Similarity Renormalization Group and Next Generation...

44
Similarity Renormalization Group and Next Generation Chiral Interactions Angelo Calci Institut für Kernphysik 1

Transcript of Similarity Renormalization Group and Next Generation...

Page 1: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Similarity Renormalization Group

and Next Generation

Chiral Interactions

Angelo CalciInstitut für Kernphysik

1

Page 2: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Introduction

QCD-based interactionrealistic NN+3N+4N

interactions (χEFT)

many-body problem

ab-initio methods

(IT-NCSM, CC, RGM, ...)

nuclear structure

confront predictions withexperiment

Hamilton Matrixpre-diagonalization (SRG) and

basis transformations

2

Page 3: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

New Directions

Probe Next-GenerationChiral Potentialsin ab-initio nuclear

structure calculations

SRG in 4B Spacetreatment of induced &

initial 4N contributions

Frequency Conversionextends SRG in HO Base

to lower HO frequencies

3

Page 4: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Chiral NN+3N InteractionsWeinberg, van Kolck, Machleidt, Entem, Meissner, Epelbaum, Krebs, Bernard,...

NN 3N 4N

LO

NLO

N2LO

N3LO

Ä Ç ´

É

¼

£

¼

µ

Æ Ä Ç ´

É

¾

£

¾

µ

Æ

¾

Ä Ç ´

É

¿

£

¿

µ

Æ

¿

Ä Ç ´

É

£

µ

standard Interaction:

• NN N3LO: Entem&Machleidt, 500MeV cutoff

• 3N N2LO: Navr,atil, local, 500MeV cutoff, fitted to Triton

Next Generation Interactions

consistent N2LO Interactions:

• NN N2LO: Epelbaum et al., 450, . . . ,600MeV cutoff

• 3N N2LO: Epelbaum et al., 450, . . . ,600MeV cutoff,nonlocal

consistent N3LO Interactions:

• LENPIC-project

• coming soon. . .

optimized N2LO Interaction:

• NN N2LO: Ekström et al., 500MeV cutoff, LECs fittet with POUNDerS

• 3N N2LO: Navr,atil, local, 500MeV cutoff, fitted to Triton

4

Page 5: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Similarity Renormalization Group

in Three-Body Space

Bogner, Furnstahl, Perry — Phys. Rev. C 75 061001(R) (2007)

Jurgenson, Navrátil, Furnstahl — Phys. Rev. Lett. 103, 082501 (2009)

Roth, Neff, Feldmeier — Prog. Part. Nucl. Phys. 65, 50 (2010)

Roth, Langhammer, AC et al. — Phys. Rev. Lett. 107, 072501 (2011)

5

Page 6: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Similarity Renormalization Group (SRG)

accelerate convergence by pre-diagonalizing the Hamiltonian

with respect to the many-body basis

continuous unitary transformation of the Hamiltonian

eHα = U†αHUα

leads to evolution equation

d

dαeHα =ηα, eHα

with ηα = −U

†α

dUα

dα= −η†

α

initial value problem with eHα=0 = H

choose dynamic generator

ηα = (2μ)2Tint, eHα

advantages of SRG:simplicity and flexibility

6

Page 7: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Three-Body Jacobi Basis

“relative coordinates” for 3-body system

~ξ0 =

È1

3[~r + ~rb + ~rc] ~ξ1 =

È1

2[~r − ~rb] ~ξ2 =

È2

3

1

2(~r + ~rb)− ~rc

harmonic-oscillator (HO) Jacobi basis

• antisymmetric under 1↔ 2:

|α⟩ = |[(N1L1, S1)J1, (N2L2, S2)J2]JMJ, (T1, T2)TMT⟩

• completely antisymmetric:

|EJMJTMT⟩ =∑

α

cα, |α⟩

cα, = ⟨EJMJTMT |α⟩

coefficients of fractional parentage (CFPs) by P. Navr,atil

7

Page 8: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

SRG Evolution in Three-Body Space

α = 1.28 fm4

λ = 0.94 fm−1

E′ ′JT eHα − TintEJT

Jπ =12

+, T =

12, ℏΩ = 24MeV

3B-Jacobi HO matrix elements

0 → E→ 18 20 22 24 26 28(E, )

28

26

24

22

20

18

E′

0

.

