Stamatisd Lignite (1)

71
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Μηχανολόγων Μηχανικών Εργαστήριο Ατμοπαραγωγών & Θερμικών Εγκαταστάσεων ∆ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «∆ΙΕΡΕΥΝΗΣΗ ΜΙΚΤΗΣ ΚΑΥΣΗΣ ΞΗΡΟΥ ΛΙΓΝΙΤΗ ΣΕ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΚΟΝΙΟΠΟΙΗΜΕΝΟΥ ΚΑΥΣΙΜΟΥ» Του Προπτυχιακού Φοιτητή ∆ημήτριου Μ. Σταμάτη Επιβλέπων Εμμανουήλ Κακαράς, Καθηγητής, Σχολή Μηχανολόγων Μηχανικών Ε.Μ.Π. ΑΘΗΝΑ, Σεπτέμβριος 2007

Transcript of Stamatisd Lignite (1)

  • &

    . , , ...

    , 2007

  • 1

    ........................................................................................................................................................ 1 ................................................................................................................................................................ 2 1: ..................................................................................................................................... 3

    1.1 ......................................................................................................................................... 3 1.2 ................................................................................................................................................................ 3 1.3 CO2 ...................................................................... 4 1.4 .............................................................................................................. 6 1.5 ............................................................................................ 7

    2: ........................................................................... 8 2.1 ................................................................................................................................... 8

    2.1.1 ................................................................................................ 8 2.1.2 ............................................................................................................... 10 2.1.3 ..................................................................................................................... 11

    2.2 ............................................................................. 12 2.3 WTA............................................................................................................................ 15 2.4 MTE ............................................................................................................................ 20 2.5 .......................................................................... 21

    3: ............................................................ 23 3.1 ....................................................................................... 23

    3.1.1 .................................................................................................................................................. 23 3.1.2 .................................................... 23

    3.1.2.1 500 kWth ................................................................ 23 3.1.2.2 150 MWe ........................................................ 27

    3.2 (VVA).................................................................... 28 3.2.1 VVA................................................................... 30 3.2.2 ....................................................................... 34

    3.2.2.1 ................................................................. 34 3.2.2.2 .................................................. 37 3.2.2.3 ............................................. 43

    3.3 ................................................................................................................................................. 44 4: ............................... 46

    4.1 - ..................................................................................... 46 4.2 ..................................................................................................... 47 4.3 ................................................................ 56

    4.3.1 ................................................................................................................................................ 58 5: ........................................ 67 ....................................................................................................................................................... 69

  • 2

    , 6 . , . . , . . , , . , , .

    2007

  • 3

    1

    1.1 , . 30% , . o , CO2. , . , . , , . 1.2 , . , , , . : i) , , , ii) , .

  • 4

    1.3 CO2 CO2, . C2 0,037% .. . 1800 C2 1/3 , 275 ppm. IPCC (1996) [1] C2 1,5 ppm 0,4% . 2100 C2 700 ppm 70%. , 0.6C ( 1.1) , 1,4 5,8 C 1990 2100, 9 88 cm .

    ( 1.1) . (: Hadley Centre) [2] , , 8%, 2008-2012. . 2002/358/, . . 1.1 t CO2 eq 1990, 2002, 2008-2012 15.

  • 5

    CO2 , 1.2 , 2008-2012.

    1990 (t CO2 eq) 2002 (t CO2 eq)

    1990-2002 (t CO2 eq)

    2008-2012 (%)

    2008-2012 (t CO2 eq)

    2002- (t CO2 eq)

    78 85 7 -13 67,9 17,1

    146,8 150 3,2 -7,5 135,8 14,2

    69 68 -1 -21 54,5 13,5

    76,8 82 5,2 0 76,8 5,2

    564,7 554 -10,7 0 564,7 -10,7

    1.253,3 1.016 -237,3 -21 990,1 25,9

    107 135 28 25 133,8 1,3

    53,4 69 15,6 13 60,3 8,7

    508 554 46 -6,5 475 79

    12,7 11 -1,7 -28 9,1 1,9

    212,5 214 1,5 -6 199,8 14,3

    57,9 82 24,1 27 73,5 8,5

    286,8 400 113,2 15 329,8 70,2

    72,3 70 -2,3 4 75,2 -5,2

    . 746 635 -111 -12,5 652,8 -17,8

    -15 4.245,5 4.125 -120,5 -8 3.905,9 219,1

    ( 1.1) : (. CO2) 15 , 2002 2008-2012. (: Point Carbon and United Nations Framework Convention on Climate Change)

  • 6

    ( 1.2) : (CO2) 2008 - 2012. (: European Environment Agency, European Topic Center on Air and Climate Change) 1.4 , , 50mm. , , 1mm 200m, . , , ( ). , , , , . , . , . . () , , , 50-60%, . ,

  • 7

    , , , , . 40%, , , . 1.2 .

