Seasonal Amplitude and Percent Seasonal Variance · ROY13 . Microplankton – fraction of Chl-a %...
Embed Size (px)
Transcript of Seasonal Amplitude and Percent Seasonal Variance · ROY13 . Microplankton – fraction of Chl-a %...
-
Month of Max for PFT Algorithms, Chl & PAR (left ) & climate models (right) (Black Arrow is PFT µ; σ2 = 1- Length)
Month of Max for PFT Algorithms, Chl & PAR (left ) & climate models (right) (Black Arrow is PFT µ; σ2 = 1- Length)
Primary - secondary bloom month of max. difference, +ve = primary bloom leads
Frequency, Year-1 Year
PHYTOPLANKTON PHENOLOGY FROM OCEAN COLOR ALGORITHMS AND EARTH SYSTEM MODELS
Kostadinov, T. S.1,*, A. Cabré2, H. Vedantham3, I. Marinov2, A. Bracher4, R. Brewin5, A. Bricaud6, N. Hardman-Mountford7, T. Hirata8, A. Fujiwara9, C. Mouw10, S. Roy11, J. Uitz6
*Corresponding author: [email protected]
Introduction Phytoplankton Functional Types (PFTs) are
groups of phytoplankton with similar biogeochemical roles. They closely correspond to phytoplankton size classes (PSCs). Over the last decade or so, numerous
PFT/PSC algorithms have been developed. Here we inter-compare emergent
phenology since: The algorithms use different theoretical
bases and retrieve variables on different scales. Phase differences can further confound
direct comparison. We derive phenological parameters from 10
PFT satellite algorithms, Chl, PAR and 7 CMIP5 climate models using the Discrete Fourier Transform to model the seasonal cycle. We then detect the signal’s local maxima via peak analysis. We use % microplankton or diatoms (or the
closest available variable) from the PFT algorithms and diatom carbon biomass from climate models that have it. We quantify and compare 1) seasonal
amplitude, 3) percent seasonal variance, 2) month of maximum, 4) bloom duration, and 5) secondary bloom characteristics if present.
Seasonal Amplitude and Percent Seasonal Variance
This work is supported by NASA OBB Grant #NNX13AC92G to IM & TSK. We thank the NASA OBPG and the International PFT Intercomparison Project team members for providing ocean color and PFT data. We also thank Tilman Dinter, Toru Hirawake, Svetlana Milutinovic, Danica Fine, and David Shields for their help. We acknowledge the World Climate Research Programme's Working Group on Coupled
Modelling, the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison, and the Global Organization for Earth System Science Portals which are involved in CMIP, and we thank the climate modeling
groups for producing and making available their model output.
San Francisco, CA June 15-18, 2015
Input Satellite Data Sets *SeaWiFS monthly SMI of Rrs(λ), 2003-2007 SCIAMACHY monthly data, 2003-2007
SeaWiFS monthly OC4v6 Chl & PAR, 2003-2007
Regionally Binned Analysis
Participating Algorithms & Models
= Circular statistics – ∆t b/n two months
bbp(λ) slope η
Seasonal Amplitude
Algorithm Publication(s)
Acronym Variables(s) Units Input Data
Algorithm Category/Basis
Alvain et al. (2005,2008) PHYSAT Frequency of detection of diatoms
% of days
SW10* Multiple PFTs, Rrs(λ) second-order anomalies.
Bracher et al. (2009), Sadeghi et al. ( 2012)
PhytoDOAS
Diatoms [Chl-a] mg m-3 SCIAMACHY
Multiple PFTs, differential absorption from hyperspectral
data. Brewin et al. (2010, 2011) BR10 Microplankton –
fraction of Chl-a % SW10* Size structure, abundance-based.
Ciotti and Bricaud (2006), Bricaud et al. (2012)
CB06 1 – Sf, where Sf = fraction of small phytoplankton
% SW10* Size structure, absorption spectral-based.
Fujiwara et al. (2011) FUJI11 Microplankton – fraction of Chl-a
% SW10* Size structure, absorption and backscattering spectral-based.
Hirata et al. (2011) OC-PFT Microplankton – fraction of Chl-a
% SW10* Size structure, abundance-based.
Kostadinov et al. (2009, 2010)
KSM09 Microplankton - volume fraction
% SW10* Size structure, backscattering spectral-based.
Roy et al. (2011, 2013) ROY13 Microplankton – fraction of Chl-a
% SW10* Size-structure, based on absorption at 676 nm.
Uitz et al. (2006) UITZ06 Microplankton – fraction of Chl-a
% SW10* Size structure, abundance-based.
Mouw and Yoder (2010) MY2010 Sfm, fraction large phytoplankton
% SW10* Size structure, absorption spectral-based.