(E′ ,′)

2

1.16

0.64

0.32

0.12

0

[MeV]

NCSM ground state 3H

æ

æ

æ

ææ

ææ æ æ æ æ æ æ æ

æ

0 4 8 12 16 20 24 28

Nm

-8.5

-8

-7.5

-7

-6.5

E[M

eV]

pre-diagonalization ofHamiltonian

acceleration ofconvergence in many-body

calculations

8

Page 9: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

SRG Evolution in A-Body Space

SRG induces irreducible many-body contributions

U†αHUα = eH[2]α

+ eH[3]α+ · · ·+ eH[A]

α+ · · · + eH[A]

α

restricted to SRG evolution in 2B or 3B space

formal violation of unitarity

eigenvalues might not be invariantSRG-evolved Hamiltonians

NN only: start with NN initial Hamiltonian and evolve in two-bodyspace

NN+3N-induced: start with NN initial Hamiltonian and evolve inthree-body space

NN+3N-full: start with NN+3N initial Hamiltonian and evolve inthree-body space

α-variation provides a diagnostic tool to assess thecontributions of omitted many-body interactions

9

Page 10: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

From Jacobi to JT-Coupled Scheme

transformed interaction in 3B-Jacobi basis

ab-initio many-body calculation

first problem

many-body calculations (A > 6) inJacobi coordinates not feasible

→ advantageous to use m-scheme

second problem

m-scheme matrix elements become

intractable for Nmax > 8 (p-shell)

transformation from Jacobi intoJ T-coupled scheme

key to efficient NCSM calculationsup to Nm = 14 for p-shell nuclei

decoupling on the fly

10

Page 11: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

HO Basis Sets

Jacobi basis• no center of mass part

• TJP-channel separate

• moderate memory needs

• ideal basis for SRG

m-scheme|(n, s)jm, (nbb, sb)jbmb, (ncc, sc)jcmc⟩

• enormous memory needs

• necessary for ab-initio NCSM calculations

J T-coupled scheme

|[(n, s)j, (nbb, sb)jb]jb, (ncc, sc)jcJM⟩

• Hamiltonian connects only equal J and T (memory needs decreases)

• decoupling on the fly

memory needs

5 10 15 20 25 30 35 40Emax

10−6

10−4

10−2

100

102

104

.

GB

m-scheme J T-coupled scheme

ÎÎÎ Jacobi basis

11

Page 12: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

(Importance Truncated) NCSM

No-Core Shell Model (NCSM)

solve eigenvalue problem: H|Ψn⟩ = En|Ψn⟩

model space: spanned by m-scheme states |ν⟩ with unpertur-bed excitation energy of up to NmaxℏΩ

problem of NCSMenormous increase of model space with

particle number A and Nmax

Importance Truncated NCSM

a priori determination of relevant basis states via first-orderperturbation theory

κν = −

ν

Hint

Ψref

εν − εref

importance truncated space spanned by basis states with|κν| ≥ κmin

IT-NCSM provides same results as thefull NCSM keeping all its advantages

expands application range to higher A

12

Page 13: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

4He: Ground-State Energies

NN only

2 4 6 8 10 12 14 16 ∞Nmx

-29

-28

-27

-26

-25

-24

-23

.

E[MeV]

strong α-dependence:induced 3N interactions

NN+3N-induced

2 4 6 8 10 12 14 16 ∞Nmx

no α-dependence: noinduced 4N interactions

NN+3N-full

2 4 6 8 10 12 14 16 ∞Nmx

no α-dependence: noinduced 4N interactions

Î α = 0.04 fm4 α = 0.05 fm4 α = 0.0625 fm4 α = 0.08 fm4 α = 0.16 fm4

λ = 2.24 fm−1 λ = 2.11 fm−1 λ = 2.00 fm−1 λ = 1.88 fm−1 λ = 1.58 fm−1

ℏΩ = 20MeV

13

Page 14: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

6Li: Ground-State Energies

NN only

2 4 6 8 10 12 14 ∞Nmx

-34

-32

-30

-28

-26

-24

-22

.

