Select Answers to Section 4.3 Exercises of Worldwide ... · Select Answers to Section 4.3 Exercises...

2
Select Answers to Section 4.3 Exercises of Worldwide Multivariable Calculus 1. 0 joules 3. π 2 joules 5. 3 joules 7. ∇× F = 0 so f (x, y)= 1 4 x 4 + 1 6 y 6 + c for c R. 9. ∇× F = 0 so f (x, y)= xy 2 + x 2 y 3 + c for c R. 11. ∇× F = -2 sin x 13. ∇× F = 0 so f (x, y)= xy + tan -1 (x) + tan -1 (y)+ c for c R. 15. Z C F · dr = 0 joules 17. Z C F · dr = 0 joules 19. Z C F · dr = 8 sin(2) - 4 joules 21. Z C F · dr =1+ π 2 joules 23. Yes. 25. No. 27. ∇× F = 0, so f (x, y, z)= 1 2 x 2 + 1 2 y 2 + 1 2 z 2 + c for c R.. 29. ∇× F = i + j + k 31. ∇× F = -i - 2j + k 33. ∇× F = 0, so f (x, y, z)= x sin y + y cos z + e z + c for c R. 35. Z C F · dr = 19 joules 1

Transcript of Select Answers to Section 4.3 Exercises of Worldwide ... · Select Answers to Section 4.3 Exercises...

Page 1: Select Answers to Section 4.3 Exercises of Worldwide ... · Select Answers to Section 4.3 Exercises of Worldwide Multivariable Calculus 1.0 joules 3. ˇ 2 joules 5.3 joules 7.! r

Select Answers to Section 4.3 Exercises

of Worldwide Multivariable Calculus

1. 0 joules

3.π

2joules

5. 3 joules

7.→∇× F = 0 so f(x, y) = 1

4x4 + 1

6y6 + c for c ∈ R.

9.→∇× F = 0 so f(x, y) = xy2 + x2y3 + c for c ∈ R.

11.→∇× F = −2 sinx

13.→∇× F = 0 so f(x, y) = xy + tan−1(x) + tan−1(y) + c for c ∈ R.

15.

∫C

F · dr = 0 joules

17.

∫C

F · dr = 0 joules

19.

∫C

F · dr = 8 sin(2)− 4 joules

21.

∫C

F · dr = 1 +π

2joules

23. Yes.

25. No.

27.→∇× F = 0, so f(x, y, z) = 1

2x2 + 1

2y2 + 1

2z2 + c for c ∈ R..

29.→∇× F = i + j + k

31.→∇× F = −i− 2j + k

33.→∇× F = 0, so f(x, y, z) = x sin y + y cos z + ez + c for c ∈ R.

35.

∫C

F · dr = 19 joules

1

Page 2: Select Answers to Section 4.3 Exercises of Worldwide ... · Select Answers to Section 4.3 Exercises of Worldwide Multivariable Calculus 1.0 joules 3. ˇ 2 joules 5.3 joules 7.! r

37.

∫C

F · dr = −11

2joules

39.

∫C

F · dr = 2− e3 − e joules

41.

∫C

F · dr = eπ − π − 1 joules

43.

45. If, for every closed oriented piecewise regular curve C, we have∫C

F · dr =

∫C

G · dr

for the given C1 vector fields F and G, then∫C

(F−G) · dr = 0

and via Theorem 4.3, this means that→∇× (F−G) = 0. But the “curl” operation

is linear on vector fields, so that

→∇× F−

→∇×G = 0

i.e. the curls are equal.

2