Solutions to Chemical and Engineering Thermodynamics,...

of 14 /14
Solutions to Chemical and Engineering Thermodynamics, 3e 4 4.1 Using the Mollier diagram m = F H I K = F H I K = - ( ° × - × = × ° = ° - T P T P H H 510 490 1 241 10 7 929 10 4 463 10 4 463 7 6 6 C Pa C Pa C MPa . . . . c h k S S S T P T P = F H I K F H I K = - ( ° × - × = × ° = ° - 510 490 1 069 10 9 515 10 1 702 10 1702 7 6 5 C Pa C Pa C MPa . . . . c h = × = × = × = = ( H S H S HT ST SP HP HT HP SP ST TH PH PS TS T P S a f a f a f a f a f a f a f a f a f a f a f a f a f a f , , , , , , , , , , , , . m k 0 262 unitless 4.2 (a) Start from eqn. 4.4-27 HTP H TP RT Z T dP dT P dV V V V , , ( - ( = - ( F H I K - L N M O Q P =∞ z IG 1 P RT V b aT V bV b = - - ( - 2 2 2 ; F H I K = - - - P T R V b da dt V bV b V 2 2 2 so HTP H TP RT Z T R V b da dt V bV b RT V b aT V bV b dV RT Z a T da dT dV V bV b V V V V , , ( - ( = - ( - - - R S T U V W - - ( - L N M O Q P = - ( F H I K - =∞ =∞ z z IG 1 2 2 1 2 2 2 2 2 2 2 From integral tables we have dx ax bx c b ac ax b b ac ax b b ac = - ′′ ′- - ′′ - ′′ z 2 2 2 2 1 4 2 4 2 4 ln for 4 0 2 - < ac b In our case = a 1, = b b 2 , c b =- 2 ; so 4 41 2 8 2 2 2 2 ′′- = - -( =- ac b b b b c h and ( - ′′= = b ac b b 2 2 4 8 22 .

Embed Size (px)

Transcript of Solutions to Chemical and Engineering Thermodynamics,...

  • Solutions to Chemical and Engineering Thermodynamics, 3e

    4

    4.1 Using the Mollier diagram

    =

    FH IK = FH IK =( )

    = =

    T

    P

    T

    PH H

    510 490

    1241 10 7 929 10

    4 463 10 4 463

    7 6

    6

    C

    Pa

    C Pa C MPa

    . .

    . .

    c h

    SS S

    T

    P

    T

    P=

    FH IK FH IK =( )

    = =

    510 490

    1069 10 9 515 10

    1702 10 1702

    7 6

    5

    C

    Pa

    C Pa C MPa

    . .

    . .

    c h

    =

    =

    =

    = = ( )

    H S

    H S

    H T

    S T

    S P

    H P

    H T

    H P

    S P

    S T

    T H

    P H

    P S

    T S

    T

    P

    S

    a fa f

    a fa f

    a fa f

    a fa f

    a fa f

    a fa f

    a fa f

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,.

    0262 unitless

    4.2 (a) Start from eqn. 4.4-27

    H T P H T P RT Z TdP

    dTP dV

    VV

    V

    , ,( ) ( ) = ( ) + FH IK LNM

    OQP=z

    IG 1

    PRT

    V b

    a T

    V bV b=

    ( )+ 2 22

    ;

    FH IK = + P

    T

    R

    V b

    da dt

    V bV bV 2 22 so

    H T P H T P

    RT Z TR

    V b

    da dt

    V bV b

    RT

    V b

    a T

    V bV bdV

    RT Z a Tda

    dT

    dV

    V bV b

    V

    V

    V

    V

    , ,( ) ( )

    = ( ) +

    +

    RSTUVW +

    ( )+

    LNM

    OQP

    = ( ) + +FH IK +

    =

    =

    zz

    IG

    12 2

    12

    2 2 2 2

    2 2

    From integral tables we have

    dx

    a x b x c b a c

    a x b b a c

    a x b b a c + + =

    +

    + + z 2 2

    2

    2

    1

    4

    2 4

    2 4ln for 4 02

  • Solutions to Chemical and Engineering Thermodynamics, 3e

    H T P H T P

    RT Za Tda dT

    b

    V b b

    V b b

    V b b

    V b b

    RT Za Tda dT

    b

    V b

    V b

    V V

    , ,

    ln ln

    ln

    ( ) ( )