    ()

    >45%

  • 8

    2

    2.1 , , , . , , 10000C 4500C. , , , . - -. . , , . 2.1.1 ( 2.1), , . - , , .

  • 9

    ( 2.1):

    ( 2.2). - , , , .

  • 10

    ( 2.2):

    2.1.2 ( 2.3), -, , , . , , , , . . . , , 200-3000C, . , [3]. , , , , , . , .

  • 11

    ESP

    ( 2.3): 2.1.3 , , , . (). 7.515m, 26m [4], (), , . , 1600 , 4000m2. , , , , . , . , , ,

  • 12

    , . ( 2.4).

    ( 2.4): , [5] 2.2 , , - . , - ( -), -, , , . , () (50-60%), , , . ,

    1100C

    .

    .

  • 13

    . 2.5 .

    -

    -

    ( 2.5): . , , . , , . , , , , , , . . SiO2, Al2O3, CaO Fe2O3 . , ,

  • 14

    , , , . , Na K, , , . , , , , , , , . :

    i. ,

    ii. ,

    iii. ,

    iv. (= ) [6].

    , , , , . RWE Power AG, , , {(Fluidized-bed Drying with internal Waste Heat Utilization),(WTA,Wirbelschicht Trockung mit interner Abwrmenutzung)}, [7-10].

  • 15

    ( 2.6): , RWE [9]

    2.3 WTA . , , , . WTA , , . , , , 1100C, , - . , . 50-60% 12-15%, , 86% 91%, , , , . , , , 0-80mm, 0-6mm, 0-2mm. ( 2.7).

  • 16

    ( 2.7): WTA

    , , , , , . , , . , , (ESP), , , , , . , , ( 1 2), . , , . , , , . , 50%,

  • 17

    65% , 85% . , 9.3% 10.2%, RWE. , WTA . ( 2.8).

    ( 2.8): WTA , , . , , 4bar . , , , 65-700C. , , , .

  • 18

    50% , 4-5% . , . , , . , 30% 1000 MWe, RWE Power AG, . , , , . , , , , . , , . , -, . ( ) , , . , . . , . WTA, , , . , . , , , , , . , , 50%, , WTA. , , . , , , ,

  • 19

    . , (swirl burners), (multi-jet burners). () , . , , , . , , . . , , . ( 2.9).

    .

    i)

    ii)

    0 100

    (%)

    :

    ( 2.9) : . 12%, , 50% . , , .

  • 20

    , . 2.4 MTE (, Mechanische Thermische Entwsserung), [5]. ( 2.10).

    F

    (LUVO)

    ( 2.10) : , . 200C, , . (10 bar, 380 0C) . , , 150-1800C. . , 3 MPa,

  • 21

    . (450C) - , . 1800C , , 800C, . , , , . , . , , . 2.5 (25 - 40%), , . , , , . 7% , . . (2-4%) . (Fluidized Bed Dryer), , [11]. . , . . , .

  • 22

    . . , . , , . :

    i. , ii. ,

    iii. , iv. , v. .

    10%. , - . . . NOX . -, SO2. ( 2.1).

    WTA

    1000

    0C 2000C 3800C 70-800C 1100C

    18-25% 15-20% 15-20% 15-25% 12-15%

    4500C - 800C - -

    - 3-4.5% 5-7.5% - ~ 5.5-7%

    ( 2.1) :

  • 23

    3

    3.1 3.1.1 , , , . , , , 5%. 30-40% , 100% . . 50-60% ( ) 12% , ( 9-10 MJ/kgr 16-19 MJ/kgr). :

    i. , ii. ,

    iii. , iv. .