E[MeV]

NN+3N-induced

2 4 6 8 10 12 14 ∞Nmx

NN+3N-full

2 4 6 8 10 12 14 ∞Nmx

Î α = 0.04 fm4 α = 0.05 fm4 α = 0.0625 fm4 α = 0.08 fm4 α = 0.16 fm4

λ = 2.24 fm−1 λ = 2.11 fm−1 λ = 2.00 fm−1 λ = 1.88 fm−1 λ = 1.58 fm−1

ℏΩ = 20MeV

14

Page 15: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

12C: Ground-State Energies

NN only

2 4 6 8 10 12 14 ∞Nmx

-110

-100

-90

-80

-70

-60

.

E[MeV]

NN+3N-induced

2 4 6 8 10 12 14 ∞Nmx

no α-dependence:no induced 4N contrib.

NN+3N-full

2 4 6 8 10 12 14 ∞Nmx

some α-dependence:induced 4N interactions

Î α = 0.04 fm4 α = 0.05 fm4 α = 0.0625 fm4 α = 0.08 fm4 α = 0.16 fm4

λ = 2.24 fm−1 λ = 2.11 fm−1 λ = 2.00 fm−1 λ = 1.88 fm−1 λ = 1.58 fm−1

ℏΩ = 20MeV

15

Page 16: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

16O: Ground-State Energies

NN only

2 4 6 8 10 12 14 ∞Nmx

-180

-160

-140

-120

-100

-80

.

E[MeV]

NN+3N-induced

2 4 6 8 10 12 14 ∞Nmx

no α-dependence:no induced 4N contrib.

NN+3N-full

2 4 6 8 10 12 14 ∞Nmx

sizable α-dependence:induced 4N interactions

Î α = 0.04 fm4 α = 0.05 fm4 α = 0.0625 fm4 α = 0.08 fm4 α = 0.16 fm4

λ = 2.24 fm−1 λ = 2.11 fm−1 λ = 2.00 fm−1 λ = 1.88 fm−1 λ = 1.58 fm−1

ℏΩ = 20MeV

16

Page 17: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Spectroscopy of 12CRoth, et al; PRL 107, 072501 (2011)

NN only

0+ 0

0+ 0

0+ 0

1+ 0

1+ 1

2+ 0

2+ 0

2+ 1

4+ 0

2 4 6 8 Exp.Nmx

0

2

4

6

8

10

12

14

16

18

.

E[MeV]

NN+3N-induced

0+ 0

0+ 0

0+ 0

1+ 0

1+ 1

2+ 0

2+ 0

2+ 1

4+ 0

2 4 6 8 Exp.Nmx

NN+3N-full

0+ 0

0+ 0

0+ 0

1+ 0

1+ 1

2+ 0

2+ 0

2+ 1

4+ 0

2 4 6 8 Exp.Nmx

12CℏΩ = 16MeV

α = 0.04 fm4 α = 0.08 fm4

λ = 2.24 fm−1 λ = 1.88 fm−1

spectra largelyinsensitive toinduced 4N

standard

17

Page 18: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

SRG Model Space &

Frequency Conversion

Roth, AC, Langhammer et al. — in preparation

18

Page 19: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

SRG: Basis Representation

accelerate convergence by pre-diagonalizing the Hamiltonian

with respect to the many-body basis

unitary transformation driven by

d

dαeHα =ηα, eHα

with ηα = (2μ)