    = ( ) + + + +

    + + +

    LNMM

    OQPP

    = ( ) + +

    + +

    =

    IG

    12 2

    2 2 2 2

    2 2 2 2

    2 2 2 2

    2 2 2 2

    12 2

    1 2

    1 2

    a f

    a f d id i

    or finally

    H T P H T P RT ZTda dT a

    b

    Z B

    Z B, , ln( ) ( ) = ( ) +

    + +

    +

    LNMM

    OQPP

    IG 12 2

    1 2

    1 2

    a f d id i

    (b) This part is similar except that we start from eqn. (4.4-28)

    S T P S T P R ZdP

    dT

    R

    Vdv

    R ZR

    V b

    da dT

    V bV b

    R

    VdV

    R Z RV b

    V

    da dT

    b

    V b

    V b

    R Z Bda dT

    b

    Z B

    Z B

    VV

    V

    V

    V

    V

    V

    V

    V

    , , ln

    ln

    ln ln ln

    ln ln

    ( ) ( ) = + FH IK LNM

    OQP

    = +

    +

    LNM

    OQP

    = + ++ +

    +

    = ( ) ++ +

    +

    FHG

    IKJ

    =

    =

    = =

    zz

    IG

    2 22

    2 2

    1 2

    1 2

    2 2

    1 2

    1 2

    d id i

    d id i

    4.3 Start with eqn. (4.2-21): dU C dT TP

    TP dV

    V

    = + FHGIKJ

    LNMM

    OQPPV

    . Thus

    U

    TC

    V

    FHG

    IKJ = V ;

    U

    TC T

    P

    TP

    V

    TP V P

    FHG

    IKJ = +

    FHG

    IKJ

    LNMM

    OQPPFHG

    IKJV and

    U

    T

    U

    TT

    P

    TP

    V

    TP V V P

    FHG

    IKJ

    FHG

    IKJ =

    FHG

    IKJ

    LNMM

    OQPPFHG

    IKJ .

    (a) Ideal gas PV RT=

    TP

    TP

    U

    T

    U

    TV P V

    FHG

    IKJ =

    FHG

    IKJ =

    FHG

    IKJ0

    (b) van der Waals gas

    PRT

    V b

    a

    V=

    2 ;

    P

    T

    R

    V bV

    FHG

    IKJ = ;

    FHG

    IKJ

    LNMM

    OQPP =T

    P

    TP

    a

    VV

    2

    Also: dPRdT

    V b

    RT

    V bdV

    a

    VdV=

    ( )+

    2 3

    2

  • Solutions to Chemical and Engineering Thermodynamics, 3e

    4.6 d SC

    TdT

    V

    TdP

    P

    = FHGIKJ

    P

    [eqn. (4.2-20)]

    For the ideal gas d SC

    TdT

    R

    PdPIG P=

    *

    . Thus, at constant temperature

    d S SR

    P

    V

    TdP

    P

    = FHGIKJ

    LNM

    OQP

    IGd i

    and

    S T P S T P S T P S T PR

    P

    V

    TdP

    PP

    P

    , , , ,( ) ( ) =( ) =( ) = FHGIKJ

    RSTUVW=z

    IG IG0 00

    However, S T P S T P, ,=( ) =( ) =0 0 0IG , since all fluids are ideal at P = 0 . AlsoPV Z T P RTr r= ,a f . Thus

    V

    T PRZ T P RT

    Z T P

    TPr r

    r r

    P

    FHG

    IKJ = +

    FHG

    IKJ

    RSTUVW

    1,

    ,a f a f

    and

    R

    P

    V

    T

    R

    PZ T P

    RT

    P

    Z

    T

    S T P S T P RZ

    P

    T

    P

    Z

    TdP

    RZ T P

    P

    T

    P

    Z

    TdP

    Pr r

    P

    PT P

    T P

    r r

    r

    r

    r r Pr

    T P

    T P

    rr r

    r r

    FHG

    IKJ =

    FHG

    IKJ

    ( ) ( ) = + FHGIKJ

    LNM

    OQP

    =

    +FHG

    IKJ

    LNMM

    OQPP

    =

    =

    zz

    ,

    , ,

    ,

    ,

    ,

    ,

    ,

    a fk p

    a f

    1

    1

    1

    0

    0

    IG

    4.7 (a) Ideal gas

    PV NRT

    N

    =

    =( )

    +( ) =

    50 bar 100 m

    27315 150 8314 10142 12

    3

    3K bar m kmol K kmol

    c h. .

    .

