Solutions to Chemical and Engineering Thermodynamics,...
Embed Size (px)
Transcript of Solutions to Chemical and Engineering Thermodynamics,...
-
Solutions to Chemical and Engineering Thermodynamics, 3e
4
4.1 Using the Mollier diagram
=
FH IK = FH IK =( )
= =
T
P
T
PH H
510 490
1241 10 7 929 10
4 463 10 4 463
7 6
6
C
Pa
C Pa C MPa
. .
. .
c h
SS S
T
P
T
P=
FH IK FH IK =( )
= =
510 490
1069 10 9 515 10
1702 10 1702
7 6
5
C
Pa
C Pa C MPa
. .
. .
c h
=
=
=
= = ( )
H S
H S
H T
S T
S P
H P
H T
H P
S P
S T
T H
P H
P S
T S
T
P
S
a fa f
a fa f
a fa f
a fa f
a fa f
a fa f
a fa f
,
,
,
,
,
,
,
,
,
,
,
,.
0262 unitless
4.2 (a) Start from eqn. 4.4-27
H T P H T P RT Z TdP
dTP dV
VV
V
, ,( ) ( ) = ( ) + FH IK LNM
OQP=z
IG 1
PRT
V b
a T
V bV b=
( )+ 2 22
;
FH IK = + P
T
R
V b
da dt
V bV bV 2 22 so
H T P H T P
RT Z TR
V b
da dt
V bV b
RT
V b
a T
V bV bdV
RT Z a Tda
dT
dV
V bV b
V
V
V
V
, ,( ) ( )
= ( ) +
+
RSTUVW +
( )+
LNM
OQP
= ( ) + +FH IK +
=
=
zz
IG
12 2
12
2 2 2 2
2 2
From integral tables we have
dx
a x b x c b a c
a x b b a c
a x b b a c + + =
+
+ + z 2 2
2
2
1
4
2 4
2 4ln for 4 02
-
Solutions to Chemical and Engineering Thermodynamics, 3e
H T P H T P
RT Za Tda dT
b
V b b
V b b
V b b
V b b
RT Za Tda dT
b
V b
V b
V V
, ,
ln ln
ln
( ) ( )
= ( ) + + + +
+ + +
LNMM
OQPP
= ( ) + +
+ +
=
IG
12 2
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
12 2
1 2
1 2
a f
a f d id i
or finally
H T P H T P RT ZTda dT a
b
Z B
Z B, , ln( ) ( ) = ( ) +
+ +
+
LNMM
OQPP
IG 12 2
1 2
1 2
a f d id i
(b) This part is similar except that we start from eqn. (4.4-28)
S T P S T P R ZdP
dT
R
Vdv
R ZR
V b
da dT
V bV b
R
VdV
R Z RV b
V
da dT
b
V b
V b
R Z Bda dT
b
Z B
Z B
VV
V
V
V
V
V
V
V
, , ln
ln
ln ln ln
ln ln
( ) ( ) = + FH IK LNM
OQP
= +
+
LNM
OQP
= + ++ +
+
= ( ) ++ +
+
FHG
IKJ
=
=
= =
zz
IG
2 22
2 2
1 2
1 2
2 2
1 2
1 2
d id i
d id i
4.3 Start with eqn. (4.2-21): dU C dT TP
TP dV
V
= + FHGIKJ
LNMM
OQPPV
. Thus
U
TC
V
FHG
IKJ = V ;
U
TC T
P
TP
V
TP V P
FHG
IKJ = +
FHG
IKJ
LNMM
OQPPFHG
IKJV and
U
T
U
TT
P
TP
V
TP V V P
FHG
IKJ
FHG
IKJ =
FHG
IKJ
LNMM
OQPPFHG
IKJ .