    M (WTA) , , NOX SO2. 3.1.2 3.1.2.1 500 kWth NOX SO2

  • 24

    IVD (Institut fr Verfahrentechnik und Dampfkesselwesen), [12-15]. 500 kWth (KSVA). , . , NOX, (, ), . , . (20 kW), 5 , 15000C . . - : BTS. , . , 5 sec, 1.15 . NOX : NOX :

    i. , ii. ,

    iii. () . , NOX . . >1.0 ,

  • 25

    . , , 1300 0C. , . . ( 3.1).

    ( 3.1 ) : , NOX

    SO2 : SO2 , . , . , . ( 3.2). CO, , CO.

  • 26

    ( 3.2) : SO2, NOX, CO 500 kWth (KSVA). 1.15, 300 0C 1.7 2.2 sec. NOX : , 0.8, NO. . >0.9 NOX , . SO2 : , 20 kW, (1 sec). : :

    i. , ii. ,

    iii. , iv. , v. .

  • 27

    , , . , . , 200 0C, , . , - . 3.1.2.2 150 MWe 150 MWe , [16]. , , . , , . , . , K2SO4, Na2SO4, KCl, (Al2O3, Fe2O3, CaO, MgO, SiO2 ...). , , , . , . - : . :

    i. (), ii. ,

    iii. , iv. , v. .

  • 28

    , , , . , ( 10 VVA). ,

    Fe2O3 SiO2

    . , VVA . 3.2 (VVA) WTA , . (WTA ) ( ), (WTA ). (VVA) ( 3.3) [17].

  • 29

    (a 3.3 ) : (VVA)

    1. 2.

    3. 4. 5. 6. 7. 8. 9.

    10.

    11. 12. 13. 14. 15. OFA 16. 17. 18. 19. / 20. 21.

    , . ( 50-56%) ( 10-25%). 1.0 MW, 300 kgr/h. [1],

  • 30

    , [2], [4] . [3] ( ) () [5], . , . , [8] . , . , [9]. . . [14] , (LUVO) [18], . . VVA . . 12 17%. . 350 m/h 250kg/h. . 0 350 m/h . 3.2.1 VVA . : 3800-4600 KJ/kgr - - , 5200-5600 KJ/kgr , 7500-9600 KJ/kgr [18]. VVA .

  • 31

    , , ( ). . (0=0) (phase 0), , , . . , , . 1 (phase 1) 50%, . 2 (phase 2), , . 1 2 . () , , , () . 3.1. A B

    0 -

    100%

    -

    -

    1 -

    - 50%

    -

    -

    -

    -

    2 -

    - 0% -

    -

    -

    -

    -

    ( 3.1) : (VVA)

    , (VVA) ,

  • 32

    , . (VVA) 950-9800C, , 10500C, . (VVA) , , . , , , , , , . - 80 Nm3/h 350 Nm

    3/h . 80-100 Nm3/h , 300-350 Nm3/h. 1 , - 50% , 200-220 Nm3/h. : 9 . (10) . (O2,CO2,CO,NOX,SO2) : , , . , , 7 , . 20 . 8 . , , , . , , , 3 . 4

  • 33

    . ( 4, 2.10m ), ( 8, 4.50m ), ( 10, 5.70m ) ( 13, 10.70m ). , 5000C, . ( 3.4).

    4

    /

    8

    10

    13

    ( 3.4):

  • 34

    3.2.2 3.2.2.1 , , . - . >1. , [18]. ( 3.5).

    ( 3.5) : -

    -. , , , . 0 2 200 .

  • 35

    2 10%, . ( 3.6).

    ( 3.6) : - ( )

    , 100, . , 40 1 2. ( 3.7).

  • 36

    ( 3.7) : - ( )

    NOX , CO CO2. NOX 1 , 0 2 . >1, , NOX -. [11,19]. CO CO2 1 2, .

  • 37

    3.2.2.2 , , , . 950-9800C 36 . 3.8. ( 3.9), , 950-11000C.

    ( 3.8) :

    4 8 10

    13

  • 38

    .4 .10

    .8 .13

    ( 3.9) : 12500C. 3.10. ( 3.11) 8 10, 4 13. 8 10, - ( 1 2) , . , , 2, - 0%. 11500C.

  • 39

    ( 3.10) :

    ( 3.11) :

    0 1 2

    .4

    .13

    4 8

    10

    13

  • 40

    . Al2O3, SiO2, CaO, Fe2O3 [20]. Na, K (Na2O, K2O) , , , . :

    i. Na2O. ii. ,

    iii. / RF. :

    OKONaA 22 *659.0+= , RF :

    ONaTiOOAlOSi

    OKONaMgOCaOOFeRF 2

    2322

    2232 *)( ++++++=

    , ( 3.2).