    Energy balance, closed nonflow system

    U Q PdV Q W= = +z .However, for ideal gas U = 0 since T is constant (isothermal). Thus

    W Q PdVNRTV

    dV NRTVV

    NRTPP

    Q

    = = = = =

    = +( ) FH IK= ==

    z z ln ln. . ln

    . .

    .

    2

    1

    1

    2

    3

    142 1 27315 15050

    300

    895 9 10 895 9

    895 9

    kmol 8.314 J mol K

    kJ MJ

    MJ

    Also, by Ideal Gas Law at fixed T and N

  • Solutions to Chemical and Engineering Thermodynamics, 3e

    PV PV V VP

    P1 1 2 2 2 11

    2

    100 m50

    3001667= = = =3 3 m.

    (b) Corresponding states

    T P ZH H

    TS Sr r

    C

    IGIG

    initial state

    final state 1.391300

    73.76cal

    mol K

    cal

    mol K

    + = =

    =

    150 27315

    304 21391

    50

    73760679 094 07 0 4

    4067 0765 45 2 4

    .

    ..

    .. . . .

    . . . .

    Number of moles of gas = = = =NPV

    ZRT

    142 1

    094151 2

    .

    .. kmol ( 142 1. =

    PV

    RT from above)

    Final volume = =V ZNRTPf f

    = +( )0765 151 2 8 314 10 273 15 150

    300

    2. . . .=1356 m. 3

    Energy balance on gas: U Q W= +

    Entropy balance on gas processes in gas are reversible: SQ

    TS S= + =gen gen 0 . Therefore

    SQ

    T= or Q T S=

    S S S N S S N S S S S S S

    NP

    P

    N N

    Q T S

    W U Q N U U Q N H H N P V PV Q

    f i f i f f f i i i

    f

    i

    f i f i f f i i

    = = = +

    = ( )RSTUVW

    = RSTUVW =

    = = +( ) ( ) =

    = = =

    c h c h c h c hm rIG IG IG IG

    J K

    kmol MJ

    2 4 4184 8 314 04 4184

    8 368 8314300

    502326

    27315 150 151 2 2326 14885

    . . . ln . .

    . . ln .

    . . . .

    =

    +LNMMN T

    H H

    TCf f

    C

    IGd iH Hf

    IGiIGc h

    0Since process

    is isothermal.

    +OQPP T

    H H

    TZ RT Z RT QC

    i i

    Cf f i i

    IGd i

    = ( )( )

    +( ) ( )LNM

    OQP +

    = + + = +=

    151 2304 2 45 07 4184 8314

    273 15 150 0 765 09414885

    151 2 10 48365 615 7 14885 638 2 14885

    850 3

    3

    .. . . . .

    . . ..

    . . . . . .

    .

    kmol MJ

    J MJ MJ

    MJ

    (c) Peng-Robinson E.O.S.Using the program PR1 with T = 27315. , P = 1 bar as the reference state, we obtainT = 150 C , P = 50 barZ = 0 9202. ; V = 06475 10 3. m mol3 ; H = 470248 . J mol ; S = 1757. J mol K .T = 150 C , P = 300 bar

  • Solutions to Chemical and Engineering Thermodynamics, 3e

    Z = 0 7842. ; V = 0 9197 10 4. m mol3 ; H = 6009. J mol ; S = 4124. J mol .

    NV

    V= =

    =

    100 m

    06475 10154 443

    3

    3 m mol kmol

    ..

    Q TN S= = +( ) ( )( ) = 273 15 150 154 44 4124 1757 1546 9. . . . . MJ

    W U Q H PV H PV Q

    N H PV H PV Q

    f i

    f i

    = = ( ) ( )

    = ( ) ( )

    =

    +

    L

    N

    MMMM

    O

    Q

    PPPP +

    =

    154 44

    6009 300 0 9197 10

    10 4702 48

    50 0 6475 10 10

    10 1546 9 10

    885 25

    4

    5

    3 5

    3 6.

    . .

    .

    .

    .

    .