(a) Ideal gas PV RT=
TP
TP
U
T
U
TV P V
FHG
IKJ =
FHG
IKJ =
FHG
IKJ0
(b) van der Waals gas
PRT
V b
a
V=
2 ;
P
T
R
V bV
FHG
IKJ = ;
FHG
IKJ
LNMM
OQPP =T
P
TP
a
VV
2
Also: dPRdT
V b
RT
V bdV
a
VdV=
( )+
2 3
2
-
Solutions to Chemical and Engineering Thermodynamics, 3e
4.6 d SC
TdT
V
TdP
P
= FHGIKJ
P
[eqn. (4.2-20)]
For the ideal gas d SC
TdT
R
PdPIG P=
*
. Thus, at constant temperature
d S SR
P
V
TdP
P
= FHGIKJ
LNM
OQP
IGd i
and
S T P S T P S T P S T PR
P
V
TdP
PP
P
, , , ,( ) ( ) =( ) =( ) = FHGIKJ
RSTUVW=z
IG IG0 00
However, S T P S T P, ,=( ) =( ) =0 0 0IG , since all fluids are ideal at P = 0 . AlsoPV Z T P RTr r= ,a f . Thus
V
T PRZ T P RT
Z T P
TPr r
r r
P
FHG
IKJ = +
FHG
IKJ
RSTUVW
1,
,a f a f
and
R
P
V
T
R
PZ T P
RT
P
Z
T
S T P S T P RZ
P
T
P
Z
TdP
RZ T P
P
T
P
Z
TdP
Pr r
P
PT P
T P
r r
r
r
r r Pr
T P
T P
rr r
r r
FHG
IKJ =
FHG
IKJ
( ) ( ) = + FHGIKJ
LNM
OQP
=
+FHG
IKJ
LNMM
OQPP
=
=
zz
,
, ,
,
,
,
,
,
a fk p
a f
1
1
1
0
0
IG
4.7 (a) Ideal gas
PV NRT
N
=
=( )
+( ) =
50 bar 100 m
27315 150 8314 10142 12
3
3K bar m kmol K kmol
c h. .
.
Energy balance, closed nonflow system
U Q PdV Q W= = +z .However, for ideal gas U = 0 since T is constant (isothermal). Thus
W Q PdVNRTV
dV NRTVV
NRTPP
Q
= = = = =
= +( ) FH IK= ==
z z ln ln. . ln
. .
.
2
1
1
2
3
142 1 27315 15050
300
895 9 10 895 9
895 9
kmol 8.314 J mol K
kJ MJ
MJ
Also, by Ideal Gas Law at fixed T and N
-
Solutions to Chemical and Engineering Thermodynamics, 3e
PV PV V VP
P1 1 2 2 2 11
2
100 m50
3001667= = = =3 3 m.
(b) Corresponding states
T P ZH H
TS Sr r
C
IGIG
initial state
final state 1.391300
73.76cal
mol K
cal
mol K
+ = =
=
150 27315
304 21391
50
73760679 094 07 0 4
4067 0765 45 2 4
.
..
.. . . .
. . . .
Number of moles of gas = = = =NPV
ZRT
142 1
094151 2
.
.. kmol ( 142 1. =
PV
RT from above)
Final volume = =V ZNRTPf f
= +( )0765 151 2 8 314 10 273 15 150
300
2. . . .=1356 m. 3
Energy balance on gas: U Q W= +
Entropy balance on gas processes in gas are reversible: SQ
TS S= + =gen gen 0 . Therefore
SQ
T= or Q T S=
S S S N S S N S S S S S S
NP
P
N N
Q T S
W U Q N U U Q N H H N P V PV Q
f i f i f f f i i i
f
i
f i f i f f i i
= = = +
= ( )RSTUVW
= RSTUVW =
= = +( ) ( ) =
= = =
c h c h c h c hm rIG IG IG IG
J K
kmol MJ
2 4 4184 8 314 04 4184
8 368 8314300
502326
27315 150 151 2 2326 14885
. . . ln . .
. . ln .
. . . .
=
+LNMMN T
H H
TCf f
C
IGd iH Hf
IGiIGc h
0Since process
is isothermal.
+OQPP T
H H
TZ RT Z RT QC
i i
Cf f i i
IGd i
= ( )( )
+( ) ( )LNM
OQP +
= + + = +=
151 2304 2 45 07 4184 8314
273 15 150 0 765 09414885
151 2 10 48365 615 7 14885 638 2 14885
850 3
3
.. . . . .
. . ..
. . . . . .
