Regularity of the surface tension for the stochastic interface...

27
Regularity of the surface tension for the stochastic interface models. Joint work with Scott Armstrong (Courant) Wei Wu University of Warwick

Transcript of Regularity of the surface tension for the stochastic interface...

Page 1: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

Regularity of the surface tension for thestochastic interface models.

Joint work with Scott Armstrong (Courant)

Wei Wu

University of Warwick

Page 2: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

The Discrete Gaussian free field

Consider φ : QL := [−L,L]d ∩ Zd → R, sampled from themeasure

ZL,ξ :=

RQL

exp

(−∑

e

12

(∇φ(e))2

)1φ|∂QL

=ξ dφ.

This is a finite dimensional Gaussian-Hilbert space where theprobability density is proportional to exp

(−1

2(φ, φ)∇).

I φ(x) is multivariate GaussianI 〈φ(x)〉 = harmonic extension of ξ at xI Cov(φ(x), φ(y)) = ∆−1

L (x , y)

Page 3: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

The ∇φ model

Consider φ : QL := [−L,L]d ∩ Zd → R, sampled from themeasure

ZL,ξ :=

RQL

exp

(−∑

e

V (∇φ(e))

)1φ|∂QL

=ξ dφ

=

RQL

exp

(−∑

e

V (∇φ(e)− ξ)

)1φ|∂QL

=0 dφ

WhereI V is even.I Uniformly convex: λ ≤ V ′′(t) ≤ Λ.

I Regularity: V ∈ C2,γ(R) for some γ > 0.

Infinite volume limit exists and the infinite ∇φ measure isclassified by the slope ξ = p · x . (Funaki-Spohn)

Page 4: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

The ∇φ model

Figure: A realization of the random surface (by C. Gu).

Page 5: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

History

I First introduced by Brascamp, Lebowitz, Lieb (1975) as“anharmonic crystals”. Conjectured large scale behavior isGaussian like.

I Renormalization group approach V (x) = x2/2 + small(80s-early 90: Brydges-Yau, Dimock-Hurd, ...)

I CLT for the infinite volume Gibbs state (Naddaf-Spencer97), via Helffer-Sjöstrand.

I CLT in finite volume. Level line to SLE4 (Miller 11)I Dynamical CLT (Giacomin, Olla, Spohn 01)I Surface tensions. (Funaki-Spohn 97,

Deuschel-Giacomin-Ioffe 01, Sheffield 03, Dario 18)I Extreme values beyond the Gaussian case (Belius-W.; W.-

Zeitouni).

Page 6: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

The Naddaf-Spencer CLT

TheoremLet g ∈ L2 (Rd). Define

ΦR (g) := R−d/2∑x∈Zd

∇iφ(x)g( x

R

)Then ΦR (g) converges in law, as R →∞, to a normal randomvariable with variance

Qg =

∇∗i g(x)(∇∗i a∇i)

−1(x , y)∇∗i g(y) dxdy ,

where a = a(V )

In other words, ∇φ model converges in distribution to a(continuum) Gaussian free field with covariance(∇∗a∇)−1(x , y)

Page 7: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

The Langevin dynamics

The ∇φ measure is invariant with respect to the Langevindynamics

dφt (x) =∑y∼x

V′(φt (y)− φt (x)) dt +√

2 dBt (x), x ∈ QL,

φt (x) = ξ(x), x ∈ ∂QL,

Page 8: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

Hydrodynamic limit

Let hN(t , x) := 1NφN2t ([Nx ]).

Funaki and Spohn (97) proved that hN(t , x) converges in L2 tothe solution of the nonlinear PDE

∂th −∇ · (Dσ (∇h)) = 0 in (0,∞)× Rd .

To obtain the existence of a classical solution by the Schaudertheory, we need that ξ 7→ Dσ(ξ) is C1,α for some α > 0. Thatis, σ ∈ C2,α.

σ : Rd → R is the surface tension

Motion by mean curvature

Page 9: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

Surface Tension

Finite volume surface tension is defined by

σL (p) :=1|QL|

logZL,p

ZL.

I σ (p) = limL→∞ σL (p) well defined (Funaki-Spohn 97,Dario 18).

I For Gaussian case V (x) = x2,

σ(p) = |p|2 + limL→∞

12Ld log det ∆L

I σ ∈ C1,1 and uniformly convex.I σ ∈ C2 “remains to be one of the important open problems”

(Funaki). Note that we need σ ∈ C2,α to apply theSchauder theory.

Page 10: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

Equilibrium fluctuations

Giacomin, Olla and Spohn went to the next order in thisdescription, and consider the process

ζN(t ,dy) := N−d/2∑y∈Zd

(∇φN2t (x)− ξ)δx/N(dy).

They proved, using a parabolic version of Helffer-Sjostrand,that ζN converges in distribution to the solution of an the SPDEof the form

∂tζ −∇ · (a(ξ)∇ζ) =√

2W in (0,∞)× Rd ,

Conjecture: the Hessian D2σ(ξ) of the surface tension shouldcoincide with the diffusion matrix a.

Fluctuation-dissipation relation

Page 11: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

Surface Tension

Theorem (Armstrong-W. 19)V ∈ C2,γ implies σ ∈ C2,β. Moreover, D2σ(ξ) = a(ξ).

Remark: the same proof works with logarithmic modulus∣∣V′′(s)− V′′(t)∣∣ ≤ ω (|s − t |)

where the modulus ω : [0,∞)→ [0,Λ] is an increasing,continuous function such that

lim supt→0

|log t |q ω(t) = 0.

Page 12: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

CLT for nonlinear statisticsTheorem (Armstrong-W, in preparation)Let g ∈ L2 (Rd) and F ∈ C1,1(R;Rd ). Define

ΦR (F,g) := R−d/2∑x∈Zd

F(∇φ(x)) · g( x

R

)

− R−d/2

⟨∑x∈Zd

F(∇φ(x)) · g( x

R

)⟩µ

.

Then ΦR (F,g) converges in law, as R →∞, to a normalrandom variable with variance

QF,g := Q0 + F2

(∇∗g(x))T (∇∗a∇)−1(x , y)∇∗g(y) dxdy .

Moreover for large R and t √

log R,∣∣∣⟨ exp (tΦR (F,g))⟩µ− e

12 QF,g t2

∣∣∣ ≤ CeCt2R−α.

Page 13: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

Two point functions

Theorem (Armstrong-W, in preparation)Let d = 2. There exists g > 0 and c ∈ R, depending only on V ,s.t.

|Varµ [φ(x)− φ(0)]− (g log |x |+ c)| ≤ C |x |−α

and, for every t ∈ R,∣∣∣∣log 〈exp (t (φ(x)− φ(0)))〉µ −12

(g log |x |) t2∣∣∣∣ ≤ Ct4. (1)

(1) improves a result of [Conlon-Spencer 14], with additionalassumption that Λ < 2λ and ‖V ′′′‖∞ <∞.

Page 14: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

The Witten Laplacian

I Defining a derivative: for each ”suitable” function f : Ω→ R

∂x f (φ) := limh→0

f (φ+ h1x )− f (φ)

h.

I Defining the formal adjoint ∂∗x : for any ”suitable” pair offunctions f ,g : Ω→ R,

Ω∂x f (φ)g(φ)µ(dφ) =

Ω

f (φ)∂∗x g(φ)µ(dφ),

we have the explicit formula

∂∗x = −∂x +

(∑y∼x

V ′(φ(y)− φ(x))

)∂y .

Page 15: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

The Witten Laplacian

I Defining a derivative: for each ”suitable” function f : Ω→ R

∂x f (φ) := limh→0

f (φ+ h1x )− f (φ)

h.