    J bar m

    MJ

    3

    {Note that N, Q and W are close to values obtained from corresponding states.}

    4.8

    T

    P

    T S

    P S

    T S

    P T

    P T

    P S

    S T P T

    S P T PS

    FHG

    IKJ =

    ( )( )

    =( )( )

    ( )

    = ( ) ( )( ) ( )

    ,

    ,

    ,

    ,

    ,

    ,

    , ,

    , ,a f =

    = =

    S PS T

    V T

    C T

    V T

    CT

    P

    Pa fa f

    a fP P

    and

    S

    T

    S

    T

    V P

    V V dP

    V V dP

    V S P S

    V T P T

    V S

    V T

    P T

    P S

    S V

    T V

    T P

    S P

    S

    T

    T

    S

    C

    T

    T

    C

    C

    C

    = =( ) ( )( ) ( )

    =( )( )

    ( )( )

    =( )( )

    ( )( )

    = FHGIKJ

    FHG

    IKJ = =

    1

    1

    a fa fa fa f

    , ,

    , ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,V

    P

    V

    P

    4.9 (a)

    H

    V

    H T

    V T

    H T

    P T

    P T

    V T

    H

    P

    P

    VT T T

    FHG

    IKJ =

    ( )( )

    =( )( )

    ( )( )

    = FHGIKJ

    FHG

    IKJ

    ,

    ,

    ,

    ,

    ,

    ,

    Since

    P

    V T

    FHG

    IKJ 0 (except at the critical point)

    H

    V T

    FHG

    IKJ = 0 if

    H

    P T

    FHG

    IKJ = 0

    (b)

    S

    V

    S P

    V P

    S P

    T P

    T P

    V P

    S

    T

    T

    V

    C

    T VV

    dT

    dV

    C TV

    V V T

    C

    TV

    S

    V

    P P P

    P P P

    FHG

    IKJ =

    ( )( )

    =( )( )

    ( )( )

    =FHG

    IKJ

    FHG

    IKJ

    = FHGIKJ = =

    FHG

    IKJ

    ,

    ,

    ,

    ,

    ,

    ,

    ~P P P1

    11

    a fa f4.10 (a) We start by using the method of Jacobians to reduce the derivatives

  • Solutions to Chemical and Engineering Thermodynamics, 3e

    TV

    T HV H

    T HT P

    T PT V

    T VV H

    H T

    P T

    P T V T

    H V T V

    H

    P

    P V

    H T

    H V

    d H T

    H

    T

    T

    V

    T

    V

    FHG

    IKJ =

    ( )( )

    =( )( )

    ( )( )

    ( )

    = ( )( )

    ( ) ( )( ) ( )

    = FHGIKJ

    =

    ,,

    ,,

    ,,

    ,,

    ,

    ,

    , ,

    , ,

    a f

    a fa f

    a fa f

    Now from Table 4.1 we have that

    H

    PV T

    V

    TT P

    FHG

    IKJ =

    FHG

    IKJ and

    HT

    C V TVT

    PTV P V

    FHG

    IKJ = +

    FHG

    IKJ

    LNM

    OQPFHG

    IKJP

    alternatively, since H U PV= +

    H

    T

    U

    T

    PV

    TC V

    dP

    dTV V V V

    FHG

    IKJ =

    FHG

    IKJ +

    ( )FHG

    IKJ = +

    FH IKV

    Thus

    T

    V

    P V V T V T

    C V P T

    V P V T P T

    C V P TH

    T P

    V

    T V

    V

    FHG

    IKJ =

    +

    = +

    +a f a f

    a fa f a f

    a fV V

    Note: I have used

    P

    V

    V

    T

    P

    TT P V

    FHG

    IKJ

    FHG

    IKJ =

    FHG

    IKJ .

    T

    V

    T S

    V S

    T S

    V T

    V T

    V S

    S T

    V T

    T V

    S V

    S

    V

    T

    S

    T

    C

    P

    T

    S

    T V V

    FHG

    IKJ =

    ( )( )

    =( )( )

    ( )( )

    = ( )( )

    ( )( )

    =FHG

    IKJFHG

    IKJ =

    FHG

    IKJ

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    V

    (b) For the van der Waals fluid

    P

    T

    R

    V bV

    FHG

    IKJ = ,

    P

    V

    RT

    V b

    a

    VT

    FHG

    IKJ =

    ( )

    +2 32

    Thus

    T

    V

    RTV V b a V RT V b

    C V R V bH

    FHG

    IKJ =

    ( ) + + ( )

    +

    2 22n sV

    after simplification we obtain

    T

    V

    a V b RTV b

    C V b V R V b VH

    FHG

    IKJ =

    ( )

    ( ) + ( )

    2 2 2

    2 2 3C

  • Solutions to Chemical and Engineering Thermodynamics, 3e

    and

    T

    V

    RT

    C V bS

    FHG

    IKJ = ( )V

    4.11 There are a number of ways to solve this problem. The method I use is a little unusual, but thesimplest that I know of. At the critical point all three roots of V are equal, and equal to V C .

