Seasonal Amplitude and Percent Seasonal Variance · ROY13 . Microplankton – fraction of Chl-a %...

of 1 /1
Month of Max for PFT Algorithms, Chl & PAR (left ) & climate models (right) (Black Arrow is PFT µ; σ 2 = 1- Length) Month of Max for PFT Algorithms, Chl & PAR (left ) & climate models (right) (Black Arrow is PFT µ; σ 2 = 1- Length) Primary - secondary bloom month of max. difference, +ve = primary bloom leads Frequency, Year -1 Year PHYTOPLANKTON PHENOLOGY FROM OCEAN COLOR ALGORITHMS AND EARTH SYSTEM MODELS Kostadinov, T. S. 1,* , A. Cabré 2 , H. Vedantham 3 , I. Marinov 2 , A. Bracher 4 , R. Brewin 5 , A. Bricaud 6 , N. Hardman-Mountford 7 , T. Hirata 8 , A. Fujiwara 9 , C. Mouw 10 , S. Roy 11 , J. Uitz 6 *Corresponding author: [email protected] Introduction Phytoplankton Functional Types (PFTs) are groups of phytoplankton with similar biogeochemical roles. They closely correspond to phytoplankton size classes (PSCs). Over the last decade or so, numerous PFT/PSC algorithms have been developed. Here we inter-compare emergent phenology since: The algorithms use different theoretical bases and retrieve variables on different scales. Phase differences can further confound direct comparison. We derive phenological parameters from 10 PFT satellite algorithms, Chl, PAR and 7 CMIP5 climate models using the Discrete Fourier Transform to model the seasonal cycle. We then detect the signal’s local maxima via peak analysis. We use % microplankton or diatoms (or the closest available variable) from the PFT algorithms and diatom carbon biomass from climate models that have it. We quantify and compare 1) seasonal amplitude, 3) percent seasonal variance, 2) month of maximum, 4) bloom duration, and 5) secondary bloom characteristics if present. Seasonal Amplitude and Percent Seasonal Variance This work is supported by NASA OBB Grant #NNX13AC92G to IM & TSK. We thank the NASA OBPG and the International PFT Intercomparison Project team members for providing ocean color and PFT data. We also thank Tilman Dinter, Toru Hirawake, Svetlana Milutinovic, Danica Fine, and David Shields for their help. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison, and the Global Organization for Earth System Science Portals which are involved in CMIP, and we thank the climate modeling groups for producing and making available their model output. San Francisco, CA June 15-18, 2015 Input Satellite Data Sets *SeaWiFS monthly SMI of R rs (λ ), 2003-2007 SCIAMACHY monthly data, 2003-2007 SeaWiFS monthly OC4v6 Chl & PAR , 2003-2007 Regionally Binned Analysis Participating Algorithms & Models = Circular statistics – t b/n two months b bp (λ) slope η Seasonal Amplitude Algorithm Publication(s) Acronym Variables(s) Units Input Data Algorithm Category/Basis Alvain et al. (2005,2008) PHYSAT Frequency of detection of diatoms % of days SW10* Multiple PFTs, R rs (λ ) second-order anomalies. Bracher et al. (2009), Sadeghi et al. ( 2012) PhytoDO AS Diatoms [Chl-a] mg m -3 SCIAM ACHY Multiple PFTs, differential absorption from hyperspectral data. Brewin et al. (2010, 2011) BR10 Microplankton – fraction of Chl-a % SW10* Size structure, abundance-based. Ciotti and Bricaud (2006), Bricaud et al. (2012) CB06 1 – S f, where S f = fraction of small phytoplankton % SW10* Size structure, absorption spectral- based. Fujiwara et al. (2011) FUJI11 Microplankton – fraction of Chl-a % SW10* Size structure, absorption and backscattering spectral-based. Hirata et al. (2011) OC-PFT Microplankton – fraction of Chl-a % SW10* Size structure, abundance-based. Kostadinov et al. (2009, 2010) KSM09 Microplankton - volume fraction % SW10* Size structure, backscattering spectral-based. Roy et al. (2011, 2013) ROY13 Microplankton – fraction of Chl-a % SW10* Size-structure, based on absorption at 676 nm. Uitz et al. (2006) UITZ06 Microplankton – fraction of Chl-a % SW10* Size structure, abundance-based. Mouw and Yoder (2010) MY2010 S fm, fraction large phytoplankton % SW10* Size structure, absorption spectral- based. O'Reilly et al. (1998, 2000) OC4v6 Chlorophyll concentration mg m -3 SW10* Band-ratio algorithm. 