.
kmol MJ
J MJ MJ
MJ
(c) Peng-Robinson E.O.S.Using the program PR1 with T = 27315. , P = 1 bar as the reference state, we obtainT = 150 C , P = 50 barZ = 0 9202. ; V = 06475 10 3. m mol3 ; H = 470248 . J mol ; S = 1757. J mol K .T = 150 C , P = 300 bar
-
Solutions to Chemical and Engineering Thermodynamics, 3e
Z = 0 7842. ; V = 0 9197 10 4. m mol3 ; H = 6009. J mol ; S = 4124. J mol .
NV
V= =
=
100 m
06475 10154 443
3
3 m mol kmol
..
Q TN S= = +( ) ( )( ) = 273 15 150 154 44 4124 1757 1546 9. . . . . MJ
W U Q H PV H PV Q
N H PV H PV Q
f i
f i
= = ( ) ( )
= ( ) ( )
=
+
L
N
MMMM
O
Q
PPPP +
=
154 44
6009 300 0 9197 10
10 4702 48
50 0 6475 10 10
10 1546 9 10
885 25
4
5
3 5
3 6.
. .
.
.
.
.
J bar m
MJ
3
{Note that N, Q and W are close to values obtained from corresponding states.}
4.8
T
P
T S
P S
T S
P T
P T
P S
S T P T
S P T PS
FHG
IKJ =
( )( )
=( )( )
( )
= ( ) ( )( ) ( )
,
,
,
,
,
,
, ,
, ,a f =
= =
S PS T
V T
C T
V T
CT
P
Pa fa f
a fP P
and
S
T
S
T
V P
V V dP
V V dP
V S P S
V T P T
V S
V T
P T
P S
S V
T V
T P
S P
S
T
T
S
C
T
T
C
C
C
= =( ) ( )( ) ( )
=( )( )
( )( )
=( )( )
( )( )
= FHGIKJ
FHG
IKJ = =
1
1
a fa fa fa f
, ,
, ,
,
,
,
,
,
,
,
,V
P
V
P
4.9 (a)
H
V
H T
V T
H T
P T
P T
V T
H
P
P
VT T T
FHG
IKJ =
( )( )
=( )( )
( )( )
= FHGIKJ
FHG
IKJ
,
,
,
,
,
,
Since
P
V T
FHG
IKJ 0 (except at the critical point)
H
V T
FHG
IKJ = 0 if
H
P T
FHG
IKJ = 0
(b)
S
V
S P
V P
S P
T P
T P
V P
S
T
T
V
C
T VV
dT
dV
C TV
V V T
C
TV
S
V
P P P
P P P
FHG
IKJ =
( )( )
=( )( )
( )( )
=FHG
IKJ
FHG
IKJ
= FHGIKJ = =
FHG
IKJ
,
,
,
,
,
,
~P P P1
11
a fa f4.10 (a) We start by using the method of Jacobians to reduce the derivatives
-
Solutions to Chemical and Engineering Thermodynamics, 3e
TV
T HV H
T HT P
T PT V
T VV H
H T
P T
P T V T
H V T V
H
P
P V
H T
H V
d H T
H
T
T
V
T
V
FHG
IKJ =
( )( )
=( )( )
( )( )
( )
= ( )( )
( ) ( )( ) ( )
= FHGIKJ
=
,,
,,
,,
,,
,
,
, ,
, ,
a f
a fa f
a fa f
Now from Table 4.1 we have that
H
PV T
V
TT P
FHG
IKJ =
FHG
IKJ and
HT
C V TVT
PTV P V
FHG
IKJ = +
FHG
IKJ
LNM
OQPFHG
IKJP
alternatively, since H U PV= +
H
T
U
T
PV
TC V
dP
dTV V V V
FHG
IKJ =
FHG
IKJ +
( )FHG
IKJ = +
FH IKV
Thus
T
V
P V V T V T
C V P T
V P V T P T
C V P TH
T P
V
T V
V
FHG
IKJ =
+
= +
+a f a f
a fa f a f
a fV V
Note: I have used
P
V
V
T
P
TT P V
FHG
IKJ
FHG
IKJ =
FHG
IKJ .