    Mathematically this can be expressed as V V C =a f3 0 which, on expansion, becomes

    V V V V V VC C C3 2 2 33 3 0 + = (1)

    compare this with

    PRT

    V b

    a

    V V b b V b

    RT

    V b

    a

    V bV b=

    +( ) + ( )=

    + 2 22

    which multiplying through by the denominators can be written as

    V V bRT

    Pb

    bRT

    P

    a

    PV b

    RTb

    P

    ab

    P3 2 2 3

    2

    32

    0+ FH IK + +FH IK + + FHG

    IKJ = (2)

    Comparing the coefficients of V in Eqns. (1) and (2) gives TC , PC

    V bRT

    PVC

    CC

    2 3: = (3)

    V bbRT

    P

    a

    PVC

    C CC: + =3

    232 2 (4)

    V bRT

    Pb

    ab

    PVC

    C CC

    0 3 2 3: + = (5)

    From Eqn. (3)

    P b

    RT

    P V

    RTZC

    C

    C C

    CC =

    = 1 3 3 or P b

    RTZC

    CC= 1 3 (6)

    For convenience, let y ZC= 1 3 or Zy

    C =13

    . Then

    P b

    RTyC

    C

    =

    From Eqn. (4)

  • Solutions to Chemical and Engineering Thermodynamics, 3e

    FHG

    IKJ

    FHG

    IKJ + =

    + + =( )

    3 2 3

    3 23 1

    9

    2

    22

    22

    2

    P b

    RT

    P b

    RT

    aP

    RTZ

    y yaP

    RT

    y

    C

    C

    C

    C

    C

    CC

    C

    C

    a f

    a for expanding and rearranging

    aP

    RTy yC

    Ca f c h221

    310 4 1= + + (7)

    Finally from eqn. (5)

    P b

    RT

    bP

    RT

    P b

    RT

    aP

    RTZC

    C

    C

    C

    C

    C

    C

    CC

    FHG

    IKJ +

    FHG

    IKJ

    FHG

    IKJFHG

    IKJ =

    3 2

    23

    a fy y y y y y3 2 2 3

    1

    310 4 1

    1

    271+ + + = ( )c h

    or

    64 6 12 1 03 2y y y+ + = (8)

    This equation has the solution y = 0077796074.

    =b RTP

    C

    C

    0077796074. (from Eqn. (6))

    aRT

    PC

    C

    = 04572355292

    .a f

    (from Eqn. (7))

    Also Zy

    C =

    =1

    30307401309. .

    Note that we have equated a and b to TC and PC only at the critical point. Therefore these functions

    could have other values away from the critical point. However, as we have equated functions of V ,

    we have assumed a and b would only be functions of T. Therefore, to be completely general wecould have

    aRT

    P

    T

    T

    bRT

    P

    T

    T

    C

    C C

    C

    C C

    =FHG

    IKJ

    =FHG

    IKJ

    0457235529

    0077796074

    2

    .

    .

    a f

    with T

    TC

    FHG

    IKJ 1 as

    T

    TC 1 and

    T

    TC

    FHG

    IKJ 1 as

    T

    TC 1 .

    In fact, Peng and Robinson (and others) have set = 1 at all temperatures and adjusted a s afunction of temperature to give the correct vapor pressure (see chapter 5).

    4.12 (also available as a Mathcad worksheet)

  • Solutions to Chemical and Engineering Thermodynamics, 3e

    dN

    dtN N N N

    dUdt

    N H N H QQN

    H H

    = + = =

    = + + = =

    & & & &

    & & &&

    1 2 2 1

    1 1 2 21

    2 1

    0

    0

    Also, now using the program PR1 with T = 27315. , P = 1 bar reference state we obtain

    T = 100 C T = 150 CP = 30 bar P = 20 barZ = 0 9032. Z = 0 9583.

    V = 09340 10 3. m mol3 V = 01686 10 2. m mol3

    H = 3609 72. J mol H = 679606 . J molS = 1584. J mol K S = 4 68 . J mol

    &

    & . . .Q

    N= =679606 3609 72 318634 J mol

    4.13 (also available as a Mathcad worksheet)

    Since process is adiabatic and reversible S = 0 or S Si f= , i.e.,

    S S T310 K, 14 bar 345 bar( ) = =( )?, . Using the program PR1 with the T = 27315. K and P = 1

    bar reference state we obtain T = 310 K , P = 14 bar , Z = 0 9733. , V = 01792 10 2. m mol3 ,H = 109083. J mol and S = 1575. J mol K .