    RF Na2O A < 0.2 < 0.5 < 0.3 0.2 0,5 0.5 1 0.3 0.45 0.5 1 1 2.5 0.45 0.6

    > 1 > 2.5 > 0.6 , . , . . RF ( 3.12). , , , >0.6, . 1, - 50%, RF 0.6 , .

  • 41

    ( 3.13). , 0.8, , (>1), . 1. Na2O. 3.14 . , , > 0.5 .

    ( 3.12 ) : / (RF)

  • 42

    ( 3.13 ) :

    ( 3.14 ) : Na2O

  • 43

    3.2.2.3 (TOC) . , , 13, . ( 3.15-16), , -. 2 , 50% -. , , . (< 1.5%) -.

    0,00

    10,00

    20,00

    30,00

    40,00

    50,00

    60,00

    70,00

    80,00

    "0" 66,80 55,40 30,30 27,50 14,60 9,80 8,10 0,40

    "1" 49,20 33,70 15,50 16,10 39,80 5,40 5,10 2,20

    "2" 59,00 58,20 18,50 16,50 19,50 14,70 19,00 4,30

    .3

    .4

    .6

    .7

    .8

    .9

    .10

    .13

    ( 3.15) : (TOC)

  • 44

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    1,4

    1,6

    1,8

    "0" "1" "2"

    TOC

    (%)

    ( 3.16) : (TOC)

    3.3 : 200

    - .

    , 10%.

    10% -.

    NOX CO, NOX 1.

  • 45

    : 40

    -. 100,

    . >1

    - NOX.

  • 46

    4

    4.1 - . 2 , 43 MW, 1959. , . () , . - , , . VVA, . . , . . :

    i. , ii. ,

    iii. , iv. , v. ,

    vi. ( NOx, CO CO2), vii. ,

    viii. .

  • 47

    4.2 , . , . . . : ,

    , , , ,

    . 4.1.

    64tn/h , 80tn/h

    8.25 m

    3/h

    880

    0C

    300 0C

    2.96 m3/h

    150

    0C

    64tn/h 80tn/h

    82.5% 82%

    64tn/h 80tn/h

    38.300 kgr/h 48.000 kgr/h

  • 48

    : 60% : 11%

    : 15-30% : 5655 KJ/kgr

    : 22% : 11-12%

    : 13830-1500 KJ/kgr : 17600 KJ/kgr

    ( 4.1) :

    . 4 (front side), 2 , . , - (LUVO), , , (back, right, left). ( ) , , . 2 4 . . . , , . Gambit, Fluent, . ( 4.1) , : , ,

  • 49

    , , , (false air), . (front) , . (right side) (left side), : , , ,

    , , (false air),

    .

    ( 4.1) : ( 4.2) ,

  • 50

    . .

    ( 4.2) : . , . ( 4.3-4). , .

  • 51

    ( 4.3) :

    ( 4.4) :

  • 52

    , ( 4.5), , .

    ( 4.5) : ,

    , . , . ( 4.6-7).

  • 53

    ( 4.6-7) :

  • 54

    . ( ), . , ( 0.7). , . , , . , , (4.2) :

    (%) 1 2 3

    (front side) 30 25 35

    (back side)

    30 25 25

    (right-left sides)

    34 40 32

    (hopper) 6 10 8

    ( 4.2):

    Excel, . , , . , , ( 4.9). . ( 4.8-9).

  • 55

    ( 4.8-9) :

  • 56

    4.3 , , , , . : . , . . , . ( 4.10). (, ), .

    ( 4.10) :

  • 57

    . , . , [21]. , , 300C. , . ( 4.11).

    ( 4.11) :

  • 58

    4.3.1 , , , . , , , . , . , , , , . (Pt-PtRh 10%), , . . , ( 150m/s), . 95%. , : i) ANSI type S ( Pt-PtRh 10%), ii) ANSI type B ( Pt-PtRh 30%), 17000C 18000C, . 3 , , ( ) , 2 ( -) 250m/s. , . .

  • 59

    (efficiency=E), , :

    TwsTgasTwsTE

    = max , Tmax : Tws : Tgas : 97-98%, 80C. ( 4.12).

    ( 4.12) : , IFRF [22,23] , , , 3bar. , , Venturi ( 4.13). 10 Nm3/h.