T
V
T S
V S
T S
V T
V T
V S
S T
V T
T V
S V
S
V
T
S
T
C
P
T
S
T V V
FHG
IKJ =
( )( )
=( )( )
( )( )
= ( )( )
( )( )
=FHG
IKJFHG
IKJ =
FHG
IKJ
,
,
,
,
,
,
,
,
,
,
V
(b) For the van der Waals fluid
P
T
R
V bV
FHG
IKJ = ,
P
V
RT
V b
a
VT
FHG
IKJ =
( )
+2 32
Thus
T
V
RTV V b a V RT V b
C V R V bH
FHG
IKJ =
( ) + + ( )
+
2 22n sV
after simplification we obtain
T
V
a V b RTV b
C V b V R V b VH
FHG
IKJ =
( )
( ) + ( )
2 2 2
2 2 3C
-
Solutions to Chemical and Engineering Thermodynamics, 3e
and
T
V
RT
C V bS
FHG
IKJ = ( )V
4.11 There are a number of ways to solve this problem. The method I use is a little unusual, but thesimplest that I know of. At the critical point all three roots of V are equal, and equal to V C .
Mathematically this can be expressed as V V C =a f3 0 which, on expansion, becomes
V V V V V VC C C3 2 2 33 3 0 + = (1)
compare this with
PRT
V b
a
V V b b V b
RT
V b
a
V bV b=
+( ) + ( )=
+ 2 22
which multiplying through by the denominators can be written as
V V bRT
Pb
bRT
P
a
PV b
RTb
P
ab
P3 2 2 3
2
32
0+ FH IK + +FH IK + + FHG
IKJ = (2)
Comparing the coefficients of V in Eqns. (1) and (2) gives TC , PC
V bRT
PVC
CC
2 3: = (3)
V bbRT
P
a
PVC
C CC: + =3
232 2 (4)
V bRT
Pb
ab
PVC
C CC
0 3 2 3: + = (5)
From Eqn. (3)
P b
RT
P V
RTZC
C
C C
CC =
= 1 3 3 or P b
RTZC
CC= 1 3 (6)
For convenience, let y ZC= 1 3 or Zy
C =13
. Then
P b
RTyC
C
=
From Eqn. (4)
-
Solutions to Chemical and Engineering Thermodynamics, 3e
FHG
IKJ
FHG
IKJ + =
+ + =( )
3 2 3
3 23 1
9
2
22
22
2
P b
RT
P b
RT
aP
RTZ
y yaP
RT
y
C
C
C
C
C
CC
C
C
a f
a for expanding and rearranging
aP
RTy yC
Ca f c h221
310 4 1= + + (7)
Finally from eqn. (5)
P b
RT
bP
RT
P b
RT
aP
RTZC
C
C
C
C
C
C
CC
FHG
IKJ +
FHG
IKJ
FHG
IKJFHG
IKJ =
3 2
23
a fy y y y y y3 2 2 3
1
310 4 1
1
271+ + + = ( )c h
or
64 6 12 1 03 2y y y+ + = (8)
This equation has the solution y = 0077796074.
=b RTP
C
C
0077796074. (from Eqn. (6))
aRT
PC
C
= 04572355292
.a f
(from Eqn. (7))
Also Zy
C =
=1
30307401309. .
Note that we have equated a and b to TC and PC only at the critical point. Therefore these functions
could have other values away from the critical point. However, as we have equated functions of V ,
we have assumed a and b would only be functions of T. Therefore, to be completely general wecould have
aRT
P
T
T
bRT
P
T
T
C
C C
C
C C
=FHG
IKJ
=FHG
IKJ
0457235529
0077796074
2
.
.
a f
with T
TC
FHG
IKJ 1 as
T
TC 1 and
T
TC
FHG
IKJ 1 as
T
TC 1 .
In fact, Peng and Robinson (and others) have set = 1 at all temperatures and adjusted a s afunction of temperature to give the correct vapor pressure (see chapter 5).
4.12 (also available as a Mathcad worksheet)
-
Solutions to Chemical and Engineering Thermodynamics, 3e
dN
dtN N N N
dUdt
N H N H QQN
H H
= + = =
= + + = =
& & & &
& & &&
1 2 2 1
1 1 2 21
2 1
0
0
Also, now using the program PR1 with T = 27315. , P = 1 bar reference state we obtain
T = 100 C T = 150 CP = 30 bar P = 20 barZ = 0 9032. Z = 0 9583.