    By trial and error (knowing P and S , guessing T) we obtain T = 34191. K , P = 345 bar ,

    Z = 0 9717. , V = 08007 10 4. m mol3 , H = 188609. J mol , S = 1575. J mol K =Tf 34191. K .

    System = contents of compressor

    M.B.: dN

    dtN N N N= = + = 0 1 2 2 1& & & &

    E.B.: dU

    dtN H N H= = + +0 1 1 2 2& &

    &Q 0adiabatic

    + &W PsdV

    dt

    0

    volume ofcompressor

    constant

    & & &W N H N HS = +1 1 2 2 or &

    & . . .W

    NH HS = = =2 1 188609 109083 7952 6 J mol

    4.14 (a) Pa

    VV b RT

    PV

    RT

    V

    V b

    a

    RTV+

    FHG

    IKJ ( ) = = 2

    i) lim limPV

    V

    PV

    RT

    V

    V b

    a

    RTV

    =

    FHG

    IKJ =0 1

    ii) B VPV

    RTV

    V

    V b

    a

    RTVPV

    V= FH IK =

    RSTUVW

    lim lim0

    1 1

    = ( )

    ( )RST

    UVW = ( ) RST

    UVW = lim limV VVV V b

    V b

    a

    RTV

    bV

    V b

    a

    RTb

    a

    RT

    Q.

    N1.

    N2.

    M.B.

    E.B.

  • Solutions to Chemical and Engineering Thermodynamics, 3e

    iii) C VPVRT

    BV

    VbV b V b

    V bb V

    V bb

    PV

    V V= FHG

    IKJ =

    ( )

    RSTUVW = =

    lim lim lim0

    22

    21

    =C b2

    (b) At the Boyle temperature: limP

    VPV

    RTB

    FH IK = =0 1 0 0

    0 = ba

    RTB, T

    a

    RB b= but a

    V RTc c=9

    8, b

    V c=3

    (Eqns. 4.6-3a)

    TV RT

    RVT TB

    c c

    cc c= = =

    9 8

    3

    27

    83375.

    4.15 (a) From table: TB ~ 320 K , i.e., B T BBa f = ( ) =320 K 0The inversion temperature is the temperature at which

    T

    P CV T

    V

    T

    TP T

    RTP

    BRP

    dBdT

    V TVT

    RTP

    BRTP

    TdBdT

    B TdBdT

    H P

    P P

    P

    FHG

    IKJ = =

    FHG

    IKJ

    LNM

    OQP

    FHG

    IKJ = +

    LNM

    OQP = +

    FHGIKJ = + =

    01

    P

    Thus, T inv is the temperature at which B TdB

    dt = 0 .

    Plot up B vs. T, obtain dB dT either graphically, or numerically from the tabular data. I find

    T inv ~ 600 K . Also, dB dT decreases with increasing temperature (i.e.,

    dB dT ~ .456 cm mol K3 at 87.5 K and 0.027 cm mol K3 at 650 K. Presumably it is negativeat even higher temperature!)

    (b) Generally

    = FHGIKJ =

    FHG

    IKJ

    RSTUVW =

    RSTUVW

    TP C

    V TVT C

    B TdBdTH P

    1 1

    P P

    Using the data in the table it is easy to show that for T T< inv , B TdB

    dT < >0 0 , while for

    T T> inv , B TdB

    dT > 0 and less than [Except at a phase transitionsee Chap. 5 andProblem 5.1however, has no meaning in the two-phase region], if dT dP Ha f is to be zero,then d H dP Ta f must equal zero. That is, an inversion point occurs when isotherms are parallelto lines of constant H (vertical line). This occurs at low pressures (ideal gas region) and at high

  • Solutions to Chemical and Engineering Thermodynamics, 3e

    Pa

    VV b RT

    V V

    T T

    T

    PRT

    V b

    a

    V

    ii

    i

    i f

    f i

    f

    f

    f

    f f

    +FHGG

    IKJJ =

    = =

    =

    =

    = = =

    =

    =

    d id i

    a f c h

    d i c h

    2

    5 4

    5

    2 4 5

    6 678 10 1336 10

    02283

    2 2725 6678 1062 73

    29315 62 73 230 42 42 73

    8314 230 42

    1336 10 4 269 10

    02283

    1336

    . ; . .

    .

    . ..

    . . . .

    . .

    . .

    .