  • 60

    ( 4.13) : Venturi

    , IFRF [22,23] , , . 2.5m3/h , 2.5 bar. , . , , . , , , . , , , , . , , , , .

  • 61

    IFRF . , . QA [24]. qE . : AqQ EA *= () :

    2/100 mkWqE = . , , 800 kW/m2. (A.) (qE=const.) . , , . , ,

    CTlin020=

    , 1000C,

    CTlout09080 =

    IFRF mDout 043.0= ,

    , mL 5= .

    : LDA out **=

    : 2

    , /150 mkWq avE = , 2min, /100 mkWqE = , 2max, /200 mkWqE = . QA :

    AqeqeQA *)( =

  • 62

    MathCAD QA :

    1 .105 1.5 .105 2 .1055 .104

    1 .105

    1.5 .105

    Q qe( )

    qe

    ( 4.14) : QA

    , , 200C (Cpw=4195 J/kgr0C), , . :

    )(*)()(

    inout TlTlCpwqeQqemw =

    1 .105 1.5.105 2 .1050.2

    0.4

    0.6

    mw qe( )

    qe

    ( 4.15) :

    qe (kW/m2)

    qe (kW/m2)mw (kgr/s)

  • 63

    (B.) , . (=Tg) , , . .

    , Tg := :

    Cpgs ( ) cpg ( ) 1000:= :

    :

    Prandtl :

    Prandtl :

    850 900 950 1000 10500.72

    0.722

    0.724

    0.726

    Prgs ( )

    ( 4.16) : Prandtl

    950 955, 1100..:=

    gs ( ) g ( ):=

    ngs ( ) ng ( ):=

    Prgs ( ) ngs ( ) Cpgs ( )gs ( ):=

    (0C)

  • 64

    (u) . 10 m/sec, 8 m/sec 12 m/sec. (Q) [25]. :

    )(**)(** 44 sggsggm TTTTAhQ += Stefan Boltzmann :

    )/( 42 KmW

    () :

    (sg=Tsg) : : sg=750 K, 800 K, 850 K . Reynolds :

    Nusselt VDI-Wrmeatlas. Nusselt , , . :

    :

    5.669710 8:=

    1.0:=

    Re u,( ) u( ) Doutngs ( ):=

    Nulamr u,( ) 0.664 Re u,( ) 3 Prgs ( ):=

    Nuturbr u,( ) 0.037 Re u,( )0.8 Prgs ( )

    1 2.443 Re u,( ) 0.1 Prgs ( )2

    31

    +

    :=

  • 65

    Nusselt :

    (hm) :

    , Lr .

    : , Dout=0.043m .

    :

    Q , :

    ( 4.17) : Q

    Num u,( ) 0.3 Nulamr u,( )2 Nuturbr u,( )2++:=

    hm u,( ) Num u,( ) gs ( )Lr

    :=

    Lr2

    Dout:=

    A Dout L:=

    960 980 1000 1020 1040 1060 1080 11002 .104

    4 .104

    6 .104

    8 .104

    1 .105

    1.2 .105

    Q 8, 700,( )Q 10, 700,( )Q 12, 700,( )Q 8, 750,( )Q 10, 750,( )Q 12, 750,( )Q 8, 800,( )Q 10, 800,( )Q 12, 800,( )

    (0C)

    Q (kW)

  • 66

    : : Tlin=20 0C : Tlout=80 0C 200C : Cpw=4190 J/kgr0C :

    :

    ( 4.18) :

    K 10000C, 0.2-0.3 kgr/sec.

    mw u, sg,( ) Q u, sg,( )Cpw Tlout Tlin( ):=

    960 980 1000 1020 1040 1060 1080 11000

    0.1

    0.2

    0.3

    0.4

    0.5

    mw 8, 700,( )mw 10, 700,( )mw 12, 700,( )mw 8, 750,( )mw 10, 750,( )mw 12, 750,( )mw 8, 800,( )mw 10, 800,( )mw 12, 800,( )

    mw (kgr/s) (0C)

  • 67

    5

    , CO2 . , 2, - , , . 12-15%, 3-7%. WTA , , 5-7% . , . , (VVA), , . 3, . 11500C. - . NOX

  • 68

    , NOX, . , . , , . , , , . , . Fluent. , . , . , VVA, . : , , , , , ( NOx, CO CO2).

    , , .