I Defining the formal adjoint ∂∗x : for any ”suitable” pair offunctions f ,g : Ω→ R,

Ω∂x f (φ)g(φ)µ(dφ) =

Ω

f (φ)∂∗x g(φ)µ(dφ),

we have the explicit formula

∂∗x = −∂x +

(∑y∼x

V ′(φ(y)− φ(x))

)∂y .

Page 16: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

We can thus define the Witten-Laplacian

Lµ :=∑x∈Zd

∂∗x∂x

= −∑x∈Zd

∂2x +

∑x∈Zd

(∑y∼x

V ′(φ(y)− φ(x))

)∂x .

This operator satisfies, for any pair of functions f ,g : Ω→ R,

〈fLµg〉 =∑x∈Zd

〈∂x f∂xg〉 = 〈gLµf 〉 .

Page 17: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

The Langevin dynamics

The ∇φ measure is invariant with respect to the Langevindynamics

dφt (x) =∑y∼x

V′(φt (y)− φt (x)) dt +√

2 dBt (x), x ∈ QL,

φt (x) = ξ(x), x ∈ ∂QL,

Its generator

LµLF (φ) :=∑

x∈QL

∂2x F (φ)−

∑x∈Q

L

∑y∼x

V′(φ(y)− φ(x))∂xF (φ)

:= −∑

x∈QL

∂∗x∂xF (φ).

is exactly the Witten Laplacian!

Page 18: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

The Naddaf-Spencer ideas

For GFF, H =∑

(φ,∆φ), and ∆−1 encodes covariancestructure (and everything) about the field.

For general ∇φ model, recall the generator for the Langevindynamics is the Witten Laplacian L so that

〈FLG〉 =∑

x

〈∂xF∂xG〉 = 〈GLF 〉

We write, for each F = F (φ),⟨(F − 〈F 〉µ)2

⟩µ

= −∑x∈Zd

⟨(∂xF )

(∂x

(L−1µ (F − 〈F 〉µ)

))⟩µ.

LetLµv = F − 〈F 〉µ

Page 19: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

The Naddaf-Spencer ideasTaking ∂x on both sides, and use the commutator identity

[∂y , ∂∗x ] = −1x∼yV′′ (φ(y)− φ(x)) + 1x=y

∑e3x

V′′ (∇φ(e))

We see that u = ∂xv solves the equation

−Lu +∇∗V ′′∇u = ∂xF , u ∈ H1(Zd × Ω(Zd ))

Definition (Helffer-Sjöstrand operator)The Helffer-Sjöstrand operator is defined by the formula

L := L+∇ · V ′′ (∇φ(e))∇

which acts on functions f : Ω× Zd → R.I The operator L is the Witten-Laplacian, it acts on the field

variable (infinite-dimensional);I The operator ∇ · V ′′∇ is a uniformly elliptic operator, it acts

on the space variable (dimension d).

Page 20: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

Helffer-Sjöstrand representation

Theorem: H.-S. representation (Naddaf-Spencer 98)Given two random variables F ,G : Ω→ R, we denote by:I f (x , φ) = ∂xF (φ);I g(x , φ) = ∂xG(φ);I G : Ω× Zd → R the solution of the equation

LG = g in Ω× Zd ,

then we have

Cov[F ,G] =∑x∈Zd

〈f (x , φ)G(x , φ)〉µ .

Page 21: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

The Naddaf-Spencer ideasLet u solves

−Lu +∇∗a∇u = ∇∗g, u ∈ H1(Zd × Ω(Zd ))

Applying the H.S. representation

Var[∑

x

∇φ(x)g(x)] =∑

x

〈∇∗g(x)u(x)〉

= −2∑

y

∑x

⟨(∂yu(x , ·))2

⟩− 2

∑e

⟨a(e)(∇u(e, ·))2

⟩Convergence of the variance↔ convergence of the energydensity of the PDE to the e.d. of

∇∗a∇u = ∇∗g

Naddaf-Spencer then adapt the soft homogenization technique(Papanicolaou-Varadhan) to prove the L2 homogenization.