    .

    m mol m mol

    Pa m mol

    J mol K m mol K

    K C

    3 3

    6 2

    3

    10

    8286 10 8286 bar

    4 2

    6

    = =

    c hPf . . Pa

    (d) Here we will use the program PR1. Using the 273.15 K and 1 bar reference state we find that atthe initial conditions Z = 11005. , V i = 05365 10 4. m mol3 , Hi = 328185. J mol and

    Si = 5912. J mol K . Therefore

    U H P Vi i i i= = = 328185 500 05365 10 10 5964354 5. . . J mol

    Now since U Uf i= = 596435. J mol and

    V Vf i= = 2 1073 10 4. m mol3 .We must, by trial-and-error, find the temperature and pressure of the state having theseproperties. I find the following as the solution Tf = 230 9. K ; P ~ 99 bar (for which

    V = 01075. m mol3 and U = 5968 4. J mol ). To summarize, we have the following answersfor the different parts of the problem:

    P f T f

    Ideal gas 250 bar 293.15 KCorresponding states 101.1 bar 237 Kvan der Waals 82.86 bar 230.42 KPeng-Robinson 99 bar 230.9 K

    Once again, the ideal gas solution is seriously in error.

    4.20 Mass balance (system = both tanks): N N Ni f f1 1 2= +

    energy balance (system = both tanks): N U N U N Ui i f f f f1 1 1 1 2 2= +

    entropy balance (system = portion of initial contents of tank 1, also in there finally): S Si f1 1=

    Also, P P Pf f f1 2= = ; NV

    Vi

    i11

    1

    = ; N VV

    ff11

    1

    = and N VV

    ff2

    2

    2

    =

    (a) Ideal gas solution: obtain P

    T

    P

    T

    P

    T

    i

    i

    f

    f

    f

    f1

    1

    1

    1

    2

    2

    = + from mass balance and

    P P P P Pi f f f f1 1 272 250 bar 25 10= + = = = . Pa from energy balance

  • Solutions to Chemical and Engineering Thermodynamics, 3e

    T TP

    PTf i

    f

    i

    R Cf

    1 11

    11

    8 314 35 565

    20 273 151

    2249 3

    239

    =FHG

    IKJ = +( )

    FH

    IK =

    =

    P

    K

    C from entropy balance

    . .

    .

    . .

    and

    1 2 1355 9 82 7

    2 1 12

    T T TT

    f i ff= = = . . K C

    Also

    N

    N

    P V

    RT

    RT

    P V

    f

    i

    f

    f

    i

    i1

    1

    1 1

    1

    1

    1 1

    7

    7

    25 10

    249 3

    293 15

    500 100588= =

    =

    .

    .

    .

    ..

    and

    N

    N

    N

    N

    f

    i

    f

    i2

    1

    1

    1

    1 0412= FHG

    IKJ = .

    (b) Corresponding States Solution:

    Initial conditions Tr = =29315

    190 71538

    .

    .. ; Pr =

    =5 104 64 10

    10777

    6.. ; =Z 122. ;

    H H

    TC

    IG

    J mol K

    = 180 . ; S SIG J mol K = 96 . .

    Mass balance:

    P

    Z TP

    Z T Z T

    i

    i if

    f f f f1

    1 1 1 1 2 2

    751 1 50 10

    122 293 151398 10= +

    RSTUVW

    =

    =

    .

    . .. (1)

    Entropy balance:

    S S S S S S S Sf if f i i

    1 1 1 1 1 1 1 10 = = + IG IG, IG, IGd i d i d i

    or

    S S CT

    RPf f f

    1 11

    729315 50 109 6 +

    = IG Pd i ln . ln . . (2)

    Energy balance:

    N U N U N Ui i f f f f1 1 1 1 2 2= + but N N N N U U N U Ui f f f f i f f i1 1 2 1 1 1 2 2 2 0= + + =d i d i

    or

  • Solutions to Chemical and Engineering Thermodynamics, 3e

    P V

    Z RTH P V H P V

    P V

    Z RTH P V H P V

    Z TH H H H H H Z RT Z RT

    Z TH H H H H H

    f

    f ff f f i i i

    f

    f ff f f i i i

    f ff f f i i i f f i i

    f ff f f i i i

    1 1

    1 11 1 1 1 1 1

    2 2

    2 22 2 2 1 1 1

    1 11 1 1 1 1 1 1 1 1 1

    2 22 2 2 1 1 1

    0

    1

    1

    + =

    + +

    + +

    d i d in s d i d in s

    d i d i d in s

    d i d i

    , IG , IG , IG , IG

    , IG , IG , IG , IGd in s + =Z RT Z RTf f i i2 2 1 1 0

    Substituting in the known values gives

    135565 29315 8314 6 406 5

    135565 29315 8 314 6 406 5 0

    1 11 1 1 1 1

    2 22 2 2 2 2

    Z TH H T Z T

    Z TH H T Z T

    f ff f f f f

    f ff f f f f

    + +

    + + + =

    , IG

    , IG

    d i c hn s

    d i c hn s

    . . . , .