2Tint, eHα

(2μ)2TinteHαeHα − 2eHαTinteHα + eHα

eHαTintd

E′′JT eHα

EJT=

(2μ)2∑

E′′ ,E′′′

′′, ′′′

E′′JTTintE′′′′JTE′′′′JT eHα

E′′′ ′′′JTE′′′ ′′′JT eHα

EJT

−2E′′JT eHα

E′′′′JTE′′′′JTTintE′′′ ′′′JTE′′′ ′′′JT eHα

EJT

+E′′JT eHα

E′′′′JTE′′′′JT eHα

E′′′ ′′′JTE′′′ ′′′JTTintEJT

E(SRG)max

SRG model space truncated E ≤ E(SRG)max

19

Page 20: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

SRG Model Space

large angular momenta less important for low-energy properties

• J-dependent SRG space truncation E(SRG)max

(J)

SRG model-space ramp

E(SRG)max

JJ0 J1

E0

E1

E(SRG)max

E(SRG)max

J52

132

40

24

A

E(SRG)max

E(SRG)max

J32

52

72

112

132

4036

24

A

B

C

use A-ramp as standard

use B- and C-ramp toinvestigate sensitivity toSRG space truncation

20

Page 21: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Frequency Conversion: 16O Ground State

standard SRG

-150

-140

-130

-120

-110

-100

-90

-80

.

E[MeV]

NN+3N-fullα = 0.08 fm4

12 14 16 18 20 22 24ℏΩ [MeV]

0

2

4

6

8

.

ΔE[MeV]

A-ramp

B-ramp

Î

C-ramp

physical content of SRG spacedepends on ℏΩ

SRG space insufficientfor low ℏℏℏΩ

• especially for increasing mass

number

Idea:

SRG transformation foradequate ℏΩ

convert to ℏΩ needed forthe many-body calcula-tions

21

Page 22: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Frequency Conversion: 16O Ground State

standard SRG

-150

-140

-130

-120

-110

-100

-90

-80

.

E[MeV]

NN+3N-fullα = 0.08 fm4

12 14 16 18 20 22 24ℏΩ [MeV]

0

2

4

6

8

.

ΔE[MeV]

A-ramp

B-ramp

Î

C-ramp

Frequency Conversion

-150

-140

-130

-120

-110

-100

-90

-80

.

E[MeV]

NN+3N-fullα = 0.08 fm4

ℏΩ = 20MeV

12 14 16 18 20 22 24ℏΩ [MeV]

0

2

4

6

8

.

ΔE[MeV]

22

Page 23: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Frequency Conversion: 16O Ground State

standard SRG

-150

-140

-130

-120

-110

-100

-90

-80

.

E[MeV]

NN+3N-fullα = 0.08 fm4

12 14 16 18 20 22 24ℏΩ [MeV]

0

2

4

6

8

.

ΔE[MeV]

A-ramp

B-ramp

Î

C-ramp

Frequency Conversion

-150

-140

-130

-120

-110

-100

-90

-80

.

E[MeV]

NN+3N-fullα = 0.08 fm4

ℏΩ = 24MeV

12 14 16 18 20 22 24ℏΩ [MeV]

0

2

4

6

8

.

ΔE[MeV]

insensitive to SRGspace truncation

23

Page 24: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Towards Next-Generation

Chiral Hamiltonians

24

Page 25: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Consistent N2LO Hamiltonians

starting point: numerical 3N matrix elements in partial-waveJacobi-momentum basis (antisym. under 1↔ 2)

• numerical partial-wave decomposition of Skibinski et al.

• ongoing collaborative effort to produce N2LO/N3LO matrix elements(LENPIC)

direct transformation to HO basis for nuclear structurecalculations

• use HO machinery afterwards (SRG, J T-coupled scheme,...)

first application: consistent NN+3N Hamiltonian at N2LO

• NN at N2LO: Epelbaum et al., cutoffs 450,...,600 MeV,phase-shift fit χ2/dat ∼ 10 (∼ 1) up to 300 MeV (100 MeV)

• 3N at N2LO: Epelbaum et al., cutoffs 450,...,600 MeV, nonlocal,fit to (nd) and E(3H), included up to J=7/2

25

Page 26: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Optimized N2LO Hamiltonian

NN interaction at N2LO

• LECs refittet using state-of-the-art optimization algorithm (POUNDerS)

• more accurate description of NN data

(comparable to previous N3LO interactions) Ekströ

m,etal;PRL110,192502(2013)

more in Talk of

G. Hagen

• impressive results in Oxygen- and Calcium-chain even without 3N

3N interaction at N2LO

• std. 3N (Λ = 500MeV) with cD and cE fittet to Triton by Navr,atil & Quaglioni

26

Page 27: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

12C: Compare Next Generation Interactions

0+ 0

0+ 0

0+ 0

1+ 0

1+ 1

2+ 0

2+ 0

2+ 1

4+ 0

NN +3N NN +3N NN +3N NN +3N NN +3N NN +3N exp.

standardN3LO+N2LO500 MeV

POUNDerSN2LO+N2LO500/700 MeV 450/500 MeV 600/500 MeV 550/600 MeV 450/700 MeV

EpelbaumN2LO+N2LO

0

5

10

15

.

E[MeV]

ℏΩ = 16 MeVNmx = 8

α = 0.08 fm4

ℏΩ = 20 MeV ℏΩ = 16 MeV3N drops first

1+-state

27

Page 28: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

12C: Compare Next Generation Interactions

0+ 0

0+ 0

0+ 0

1+ 0

1+ 1

2+ 0

2+ 0

2+ 1

4+ 0

NN NN NN NN NN NN exp.

standardN3LO+N2LO500 MeV

POUNDerSN2LO+N2LO500/700 MeV 450/500 MeV 600/500 MeV 550/600 MeV 450/700 MeV

EpelbaumN2LO+N2LO

0

5

10

15

.

E[MeV]

ℏΩ = 16 MeVNmx = 8

α = 0.08 fm4

ℏΩ = 20 MeV ℏΩ = 16 MeV

28

Page 29: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

12C: Compare Next Generation Interactions

0+ 0

0+ 0

0+ 0

1+ 0

1+ 1

2+ 0

2+ 0

2+ 1

4+ 0

NN +3N NN +3N NN +3N NN +3N NN +3N NN +3N exp.

standardN3LO+N2LO500 MeV

POUNDerSN2LO+N2LO500/700 MeV 450/500 MeV 600/500 MeV 550/600 MeV 450/700 MeV

EpelbaumN2LO+N2LO

0

5

10

15

.

E[MeV]

ℏΩ = 16 MeVNmx = 8

α = 0.08 fm4

ℏΩ = 20 MeV ℏΩ = 16 MeV

rather

consistent

description

with 3N

29

Page 30: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

10B: Compare Next Generation Interactions

0+ 1

1+ 0

1+ 0

2+ 0

2+ 1

2+ 0

3+ 0

3+ 0

4+ 0

NN +3N NN +3N NN +3N NN +3N NN +3N NN +3N exp.

standardN3LO+N2LO500 MeV

POUNDerSN2LO+N2LO500/700 MeV 450/500 MeV 600/500 MeV 550/600 MeV 450/700 MeV

EpelbaumN2LO+N2LO

0

2.5

5

.

E[MeV]

ℏΩ = 16 MeVNmx = 8

α = 0.08 fm4

ℏΩ = 20 MeVℏΩ = 16 MeV

30

Page 31: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

10B: Compare Next Generation Interactions

0+ 1

1+ 0

1+ 0

2+ 0

2+ 1

2+ 0

3+ 0

3+ 0

4+ 0

NN NN NN NN NN NN exp.

standardN3LO+N2LO500 MeV

POUNDerSN2LO+N2LO500/700 MeV 450/500 MeV 600/500 MeV 550/600 MeV 450/700 MeV

EpelbaumN2LO+N2LO

0

2.5

5

.

E[MeV]

ℏΩ = 16 MeVNmx = 8

α = 0.08 fm4

ℏΩ = 20 MeVℏΩ = 16 MeV

31

Page 32: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

10B: Compare Next Generation Interactions

0+ 1

1+ 0

1+ 0

2+ 0

2+ 1

2+ 0

3+ 0

3+ 0

4+ 0

NN +3N NN +3N NN +3N NN +3N NN +3N NN +3N exp.

standardN3LO+N2LO500 MeV

POUNDerSN2LO+N2LO500/700 MeV 450/500 MeV 600/500 MeV 550/600 MeV 450/700 MeV

EpelbaumN2LO+N2LO

0

2.5

5

.