  • 69

    [1] Intergovernmental Panel on Climate Change, Technologies, Policies and Measures for Mitigating Climate Change- IPPC Paper 1996, (www.ipcc.com). [2] Met Office Hadley Centre, (www.metoffice.gov.uk/research/hadleycentre). [3] . , - , , 1991. [4] . . -, , , 2004. [5] E. Kakaras, P. Ahladas, S. Syrmopoulos, Computer simulation studies for the integration of an external dryer into a Greek lignite-fired power plant, (www.fuelfirst.com). [6] T. J. Kotas, Krieger Publishing Company, Malabar, Florida 1995, The Exergy Method of Thermal Plant Analysis. [7] RWE Power, Impetus Investment Innovations, Climate Protection Programme, (www.rwe.com). [8] VGB PowerTech 11/2006, RWE Power, WTA Fine Grain Drying Module for Lignite-Fired Power Plants of the Future, Development and operating results of the test plant. [9] RWE Power, Essen, Koeln, Vier Fragen zur WTA-Anlage am Kraftwerk Niederaussem, (www.rwe.com). [10] Dr. Frank Schwendig, Dipl.-Ing. Hans-Joachin Klutz, Dr. Johannes Ewers, RWE Power AG, Beitrag der Dezember-Ausgabe der VGB-Kraftwerkstechnik, The Dry Lignite-Fired Power Plant. [11] . Sarunac, M. Ness, C. Bullinger, Third International Conference on Clean Coal Technologies for our Future, 15-17 May 2007, Cagliari, Sardinia, Italy, One year of operating experience with a prototype fluidized bed coal dryer at Coal Creek Generating Station. [12] J. Maier, K. R. G. Hein, 18th International Pittsburgh Coal Conference, Dec. 3-7 2001, Effect of Pre-drying on P.F. Combustion, Fly Ash and Emission Behavior of Different European Low-Rank Fuels. [13] J. Maier, F. Kluger, M. Hocquel, H. Spliethoff, Klaus R. G. Hein, Proposal for the 23rd International Technical Conference on Coal Utilization & Fuel Systems, March 9-13, 1998, Clearwater, Florida Investigation of particle and emission behaviour of raw and predried brown coal and bituminous coal in a 20 kW and in a 500 kW test facility.

  • 70

    [14] F. Kluger, J. Maier, K. R. G. Hein, J. Knig, H. Brggemann, U. Priesmeier, Verbrennung von vorgetrockneter Braunkohle (TBK) Experimentelle Untersuchung feuerungstechnischer Manahmen zur Stickoxidreduktion. [15] Dr.-Ing. H. Spiethoff, J. Maier, M. Hocquel, F. Kluger, Prof. K. R. G. Hein, Effect of Pre-Drying on Combustion Behaviour and Boiler Design. [16] Karin H. Andersen, Flemming J. Frandsen, Peter F. B. Hansen, Ingvard Rasmussen, Kate Wieck-Hansen, Peter Overgaard, Kim Dam-Johansen, March 9-13, 1998, Clearwater, Florida, Deposit Formation in a 150 Mwe Utility PF-Boiler during Co-combustion of Coal and Straw. [17] E. Kakaras, P. Grammelis, M. Agraniotis, C. Schlechter, I. Nikolaides, C. Papapavlou, 15-17 May 2007, Cagliari, Sardinia, Italy, Experimental investigation on the combustion behaviour of Greek brown coal with varying moisture content. [18] , , (www.dei.gr). [19] J.Hercog, W.Rybak, Wroclaw University of Technology, Institute of Power Engineering and Fluid Mechanics, Third European Combustion Meeting ECM 2007, NOx Emission and Unburned Carbon Loss Under Staged Combustion. [20] R. Cenni, F. Frandsen, T. Gerhardt, H. Spliethoff, K.R.G. Hein, Waste Management 18 (1998) 433-444, Study on trace metal partitioning in pulverized combustion of bituminous coal and dry sewage sludge. [21] Sick Maihak, Gas Analysis, S700 Modular Gas Analyzer System, Product Information. [22] IFRF Research Station b.v., Measurement Equipment, Suction Pyrometer. [23] IFRF Doc., ACombustion File downloaded from the IFRF Online Combustion Handbook ISSN 1607-9116, How do I measure local flame temperatures with IFRF suction pyrometer. [24] . , - , , 1991. [25] . . , , , 2002.