V = 09340 10 3. m mol3 V = 01686 10 2. m mol3
H = 3609 72. J mol H = 679606 . J molS = 1584. J mol K S = 4 68 . J mol
&
& . . .Q
N= =679606 3609 72 318634 J mol
4.13 (also available as a Mathcad worksheet)
Since process is adiabatic and reversible S = 0 or S Si f= , i.e.,
S S T310 K, 14 bar 345 bar( ) = =( )?, . Using the program PR1 with the T = 27315. K and P = 1
bar reference state we obtain T = 310 K , P = 14 bar , Z = 0 9733. , V = 01792 10 2. m mol3 ,H = 109083. J mol and S = 1575. J mol K .
By trial and error (knowing P and S , guessing T) we obtain T = 34191. K , P = 345 bar ,
Z = 0 9717. , V = 08007 10 4. m mol3 , H = 188609. J mol , S = 1575. J mol K =Tf 34191. K .
System = contents of compressor
M.B.: dN
dtN N N N= = + = 0 1 2 2 1& & & &
E.B.: dU
dtN H N H= = + +0 1 1 2 2& &
&Q 0adiabatic
+ &W PsdV
dt
0
volume ofcompressor
constant
& & &W N H N HS = +1 1 2 2 or &
& . . .W
NH HS = = =2 1 188609 109083 7952 6 J mol
4.14 (a) Pa
VV b RT
PV
RT
V
V b
a
RTV+
FHG
IKJ ( ) = = 2
i) lim limPV
V
PV
RT
V
V b
a
RTV
=
FHG
IKJ =0 1
ii) B VPV
RTV
V
V b
a
RTVPV
V= FH IK =
RSTUVW
lim lim0
1 1
= ( )
( )RST
UVW = ( ) RST
UVW = lim limV VVV V b
V b
a
RTV
bV
V b
a
RTb
a
RT
Q.
N1.
N2.
M.B.
E.B.
-
Solutions to Chemical and Engineering Thermodynamics, 3e
iii) C VPVRT
BV
VbV b V b
V bb V
V bb
PV
V V= FHG
IKJ =
( )
RSTUVW = =
lim lim lim0
22
21
=C b2
(b) At the Boyle temperature: limP
VPV
RTB
FH IK = =0 1 0 0
0 = ba
RTB, T
a
RB b= but a
V RTc c=9
8, b
V c=3
(Eqns. 4.6-3a)
TV RT
RVT TB
c c
cc c= = =
9 8
3
27
83375.
4.15 (a) From table: TB ~ 320 K , i.e., B T BBa f = ( ) =320 K 0The inversion temperature is the temperature at which
T
P CV T
V
T
TP T
RTP
BRP
dBdT
V TVT
RTP
BRTP
TdBdT
B TdBdT
H P
P P
P
FHG
IKJ = =
FHG
IKJ
LNM
OQP
FHG
IKJ = +
LNM
OQP = +
FHGIKJ = + =
01
P
Thus, T inv is the temperature at which B TdB
dt = 0 .
Plot up B vs. T, obtain dB dT either graphically, or numerically from the tabular data. I find
T inv ~ 600 K . Also, dB dT decreases with increasing temperature (i.e.,
dB dT ~ .456 cm mol K3 at 87.5 K and 0.027 cm mol K3 at 650 K. Presumably it is negativeat even higher temperature!)
(b) Generally
= FHGIKJ =
FHG
IKJ
RSTUVW =
RSTUVW
TP C
V TVT C
B TdBdTH P
1 1
P P
Using the data in the table it is easy to show that for T T< inv , B TdB
dT < >0 0 , while for
T T> inv , B TdB
dT > 0 and less than [Except at a phase transitionsee Chap. 5 andProblem 5.1however, has no meaning in the two-phase region], if dT dP Ha f is to be zero,then d H dP Ta f must equal zero. That is, an inversion point occurs when isotherms are parallelto lines of constant H (vertical line). This occurs at low pressures (ideal gas region) and at high
-
Solutions to Chemical and Engineering Thermodynamics, 3e
Pa
VV b RT
V V
T T
T
PRT
V b
a
V
ii
i
i f
f i
f
f
f
f f
+FHGG
IKJJ =
= =
=
=
= = =
=
=
d id i
a f c h
d i c h
2
5 4
5
2 4 5
6 678 10 1336 10
02283
2 2725 6678 1062 73
29315 62 73 230 42 42 73
8314 230 42
1336 10 4 269 10
02283
1336
. ; . .