E[MeV]

ℏΩ = 16 MeVNmx = 8

α = 0.08 fm4

ℏΩ = 20 MeVℏΩ = 16 MeV

POUNDerS and standard interactionprovide rather consistent description

spectra with Epelbaum interactions showcutoff-sensitivity

32

Page 33: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

16O: Optimized Interaction (POUNDerS)

2 4 6 8 10 12 14Nmx

-150

-140

-130

-120

-110

.

E[MeV]

ℏΩ = 20 MeV

POUNDerS NN interaction already

describes experiment

standard

POUNDerS

NN

α = 0.08 fm4

λ = 1.88 fm−1 λ = 2.24 fm−1 λ = 1.88 fm−1

33

Page 34: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

16O: Optimized Interaction (POUNDerS)

2 4 6 8 10 12 14Nmx

-150

-140

-130

-120

-110

.

E[MeV]

ℏΩ = 20 MeV

POUNDerS NN interaction already

describes experiment

standard

POUNDerS

NN +3N +3NÎ

α = 0.08 fm4 α = 0.04 fm4 α = 0.08 fm4

λ = 1.88 fm−1 λ = 2.24 fm−1 λ = 1.88 fm−1

34

Page 35: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

16O: Optimized Interaction (POUNDerS)

2 4 6 8 10 12 14Nmx

-150

-140

-130

-120

-110

.

E[MeV]

ℏΩ = 20 MeV

POUNDerS NN interaction already

describes experiment

3N becomes repulsive for

POUNDerS interaction

induced 4N are repulsive as well

POUNDerS NN+3N

underbounds 16O

ground-state by more

than 10MeV

standard

POUNDerS

NN +3N +3NÎ

⋄α = 0.08 fm4 α = 0.04 fm4 α = 0.08 fm4

λ = 1.88 fm−1 λ = 2.24 fm−1 λ = 1.88 fm−1

35

Page 36: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

SRG in Four-Body Space

36

Page 37: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Induced Four-Body Contributions

standard500 MeV

2 4 6 8 1012141618Nmx

-150

-145

-140

-135

-130

-125

-120

-115

-110

.

E[MeV]

cD= −0.2cE = −0.205

16ONN+3N

ℏΩ = 20MeV

α dependence:

by induced 4N

from initial 3N

450 MeV

2 4 6 8 1012141618Nmx

cD= −0.2cE = −0.016

400 MeV

2 4 6 8 1012141618Nmx

cD= −0.2cE = 0.098

350 MeV

2 4 6 8 1012141618Nmx

cD= −0.2cE = 0.205

Î

α = 0.04 fm4 α = 0.05 fm4 α = 0.0625 fm4 α = 0.08 fm4

λ = 2.24 fm−1 λ = 2.11 fm−1 λ = 2.00 fm−1 λ = 1.88 fm−1

simple fix:lowering the

initial 3N cutoffsuppresses induced

4N terms

is there a direct solution?

alternative generator for the SRG

• so far found only trade-offs between induced 4N &

convergence accelaration

SRG in four-body space

37

Page 38: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Four-Body Jacobi BasisNavr

,atil, Barrett, Glöckle Phys. Rev. C 59 611 (1999)

Jacobi coordinate: ~ξ3 =

È3

4[1

2(~r + ~rb + ~rc)− ~rd]

Jacobi state antisym. under 1↔ 2↔ 3(extension of antisym. three-body Jacobi state)

|E12E312;α⟩ = |E12E312[J12, (L3, S3)J3]JMJ; (T12T3)TMT ⟩

antisym. Jacobi state

|EJMJTMT⟩ =∑

12,β

cα,E12,E3,12

|E12E312;α⟩ with E = E12 + E3

introduce four-body CFPs: cα,E12,E3,12

38

Page 39: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

SRG Evolution in Four-Body Space

α = 1.28 fm4

λ = 0.94 fm−1

E′ ′JT eHα − TintEJT

Jπ = 0+, T = 0, ℏΩ = 24MeV

4B-Jacobi HO matrix elements

0→ E→12 14 16(E, )

16

14

12

E′

0

.

(E′ ,′)

2

1.16

0.64

0.32

0.12

0

[MeV]

NCSM ground state 4He

æ

ææ æ æ æ æ æ

æ

0 2 4 6 8 10 12 14 16

Nm

-30

-28

-26

-24

-22

E[M

eV]

NN+3N-full NN+3N+4N-induced

moderatepre-diagonalization of

Hamiltonian

sizable four-bodycontributions for large flow

parameter

39

Page 40: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

IT-NCSM with Four-Body Contributions

2 4 6 8 10 12 14Nmx

-150

-145

-140

-135

-130

-125

-120

-115

.

E[MeV]

16OℏΩ = 24 MeV

induced 4N

JπT0+0

Emax = 6

E(SRG)max

= 20

include induced 4N:

Talmi-transformation fromJacobi basis to m-schemein four-body space

NN+3N-full

NN+3N+4N-ind ⋄

ÎÎÎ

α = 0.04 fm4 α = 0.0625 fm4 α = 0.08 fm4 α = 0.16 fm4

λ = 2.24 fm−1 λ = 2.00 fm−1 λ = 1.88 fm−1 λ = 1.58 fm−1

40

Page 41: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

IT-NCSM with Four-Body Contributions

2 4 6 8 10 12 14Nmx

-150

-145

-140

-135

-130

-125

-120

-115

.

E[MeV]

16OℏΩ = 24 MeV

induced 4N

JπT0+0,0+1,0−0

Emax = 6

E(SRG)max

= 20

correction by induced 4Nchannels in right direction,but too small

possible reasons

Emax-cut

• use J T-coupled scheme

• normal-ordering approximation

further 4N channels

E(SRG)max

used for SRG

NN+3N-full

NN+3N+4N-ind ⋄

ÎÎÎ

α = 0.04 fm4 α = 0.0625 fm4 α = 0.08 fm4 α = 0.16 fm4

λ = 2.24 fm−1 λ = 2.00 fm−1 λ = 1.88 fm−1 λ = 1.58 fm−1

41

Page 42: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Conclusions

42

Page 43: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Conclusions

SRG evolution in HO basis efficient and improvable

• frequency conversion & SRG space increase

consistent four-body SRG evolution(for induced and initial contributions)

• in progress: J T-coupling and normal-ordering approximation

p-shell provide powerful testbed for upcoming chiral potentials

• cutoff-sensitivity in 10B spectrum

• 16O ground state underbound by POUNDerS NN+3N interaction

machinery ready to use 3N @ N3LO in momentum Jacobi basis

• directly applicable in IT-NCSM, CC, IM-SRG, RGM ...

43

Page 44: Similarity Renormalization Group and Next Generation ...theorie.ikp.physik.tu-darmstadt.de/ect13/Talks_files/calci.pdf · max (J) SRG model-space ramp E(SRG) max J0 J1 J E0 E1 5 2

Epilogue

thanks to my group & my collaborators

• S. Binder, E. Gebrerufael, K. Hebeler, H. Krutsch,J. Langhammer, S. Reinhardt, R. Roth, M. Schmidt,S. Schulz, C. Stumpf, A. Tichai, R. Trippel, R. WirthInstitut für Kernphysik, TU Darmstadt

• P. NavrátilTRIUMF Vancouver, Canada

• J. Vary, P. MarisIowa State University, USA

• G. Hupin, S. QuaglioniLLNL Livermore, USA

• P. PiecuchMichigan State University, USA

• H. HergertOhio State University, USA

• P. PapakonstantinouIPN Orsay, F

• C. ForssénChalmers University, Sweden

• H. Feldmeier, T. NeffGSI Helmholtzzentrum

JUROPA LOEWE-CSC HOPPER

COMPUTING TIME

LENPIC

Low-Energy Nuclear

Physics International

Collaboration

44