    . . . , . (3)

    Eqns. (1-3) now must be solved. One possible procedure isi) Guess P f

    ii) Use Eqn. (2) to find T f1iii) Use Eqn. (1) to find T f2iv) Use Eqn. (3), together with T f1 and T

    f2 to see if guessed P

    f is correct. If not, go back to

    step i.After many iterations, I found the following solution Pf = 9787. bar ; T f1 2216 K= . ;

    T f2 259 4= . K ; N Nf i

    1 1 0 645= . ; N Nf i

    2 1 0 355= . .(c) Peng-Robinson equation of state

    Here we use the equations

    N N Ni f f1 1 2= + (4)

    N U N U N Ui i f f f f1 1 1 1 2 2= + with U H PV= (5)

    S Si f1 = (6)

    P P Pf f f1 2= =

    and N V Vi i1 1 1= ; N V Vf f

    1 1 1= ; N V V V Vf f f

    2 2 2 1 2= = since V V1 2= (value of V1 cancels outof problem, so any convenient value may be used). Procedure I used to solve problem was as

    follows. From PR1 we know V Ni i1 1c h and Si1 given initial conditions. Then1. Guess value of T f1 , find P P

    f f1 = that satisfies S S

    f i1 1=

    2. Use T f1 , Pf and V f1 to get N

    f1 ; then N N N

    f i f2 1 1= so V

    f2 is known.

    3. From P f and V f2 find (trial-and-error with PR1) Tf

    2

    4. See if eqn. (5) energy balance is satisfied; if not go back to step 1. After a number of

    iterations I find Pf =103 6 bar. ; T f1 222 3= . K ; Tf

    2 2555= . K ; N Nf i

    1 1 0 619= . ;

    N Nf i2 1 0381= . .

  • Solutions to Chemical and Engineering Thermodynamics, 3e

    Summaryideal gas(part a)

    Correspondingstates (part b)

    P-R E.O.S.(part c)

    P f 250 bar 97.87 103.6

    T f1 249.3 K 221.6 K 222.3 K

    T f2 355.9 K 259.4 K 255.5 K

    N Nf i1 10.588 0.645 0.619

    N Nf i2 1 0.412 0.355 0.381

    Clearly, the ideal gas assumption is seriously in error!

    4.21 System = contents of compressor. This is a steady-state, open constant volume system.

    mass balance: dN

    dtN N= = +0 1 2& &

    energy balance: dU

    dtN H N H Q W Ps= = + + + 0 1 1 2 2& & & &

    dV

    dt

    0

    = + +0 1 1 2& & &N H H Q Wsa fentropy balance:

    dS

    dtN S N S

    Q

    T= = + + +0 1 1 2 2& &

    &S gen

    0

    .= +&

    &N S S

    Q

    T1 1 2a f

    Thus,

    & &Q TN S S= 1 1 2a f&

    &Q

    NQ T S S

    12 1= = a f

    and

    & &

    &W Q

    NQ H HS

    += + =

    12 1W

    (a) Corresponding states solution

    Q T S S T S S S S S S

    T S S S S RP

    P

    = = +

    = RSTUVW

    2 1 2 2 2 1 1 1

    2 2 1 12

    1

    a f d i d i d in s

    d i d i

    IG IG IG IG

    IG IG ln

    Now Tr = =37315

    405 6092

    .

    .. ; Pr , .

    ~ . 1 =1

    112 80 009 ; Pr , .

    . 2 = =50

    112 80 443 . Thus

    Q RT T S S S SPT

    PT

    r

    r

    r

    r

    = + RST

    UVW= + ( ) =

    ==

    ==

    ln

    . . ln . . .

    , ,..

    ..

    50

    1

    8314 37315 50 37315 523 0 14,088 1

    2 2 0 4440 92

    1 1 0 0090 92

    2 1

    IG IG

    J mol

    d i d i

    and

    W + = = +

    =

    Q H H H H H H H H

    T

    2 1 2 2 20

    1 1 1( ) ( ) ( )IG IG

    sinceconstant

    IG IG