.
. ..
. . . .
. .
. .
.
.
m mol m mol
Pa m mol
J mol K m mol K
K C
3 3
6 2
3
10
8286 10 8286 bar
4 2
6
= =
c hPf . . Pa
(d) Here we will use the program PR1. Using the 273.15 K and 1 bar reference state we find that atthe initial conditions Z = 11005. , V i = 05365 10 4. m mol3 , Hi = 328185. J mol and
Si = 5912. J mol K . Therefore
U H P Vi i i i= = = 328185 500 05365 10 10 5964354 5. . . J mol
Now since U Uf i= = 596435. J mol and
V Vf i= = 2 1073 10 4. m mol3 .We must, by trial-and-error, find the temperature and pressure of the state having theseproperties. I find the following as the solution Tf = 230 9. K ; P ~ 99 bar (for which
V = 01075. m mol3 and U = 5968 4. J mol ). To summarize, we have the following answersfor the different parts of the problem:
P f T f
Ideal gas 250 bar 293.15 KCorresponding states 101.1 bar 237 Kvan der Waals 82.86 bar 230.42 KPeng-Robinson 99 bar 230.9 K
Once again, the ideal gas solution is seriously in error.
4.20 Mass balance (system = both tanks): N N Ni f f1 1 2= +
energy balance (system = both tanks): N U N U N Ui i f f f f1 1 1 1 2 2= +
entropy balance (system = portion of initial contents of tank 1, also in there finally): S Si f1 1=
Also, P P Pf f f1 2= = ; NV
Vi
i11
1
= ; N VV
ff11
1
= and N VV
ff2
2
2
=
(a) Ideal gas solution: obtain P
T
P
T
P
T
i
i
f
f
f
f1
1
1
1
2
2
= + from mass balance and
P P P P Pi f f f f1 1 272 250 bar 25 10= + = = = . Pa from energy balance
-
Solutions to Chemical and Engineering Thermodynamics, 3e
T TP
PTf i
f
i
R Cf
1 11
11
8 314 35 565
20 273 151
2249 3
239
=FHG
IKJ = +( )
FH
IK =
=
P
K
C from entropy balance
. .
.
. .
and
1 2 1355 9 82 7
2 1 12
T T TT
f i ff= = = . . K C
Also
N
N
P V
RT
RT
P V
f
i
f
f
i
i1
1
1 1
1
1
1 1
7
7
25 10
249 3
293 15
500 100588= =
=
.
.
.
..
and
N
N
N
N
f
i
f
i2
1
1
1
1 0412= FHG
IKJ = .
(b) Corresponding States Solution:
Initial conditions Tr = =29315
190 71538
.
.. ; Pr =
=5 104 64 10
10777
6.. ; =Z 122. ;
H H
TC
IG
J mol K
= 180 . ; S SIG J mol K = 96 . .
Mass balance:
P
Z TP
Z T Z T
i
i if
f f f f1
1 1 1 1 2 2
751 1 50 10
122 293 151398 10= +
RSTUVW
=
=
.
. .. (1)
Entropy balance:
S S S S S S S Sf if f i i
1 1 1 1 1 1 1 10 = = + IG IG, IG, IGd i d i d i
or
S S CT
RPf f f
1 11
729315 50 109 6 +
= IG Pd i ln . ln . . (2)
Energy balance:
N U N U N Ui i f f f f1 1 1 1 2 2= + but N N N N U U N U Ui f f f f i f f i1 1 2 1 1 1 2 2 2 0= + + =d i d i
or
-
Solutions to Chemical and Engineering Thermodynamics, 3e
P V
Z RTH P V H P V
P V
Z RTH P V H P V
Z TH H H H H H Z RT Z RT
Z TH H H H H H
f
f ff f f i i i
f
f ff f f i i i
f ff f f i i i f f i i
f ff f f i i i
1 1
1 11 1 1 1 1 1
2 2
2 22 2 2 1 1 1
1 11 1 1 1 1 1 1 1 1 1
2 22 2 2 1 1 1
0
1
1
+ =
+ +
+ +
d i d in s d i d in s
d i d i d in s
d i d i
, IG , IG , IG , IG
, IG , IG , IG , IGd in s + =Z RT Z RTf f i i2 2 1 1 0
Substituting in the known values gives
135565 29315 8314 6 406 5
135565 29315 8 314 6 406 5 0
1 11 1 1 1 1
2 22 2 2 2 2
Z TH H T Z T
Z TH H T Z T
f ff f f f f
f ff f f f f
+ +
+ + + =
, IG
, IG
d i c hn s
d i c hn s
. . . , .