7 CMIP5 models (C biomass due to diatoms, mg m -3 ): CESM1-BGC, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H-CC, GISS-E2-R-CC, HadGEM2-ES, IPSL-CM5A-MR Month of Maximum DFT takes dot products of sinusoids (sin & cos) with the data, deriving both amplitude and phase at component frequencies. Month of maximum for time series #1 Difference is positive when time series #1 leads in time SeaWiFS PAR Month of Maximum Mean Month of Maximum for 7 CMIP5 Models North Atlantic Drift (NADR) North Atlantic Subtropical Gyre – West (NASW) Time, years Frequency, Year -1 Month Spectral Power Density, log10(units 2 *year) Micro/diatoms, % or [Chl], mg m -3 [1] Dept. of Geography and the Environment, Univ. of Richmond, Richmond, VA, USA. [2] Dept. of Earth & Environmental Science, Univ. of Pennsylvania, Philadelphia, PA, USA. [3] Kapteyn Astronomical Institute, Faculty of Mathematics and Natural Sciences, Astronomy, University of Groningen, Groningen, the Netherlands. [4] Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany. [5] Plymouth Marine Laboratory (PML), Plymouth, UK. [6] Laboratoire d’Océanographie de Villefranche, CNRS, Université Pierre et Marie Curie, Villefranche-sur-Mer, France. [7] CSIRO Oceans and Atmosphere Flagship, Wembley, Western Australia, Australia. [8] Faculty of Environmental Earth Science, Hokkaido Univ., Sapporo, Japan. [9] Arctic Research Center, National Institute of Polar Research, Tachikawa, Tokyo, Japan. [10] Dept. of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI, USA. [11] Dept. of Geography and Environmental Science, University of Reading, UK. n indexes through the data points k indexes through the frequencies, 0:f s /N:f s Signal Modeling via DFT ) 2 sin( ) 2 cos( ˆ 0 ft b ft a a n n π π + = x Z f f ], 6 ; 1 [ Bloom Duration & Secondary Blooms NADR KSM09 fraction micro (mean removed) Number of algorithms with valid phenological analysis Longhurst (1998) provinces analyzed Amplitude (half-height) of primary peak, log10 scale Mean month of maximum for 10 PFT algorithms Mean month of maximum for 7 CMIP5 models Month of max. data – models , +ve = data leads Month of max. ensemble - algorithm , +ve = ensemble leads Month of maximum for time series #2 Example signal modeling and peak analysis of a PFT time series Validation of month of maximum Month of maximum for DFT-modeled SeaWiFS PAR Ensemble mean % seasonal variance - algorithms Ensemble mean % seasonal variance - models Data – models percent variance , % # PFT algorithms w/ % seasonal variance < 30% # CMIP5 models w/ % seasonal variance < 30% % variance explained by seasonal harmonics for PAR Ensemble mean bloom duration for PFT algorithms, days Ensemble mean bloom duration for CMIP5 models, days Duration difference (data – models), days Fraction of algorithms with a single annual peak Fraction of algorithms with two annual peaks Fraction of CMIP5 models with a single annual peak Mean fractional prominence of secondary blooms - algorithms Mean fractional prominence of secondary blooms - models Mean fractional prominence of secondary blooms - Chl Spectral Power Density, log10(units 2 *year) Month of maximum retrieval becomes unreliable if modeled seasonal component of signal explains less than 30% of its variance Comparison with direct peak analysis of monthly climatology, without DFT modeling Percent seasonal variance % pixels with > 2 months (DFT-direct) Micro/diatoms, % or [Chl], mg m -3 Month Frequency, Year -1 Peaks are identified using the MATLAB® findpeaks function Heinzel et al. (2002) Moody and Johnson (2001) www.mathworks.com

Embed Size (px)

Transcript of Seasonal Amplitude and Percent Seasonal Variance · ROY13 . Microplankton – fraction of Chl-a %...

  • Month of Max for PFT Algorithms, Chl & PAR (left ) & climate models (right) (Black Arrow is PFT µ; σ2 = 1- Length)

    Month of Max for PFT Algorithms, Chl & PAR (left ) & climate models (right) (Black Arrow is PFT µ; σ2 = 1- Length)

    Primary - secondary bloom month of max. difference, +ve = primary bloom leads

    Frequency, Year-1 Year

    PHYTOPLANKTON PHENOLOGY FROM OCEAN COLOR ALGORITHMS AND EARTH SYSTEM MODELS

    Kostadinov, T. S.1,*, A. Cabré2, H. Vedantham3, I. Marinov2, A. Bracher4, R. Brewin5, A. Bricaud6, N. Hardman-Mountford7, T. Hirata8, A. Fujiwara9, C. Mouw10, S. Roy11, J. Uitz6

    *Corresponding author: [email protected]

    Introduction Phytoplankton Functional Types (PFTs) are

    groups of phytoplankton with similar biogeochemical roles. They closely correspond to phytoplankton size classes (PSCs). Over the last decade or so, numerous

    PFT/PSC algorithms have been developed. Here we inter-compare emergent

    phenology since: The algorithms use different theoretical

    bases and retrieve variables on different scales. Phase differences can further confound

    direct comparison. We derive phenological parameters from 10

    PFT satellite algorithms, Chl, PAR and 7 CMIP5 climate models using the Discrete Fourier Transform to model the seasonal cycle. We then detect the signal’s local maxima via peak analysis. We use % microplankton or diatoms (or the

    closest available variable) from the PFT algorithms and diatom carbon biomass from climate models that have it. We quantify and compare 1) seasonal

    amplitude, 3) percent seasonal variance, 2) month of maximum, 4) bloom duration, and 5) secondary bloom characteristics if present.

    Seasonal Amplitude and Percent Seasonal Variance

    This work is supported by NASA OBB Grant #NNX13AC92G to IM & TSK. We thank the NASA OBPG and the International PFT Intercomparison Project team members for providing ocean color and PFT data. We also thank Tilman Dinter, Toru Hirawake, Svetlana Milutinovic, Danica Fine, and David Shields for their help. We acknowledge the World Climate Research Programme's Working Group on Coupled

    Modelling, the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison, and the Global Organization for Earth System Science Portals which are involved in CMIP, and we thank the climate modeling

    groups for producing and making available their model output.

    San Francisco, CA June 15-18, 2015

    Input Satellite Data Sets *SeaWiFS monthly SMI of Rrs(λ), 2003-2007 SCIAMACHY monthly data, 2003-2007

    SeaWiFS monthly OC4v6 Chl & PAR, 2003-2007

    Regionally Binned Analysis

    Participating Algorithms & Models

    = Circular statistics – ∆t b/n two months

    bbp(λ) slope η

    Seasonal Amplitude

    Algorithm Publication(s)

    Acronym Variables(s) Units Input Data

    Algorithm Category/Basis

    Alvain et al. (2005,2008) PHYSAT Frequency of detection of diatoms

    % of days

    SW10* Multiple PFTs, Rrs(λ) second-order anomalies.

    Bracher et al. (2009), Sadeghi et al. ( 2012)

    PhytoDOAS

    Diatoms [Chl-a] mg m-3 SCIAMACHY

    Multiple PFTs, differential absorption from hyperspectral

    data. Brewin et al. (2010, 2011) BR10 Microplankton –

    fraction of Chl-a % SW10* Size structure, abundance-based.

    Ciotti and Bricaud (2006), Bricaud et al. (2012)

    CB06 1 – Sf, where Sf = fraction of small phytoplankton

    % SW10* Size structure, absorption spectral-based.

    Fujiwara et al. (2011) FUJI11 Microplankton – fraction of Chl-a

    % SW10* Size structure, absorption and backscattering spectral-based.

    Hirata et al. (2011) OC-PFT Microplankton – fraction of Chl-a

    % SW10* Size structure, abundance-based.

    Kostadinov et al. (2009, 2010)

    KSM09 Microplankton - volume fraction

    % SW10* Size structure, backscattering spectral-based.

    Roy et al. (2011, 2013) ROY13 Microplankton – fraction of Chl-a

    % SW10* Size-structure, based on absorption at 676 nm.

    Uitz et al. (2006) UITZ06 Microplankton – fraction of Chl-a

    % SW10* Size structure, abundance-based.

    Mouw and Yoder (2010) MY2010 Sfm, fraction large phytoplankton

    % SW10* Size structure, absorption spectral-based.

    O'Reilly et al. (1998, 2000) OC4v6 Chlorophyll concentration

    mg m-3 SW10* Band-ratio algorithm.

    7 CMIP5 models (C biomass due to diatoms, mg m-3): CESM1-BGC, GFDL-ESM2G, GFDL-ESM2M,

    GISS-E2-H-CC, GISS-E2-R-CC, HadGEM2-ES, IPSL-CM5A-MR

    Month of Maximum

    DFT takes dot products of sinusoids (sin & cos) with the data, deriving both amplitude

    and phase at component frequencies.

    Mon

    th o

    f max

    imum

    for t

    ime

    serie

    s #1

    Difference is positive when time series #1 leads in

    time

    SeaWiFS PAR Month of Maximum

    Mean Month of Maximum for 7 CMIP5 Models

    Nor

    th A

    tlant

    ic D

    rift

    (NA

    DR

    )

    Nor

    th A

    tlant

    ic

    Subt

    ropi

    cal G

    yre

    – W

    est (

    NA

    SW)

    Time, years

    Frequency, Year-1 Month

    Spe

    ctra

    l Pow

    er D

    ensi

    ty, lo

    g10(

    units

    2 *ye

    ar)

    Mic

    ro/d

    iato

    ms,

    % o

    r [C

    hl],

    mg

    m-3

    [1] Dept. of Geography and the Environment, Univ. of Richmond, Richmond, VA, USA. [2] Dept. of Earth & Environmental Science, Univ. of Pennsylvania, Philadelphia, PA, USA. [3] Kapteyn Astronomical Institute, Faculty of Mathematics and Natural Sciences, Astronomy, University of Groningen, Groningen, the Netherlands. [4] Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany. [5] Plymouth Marine Laboratory (PML), Plymouth, UK. [6] Laboratoire

    d’Océanographie de Villefranche, CNRS, Université Pierre et Marie Curie, Villefranche-sur-Mer, France. [7] CSIRO Oceans and Atmosphere Flagship, Wembley, Western Australia, Australia. [8] Faculty of Environmental Earth Science, Hokkaido Univ., Sapporo, Japan. [9] Arctic Research Center, National Institute of Polar Research, Tachikawa, Tokyo, Japan. [10] Dept. of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI, USA. [11] Dept. of

    Geography and Environmental Science, University of Reading, UK.

    n indexes through the data points

    k indexes through the frequencies, 0:fs/N:fs

    Signal Modeling via DFT

    )2sin()2cos(ˆ 0 ftbftaa nn ππ −+=xZ∈∈ ff ],6;1[

    Bloom Duration & Secondary Blooms

    NAD

    R K

    SM

    09 fr

    actio

    n m

    icro

    (m

    ean

    rem

    oved

    )

    Number of algorithms with valid phenological analysis

    Longhurst (1998) provinces analyzed

    Amplitude (half-height) of primary peak, log10 scale

    Mean month of maximum for 10 PFT algorithms

    Mean month of maximum for 7 CMIP5 models

    Month of max. data – models ∆, +ve = data leads

    Month of max. ensemble - algorithm ∆, +ve = ensemble leads

    Month of maximum for time series #2

    Example signal modeling and peak analysis of a PFT time series

    Validation of month of maximum

    Month of maximum for DFT-modeled SeaWiFS PAR

    Ensemble mean % seasonal variance - algorithms

    Ensemble mean % seasonal variance - models

    Data – models percent variance ∆, %

    # PFT algorithms w/ % seasonal variance < 30%

    # CMIP5 models w/ % seasonal variance < 30%

    % variance explained by seasonal harmonics for PAR

    Ensemble mean bloom duration for PFT algorithms, days

    Ensemble mean bloom duration for CMIP5 models, days

    Duration difference (data – models), days

    Fraction of algorithms with a single annual peak

    Fraction of algorithms with two annual peaks

    Fraction of CMIP5 models with a single annual peak

    Mean fractional prominence of secondary blooms - algorithms

    Mean fractional prominence of secondary blooms - models

    Mean fractional prominence of secondary blooms - Chl

    Spe

    ctra

    l Pow

    er D

    ensi

    ty, lo

    g10(

    units

    2 *ye

    ar)

    Month of maximum retrieval becomes

    unreliable if modeled seasonal component

    of signal explains less than 30% of its

    variance

    Comparison with direct peak analysis

    of monthly climatology, without

    DFT modeling

    Percent seasonal variance

    % p

    ixel

    s w

    ith >

    2 m

    onth

    s ∆

    (D

    FT-d

    irect

    )

    Mic

    ro/d

    iato

    ms,

    % o

    r [C

    hl],

    mg

    m-3

    Month Frequency, Year-1

    Peaks are identified using the MATLAB® findpeaks function

    Heinzel et al. (2002) Moody and Johnson (2001)

    www.mathworks.com

    Slide Number 1

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages false /GrayImageDownsampleType /Bicubic /GrayImageResolution 1200 /GrayImageDepth 8 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /FlateEncode /AutoFilterGrayImages false /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages false /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /FlateEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /CreateJDFFile false /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice