms dead time • DR: 1/10000 • Coll. Prof. Casali (University of Bologna, Italy)

FO custom coupling + imaging Camera

Radiation protection

Source: J.C. Labiche

Page 17: State of the art X-ray imaging cameras - PSI

Imaging camera

• Role Device which converts the optical image into an electronic signal.

• Technology • CCD • CMOS

DR vs. Frame rate

T. Martin / SRI Workshop-July 2012 Zürich 17

Page 18: State of the art X-ray imaging cameras - PSI

Current Imaging Camera at the ESRF

T. Martin / SRI Workshop-July 2012 Zürich 18

m lines

n pixels

Sensitive

area

3 4

2 1

kinetic pipeline mode

storage

Frame Transfer Mode

Frelon ATMEL: 15fps 2kx2k(FFM); 27fps 2kx1k(FTM) PCO sensicam: 10fps 1kx1k PCO.2000: 14.7fps 2kx2k Dalsa 1M60: 60 fps (1kx1k) Sarnoff: 300fps (512x512) PCO.Dimax: 1279fps, (2kx2k) PCO.edge: 100fps, (2.5kx2.1k)

Courtesy: P. Tafforeau

Full Frame Mode

Andor, Roper

Page 19: State of the art X-ray imaging cameras - PSI

T. Martin / SRI Workshop-July 2012 Zürich 19

Dynamic Range Vs. Frame rate

0

5000

10000

15000

20000

25000

30000

35000

40000

0.1 1 10 100 1000 10000

PCO.4000 PCO.1k

PCO.2000 PCO.Dimax

Sarnoff512

Dalsa 1M60

Atmel 2kx2k Atmel 2kx2k F-Atmel 2kx2k

Kodak 2kx2k Kodak 2kx2k

F-Kodak 2kx2k

e2V 4kx4k F-e2V 4kx4k

F- Hamamatsu 1x2k

Hamamatsu Flash 2.8 1.9kx1.4k

PCO.Edge Andor Zyla

Hama Flash 4.0 2kx2k

Frame rate (fps)

Dyn

amic

ran

ge (A

DU

)

12bit

13bit

15bit

14bit

Phantom V1610 1.3kx800

4kx4k

Page 20: State of the art X-ray imaging cameras - PSI

DQE for 1.4µm pixel size

T. Martin / SRI Workshop-July 2012 Zürich 20

PCO edge 20µm GGG:Tb crystal at 7keV • 5x/0.2 • GGG: 22ph/keV, 550nm • Abso.=78.1% • QE=54.% • Noise CCD=2.4e- • DQE=0.109 • Gain= 0.196e-/X

TH7899 , 4x20Mhz, 16bit 20um GGG:Eu crystal 7keV • 5x/0.2 • GGG: 32ph/keV, 710nm • Abso.=78.1% • QE=33.8% • Noise CCD=30e- • DQE=0.114 • Gain= 0.178e-/X

0.12

0.

DQE N( )

100000000.1 N0.1 1 10 100 1 103 1 104 1 105 1 106 1 1070

0.024

0.048

0.072

0.096

0.12

Readout noise

Saturation 30ke-

= 153000X

Readout noise

Saturation 5300e-

= 171000X

Basler ACE1300 20µm GGG:Tb crystal at 7keV • 2x/0.08 • GGG: 22ph/keV, 550nm • Abso.=78.1% • QE=54.% • Noise CCD=6e- • DQE=0.02 • Gain= 0.031e-/X

Incident X-ray (ph/s)

Saturation 270ke-

= 1500000X

Page 21: State of the art X-ray imaging cameras - PSI

T. Martin / SRI Workshop-July 2012 Zürich 21

Summary

• Converter screen • Liquid phase Epitaxy facility for scintillator production at the ESRF • Future dev. : Garnet, Perovskite, Orthosilicate, Ceramics, Large format phosphor

and structured screen

• Front-end optics • Custom optics for large field of view, large chip: APS, ESRF, ... • ‘Machine’: multi-objective, motorized focus, filter, multi-eyepiece, tilt of scintillator • Radiation resistance design based on mirror: 2 options

• Cameras • CMOS camera (broadcast): benefit from industry development • Request for fast, deep FW and high definition chip (16Mp)

Page 22: State of the art X-ray imaging cameras - PSI

Thanks to the following people:

Detector Unit: P.A. Douissard, P. Fajardo, J.C. Labiche, J. Morse, C. Ponchut, M. Ruat, C. Cruz, E. Collet, C. Jarnias, E. Mathieu, D. Pothin, J.J. Thevenin

Collaborators of Beamline Control Unit

presentation, A. Homs @ 10:55

Collaborators of Electronics Unit

Collaborators of Engineering group

Thanks for your attention T. Martin / SRI Workshop-July 2012 Zürich 22