. . . , . (3)
Eqns. (1-3) now must be solved. One possible procedure isi) Guess P f
ii) Use Eqn. (2) to find T f1iii) Use Eqn. (1) to find T f2iv) Use Eqn. (3), together with T f1 and T
f2 to see if guessed P
f is correct. If not, go back to
step i.After many iterations, I found the following solution Pf = 9787. bar ; T f1 2216 K= . ;
T f2 259 4= . K ; N Nf i
1 1 0 645= . ; N Nf i
2 1 0 355= . .(c) Peng-Robinson equation of state
Here we use the equations
N N Ni f f1 1 2= + (4)
N U N U N Ui i f f f f1 1 1 1 2 2= + with U H PV= (5)
S Si f1 = (6)
P P Pf f f1 2= =
and N V Vi i1 1 1= ; N V Vf f
1 1 1= ; N V V V Vf f f
2 2 2 1 2= = since V V1 2= (value of V1 cancels outof problem, so any convenient value may be used). Procedure I used to solve problem was as
follows. From PR1 we know V Ni i1 1c h and Si1 given initial conditions. Then1. Guess value of T f1 , find P P
f f1 = that satisfies S S
f i1 1=
2. Use T f1 , Pf and V f1 to get N
f1 ; then N N N
f i f2 1 1= so V
f2 is known.
3. From P f and V f2 find (trial-and-error with PR1) Tf
2
4. See if eqn. (5) energy balance is satisfied; if not go back to step 1. After a number of
iterations I find Pf =103 6 bar. ; T f1 222 3= . K ; Tf
2 2555= . K ; N Nf i
1 1 0 619= . ;
N Nf i2 1 0381= . .
-
Solutions to Chemical and Engineering Thermodynamics, 3e
Summaryideal gas(part a)
Correspondingstates (part b)
P-R E.O.S.(part c)
P f 250 bar 97.87 103.6
T f1 249.3 K 221.6 K 222.3 K
T f2 355.9 K 259.4 K 255.5 K
N Nf i1 10.588 0.645 0.619
N Nf i2 1 0.412 0.355 0.381
Clearly, the ideal gas assumption is seriously in error!
4.21 System = contents of compressor. This is a steady-state, open constant volume system.
mass balance: dN
dtN N= = +0 1 2& &
energy balance: dU
dtN H N H Q W Ps= = + + + 0 1 1 2 2& & & &
dV
dt
0
= + +0 1 1 2& & &N H H Q Wsa fentropy balance:
dS
dtN S N S
Q
T= = + + +0 1 1 2 2& &
&S gen
0
.= +&
&N S S
Q
T1 1 2a f
Thus,
& &Q TN S S= 1 1 2a f&
&Q
NQ T S S
12 1= = a f
and
& &
&W Q
NQ H HS
+= + =
12 1W
(a) Corresponding states solution
Q T S S T S S S S S S
T S S S S RP
P
= = +
= RSTUVW
2 1 2 2 2 1 1 1
2 2 1 12
1
a f d i d i d in s
d i d i
IG IG IG IG
IG IG ln
Now Tr = =37315
405 6092
.
.. ; Pr , .
~ . 1 =1
112 80 009 ; Pr , .
. 2 = =50
112 80 443 . Thus
Q RT T S S S SPT
PT
r
r
r
r
= + RST
UVW= + ( ) =
==
==
ln
. . ln . . .
, ,..
..
50
1
8314 37315 50 37315 523 0 14,088 1
2 2 0 4440 92
1 1 0 0090 92
2 1
IG IG
J mol
d i d i
and
W + = = +
=
Q H H H H H H H H
T
2 1 2 2 20
1 1 1( ) ( ) ( )IG IG
sinceconstant
IG IG