Page 22: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

Roadmap

Step 1: We quantify the Naddaf-Spencer idea and prove forsome α > 0, ∣∣∣D2σL(p)− D2σ(p)

∣∣∣ ≤ CL−α.

Step 2: Using probabilistic coupling arguments, we obtain forevery θ > 0 and L ≥ L0(θ),∣∣∣D2σL(p)− D2σL(p′)

∣∣∣ ≤ C(|p − p′|+ θ

)β.

Combine and send L→∞ we obtain∣∣∣D2σ(p)− D2σ(p′)∣∣∣ ≤ C

(|p − p′|

)β.

Page 23: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

Quantify the Naddaf-Spencer ideasAdapting the variational approach for homogenization (alsoquantitative) from Armstrong, Kuusi, Mourrat ‘17.

Subadditive quantities:

ν(Q, f ,p) :=1|Q|

infv∈`p+H1

0 (Q,µ)EQ,f [v ] .

ν∗(Q, f ,q) :=1|Q|

supu∈H1(Q,µ)

∑e∈E(Q)

∇`q(e) 〈∇u(e, ·)〉µ − EQ,f [u]

.

where

EQ,f [w ] :=12

∑y∈Q

∑x∈Q

⟨(∂yw(x , ·))2

⟩µ

+12

∑e∈E(Q)

⟨a(e)(∇w(e, ·))2

⟩µ

−∑

x∈Q

〈f (x , ·)w(x , ·)〉µ .

Page 24: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

Subadditive quantity

Finite volume surface tension is the quadratic part of the energyν(QL,0,p)!

D2σL(p) = a(QL),

if we write ν(Q,0,p) = 12p · a(Q)p − f(Q) · p − c(Q) ∀p ∈ Rd

Subadditivity implies ν(Q,0,p)→ 12p · ap − f · p − c.

Quanfitying the rate of convergence requires mixing.

Using probabilistic coupling arguments to show

ν(QL,0,p) ≈ ν2L(QL,0,p) + L−α

Page 25: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

Quantify the Naddaf-Spencer ideasSubadditivity of the energy quantity

ν(QmL, f ,p) ≤ ν(QL, f ,p) + C (|p|+ K0)2 L−1

To quantify the rate of convergence, we study

J(Q,p,q) := ν(Q, f ,p) + ν∗(Q, f ,q)− p · q.and prove that for every p ∈ Rd

infq∈Rd

J(QL,p,q) ≤ C (|p|+ K0)2 L−β.

Use a multiscale argument to show

infq∈Rd

J(QL,p,q) ≤ C (|p|+ K0)2 (C′L−β+m∑

n=log L

3−(log L−n)τn).

where

τm := supp∈B1

(ν(Q3m , f ,p)− ν(Q3m+1 , f ,p))+

+ supq∈B1

(ν∗(Q3m , f ,q)− ν∗(Q3m+1 , f ,q))+ .

Mixing condition in Armstrong-Kuusi-Mourrat replaced byBrascamp-Lieb.

Page 26: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

Open questions and outlook

I Higher regularity.

Conjecture (Sheffield):As long as V is convex and C2, the infinite volume surfacetension σ is infinitely differentiable

Working progress (with Armstrong and Kuusi): V ∈ Ck

implies σ ∈ Ck (and a bit more).

I Convergence to GFF

Conjecture (Sheffield):For d = 2, as long as V is convex and grows to infinity, thescaling limit is a GFF.

This includes e.g., V (x) =∞1|x |>1.

Page 27: Regularity of the surface tension for the stochastic interface models.math0.bnu.edu.cn/~hehui/webinars20200527.pdf · 2020. 5. 27. · Mixing condition in Armstrong-Kuusi-Mourrat

Open questions and outlook

I Optimal rate of convergence

Should have |σL(p)− σ(p)| ≤√

log LLd/2 .

I Application to statistical mechanics models

As long as the effective model has a convex action. Seerecent work of Dario-W. on Villain rotator models in d ≥ 3.