O'Reilly et al. (1998, 2000) OC4v6 Chlorophyll concentration
mg m-3 SW10* Band-ratio algorithm.
7 CMIP5 models (C biomass due to diatoms, mg m-3): CESM1-BGC, GFDL-ESM2G, GFDL-ESM2M,
GISS-E2-H-CC, GISS-E2-R-CC, HadGEM2-ES, IPSL-CM5A-MR
Month of Maximum
DFT takes dot products of sinusoids (sin & cos) with the data, deriving both amplitude
and phase at component frequencies.
Mon
th o
f max
imum
for t
ime
serie
s #1
Difference is positive when time series #1 leads in
time
SeaWiFS PAR Month of Maximum
Mean Month of Maximum for 7 CMIP5 Models
Nor
th A
tlant
ic D
rift
(NA
DR
)
Nor
th A
tlant
ic
Subt
ropi
cal G
yre
– W
est (
NA
SW)
Time, years
Frequency, Year-1 Month
Spe
ctra
l Pow
er D
ensi
ty, lo
g10(
units
2 *ye
ar)
Mic
ro/d
iato
ms,
% o
r [C
hl],
mg
m-3
[1] Dept. of Geography and the Environment, Univ. of Richmond, Richmond, VA, USA. [2] Dept. of Earth & Environmental Science, Univ. of Pennsylvania, Philadelphia, PA, USA. [3] Kapteyn Astronomical Institute, Faculty of Mathematics and Natural Sciences, Astronomy, University of Groningen, Groningen, the Netherlands. [4] Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany. [5] Plymouth Marine Laboratory (PML), Plymouth, UK. [6] Laboratoire
d’Océanographie de Villefranche, CNRS, Université Pierre et Marie Curie, Villefranche-sur-Mer, France. [7] CSIRO Oceans and Atmosphere Flagship, Wembley, Western Australia, Australia. [8] Faculty of Environmental Earth Science, Hokkaido Univ., Sapporo, Japan. [9] Arctic Research Center, National Institute of Polar Research, Tachikawa, Tokyo, Japan. [10] Dept. of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI, USA. [11] Dept. of
Geography and Environmental Science, University of Reading, UK.
n indexes through the data points
k indexes through the frequencies, 0:fs/N:fs
Signal Modeling via DFT
)2sin()2cos(ˆ 0 ftbftaa nn ππ −+=xZ∈∈ ff ],6;1[
Bloom Duration & Secondary Blooms
NAD
R K
SM
09 fr
actio
n m
icro
(m
ean
rem
oved
)
Number of algorithms with valid phenological analysis
Longhurst (1998) provinces analyzed
Amplitude (half-height) of primary peak, log10 scale
Mean month of maximum for 10 PFT algorithms
Mean month of maximum for 7 CMIP5 models
Month of max. data – models ∆, +ve = data leads
Month of max. ensemble - algorithm ∆, +ve = ensemble leads
Month of maximum for time series #2
Example signal modeling and peak analysis of a PFT time series
Validation of month of maximum
Month of maximum for DFT-modeled SeaWiFS PAR
Ensemble mean % seasonal variance - algorithms
Ensemble mean % seasonal variance - models
Data – models percent variance ∆, %
# PFT algorithms w/ % seasonal variance < 30%
# CMIP5 models w/ % seasonal variance < 30%
% variance explained by seasonal harmonics for PAR
Ensemble mean bloom duration for PFT algorithms, days
Ensemble mean bloom duration for CMIP5 models, days
Duration difference (data – models), days
Fraction of algorithms with a single annual peak
Fraction of algorithms with two annual peaks
Fraction of CMIP5 models with a single annual peak
Mean fractional prominence of secondary blooms - algorithms
Mean fractional prominence of secondary blooms - models
Mean fractional prominence of secondary blooms - Chl
Spe
ctra
l Pow
er D
ensi
ty, lo
g10(
units
2 *ye
ar)
Month of maximum retrieval becomes
unreliable if modeled seasonal component
of signal explains less than 30% of its
variance
Comparison with direct peak analysis
of monthly climatology, without
DFT modeling
Percent seasonal variance
% p
ixel
s w
ith >
2 m
onth
s ∆
(D
FT-d
irect
)
Mic
ro/d
iato
ms,
% o
r [C
hl],
mg
m-3
Month Frequency, Year-1
Peaks are identified using the MATLAB® findpeaks function
Heinzel et al. (2002) Moody and Johnson (2001)
www.mathworks.com
Slide Number 1
/ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages false /GrayImageDownsampleType /Bicubic /GrayImageResolution 1200 /GrayImageDepth 8 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /FlateEncode /AutoFilterGrayImages false /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages false /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /FlateEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False
/CreateJDFFile false /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice