Nanobio I-surface tension-15

29
Nano+bio NanoBio I (14/09/15): NanoBio II (16/09/15): NanoBio III (5/10/15): Surface forces- Examples in nature Applications Cells and cell components Proteins, AB, applications, optical microscopy Applications (lab on a chip, Nanoparticle and Nanowire bio- applications) Questions etc30/09

Transcript of Nanobio I-surface tension-15

Page 1: Nanobio I-surface tension-15

Nano+bio    NanoBio I (14/09/15):

NanoBio II (16/09/15):

NanoBio III (5/10/15):

Surface forces- Examples in nature Applications

Cells and cell components Proteins, AB, applications, optical microscopy

Applications (lab on a chip, Nanoparticle and Nanowire bio-applications)

Questions etc… 30/09

Page 2: Nanobio I-surface tension-15

γ =Nm

=  Force  /  unit  length  =  Energy  /  unit  surface  

Crea9ng  surfaces  costs  energy  

Interfacial  tension  Surface  energy  

 Energy  cost  for  crea9ng    the  surface:  E=  2  A  γ  

A

Surface  created:  2  A    

   

Page 3: Nanobio I-surface tension-15

Spheres  are  the  shape  with  the  smallest  surface  for  a  given  volume  

hDp://www.123rf.com  

Crea9ng  surfaces  costs  energy  

γwater/air=  72  mN/m                γwater/oil=  50  mN/m              γmercury/air=  490  mN/m      

hDp://www.kidsdiscover.com  

Page 4: Nanobio I-surface tension-15

INTERFACES:    liquid-­‐liquid  gas-­‐liquid  solid-­‐solid  solid-­‐liquid  :  WETTING  

Page 5: Nanobio I-surface tension-15

Wikipedia  

θc  :  contact  angle    

θc  <  90°:  weUng  θc  >  90°:  non  weUng  

WeUng  

Page 6: Nanobio I-surface tension-15

 Terminology:  

 When  the  liquid  is  water  

Hydrophilic  surface:  likes  water      

Hydrophobic  surface:  does  not  like  water    

Page 7: Nanobio I-surface tension-15

Rough  surfaces  Micro/nanostructured  surfaces  Progress  in  M

aterialsScience  56  (2011)  1–108  

Rf  =  surface  roughness  factor            =  Surface  area  solid-­‐liquid/  flat  projected  area  

Page 8: Nanobio I-surface tension-15

Wikipedia  

Rough  surfaces  Micro/nanostructured  surfaces  

Wenzel  state  Cassie  or  Cassie-­‐Baxter  state  Predic9ve  model:  

Contact  line  density  Λ: total  perimeter  of  asperi9es  over  a  given  unit  area    

If  Λ>Λc:    Cassie-­‐Baxter  state  If Λ<Λc  :  Wenzel  state  

Λ=4x/y2  

Example:  

Page 9: Nanobio I-surface tension-15

Hydrophobic    micro/nanostructured  surfaces  

Lotus  leaf  

Progress  in  Materials  

 Science  56  (2011)  1–108  

Rose  petal  

Langmuir,  2008,  24  (8),  pp  4114–4119  

hDp://blogs.nature.com

/from_the_lab_bench/  

Page 10: Nanobio I-surface tension-15

Langmuir,  2008,  24  (8),  pp  4114–4119  

Hydrophobic    micro/nanostructured  surfaces  

Page 11: Nanobio I-surface tension-15

Superhydrophobic  surfaces:  Contact  angle  >150°  and  roll-­‐off  angle  <10°    Self  cleaning  effect  

www.youtube.com  

Lotus  leaf    

Inspired  research  on:  -­‐  new  genera9on  of  fabrics  -­‐  coa9ngs,  windows  etc…  

Page 12: Nanobio I-surface tension-15

How  to  make  interfaces  more  stable?  

Page 13: Nanobio I-surface tension-15

How  to  make  interfaces  more  stable?  

Surfactants  (=acAng  on  surfaces)  Molecules  that  lower  the  interfacial  energy  

Head  that  likes  water  

Tail  that  likes  oil/air   ≈  1-­‐5  nm  

=  Polar  head,  hydrophilic  head  

=  Apolar  tail,  hydrophobic  tail  

Page 14: Nanobio I-surface tension-15

Surfactants  (=acAng  on  surfaces)  Molecules  that  lower  the  interfacial  energy  

air  

water  

γ = 72 mN/m  

air  

water  

γ ≈ 25 mN/m  

Page 15: Nanobio I-surface tension-15

Surfactant  applica9ons  

Emulsion  defini9on:  mixture  of  2  non  miscible  liquids  One  liquid  is  dispersed  into  the  other  

Emulsion  stabiliza9on  

hDp://sparror.cubecinema.com/  

Dispersed  Phase  Con9nuous  phase  

Page 16: Nanobio I-surface tension-15

A  B  

C  D  

E  F   G  

H  

Which  of  the  following  object  contains  surfactant?  

Page 17: Nanobio I-surface tension-15

A  B  

C  D  

E  F   G  

H  

Which  of  the  following  object  contains  surfactant?  

Anethole:  soluble  in  ethanol-­‐not  in  water  

Milk  proteins   Egg  yolk  (phospholipids)   No  surfactants  Lots  of  surfactants!  

Lots  of  surfactants!  Surfactants  to  prevent  lung  collapse  

No  surfactants  

Page 18: Nanobio I-surface tension-15

Ouzo  effect:  Surfactant–free    stable  emulsion!  

Anethole:  soluble  in  ethanol-­‐not  in  water  

You  need  3  liquids:  Liquid  1  :  water    Liquid  2  :  ethanol  –  soluble  in  water    Liquid  3  :  anethole  (organic  flavoring  substance  ≈  oil)-­‐  Soluble  in  ethanol,  but  not  in  water.  

Before  pouring  the  water,  the  anethole  is  in  ethanol,  both  liquids  are  miscible,  the  solu9on  is  transparent.  Aper  adding  water,  the  anethol  forms  small  droplets  (≈  1µm)surrounded  by  ethanol  and  suspended  in  water.  The  droplets  are  stable.  

anethole  

ethanol  

water  

Page 19: Nanobio I-surface tension-15

Lung  surfactants  

Laplace  Law:  P=2γ/r:  pressure  needed  to  maintain  an  air  in  water  spherical  bubble    (the  alveoli  can  be  approximated  by  a  air-­‐in-­‐water  bubbles  with  an    interfacial  energy  γ)    When  the  air  is  expelled:  r  becomes  very  small.  If  there  are  no  surfactants,  the  pressure  needed  to  prevent  lung  collape  (=to  maintain  the  small  air  bubble  is  very  big).  If  there  are  surfactants  at  the  interface,  the  interfacial  tension  become  smaller  (γ)  and  the    pressure  needed  to  prevent  lung  collapse  is  smaller.  

The  surfactant  prevent  lung  collapse  upon  air  expulsion  

r  

Page 20: Nanobio I-surface tension-15

Surfactants  

Neutral  

Anionic  

Ca9onic  

zwiDerionic  

Page 21: Nanobio I-surface tension-15

Surfactants  

Sodium  stearate  (soap)  

Phospholipids:  example  Phospha9dylcholine  (component  of  cell  membrane)  Found  in  egg  yolk,  soy…  

Page 22: Nanobio I-surface tension-15

Surfactants  

Water  layer  Air  

Air  

Page 23: Nanobio I-surface tension-15

Surfactants  Micelles  

hDp://w

ww.aD

ension.com  

hDp://www.piercen

et.com

 

Air  

Water  

Cri9cal  micellar  concentra9on:  Surfactant  concentra9on  above  which  micelles  form.  

Page 24: Nanobio I-surface tension-15

Surfactant  applica9ons  Laundry  detergent,  soap  etc….  

Water  

Fabric  with  fat  stain  

Page 25: Nanobio I-surface tension-15

Surfactant  applica9ons  

Examples:      VinaigreDe  (Unstable)    ,        Mayonnaise  (stabilized  by  egg  yolk)          Cosme9cs,  lo9ons  (stabilized  by  polymers  etc…)  

Emulsion  stabiliza9on  

Page 26: Nanobio I-surface tension-15

Surfactants  Liposomes  (ar9ficial  vesicles):  Plenty  of  possibili9es  for  drug  delivery  

-­‐  Can  be  loaded  with  molecules  /  drugs  

-­‐  Protect  the  drug  from  in  vivo  condi9ons              (stomach,  blood,  immune  cells)    -­‐  Surface  can  be  func9onalized  (target  cells)  

-­‐  Some  can  deliver  drug  inside  cells  by    membrane  fusion  (difficult  for  hydrophilic    drugs  to  cross  the  cell  membrane)    -­‐  some  release  their  cargo  on  specific  condi9ons  (pH,  pressure,  temperature….)      

 

hDp://w

ww.britannica.com

 

10  nm-­‐10  µm  

Page 27: Nanobio I-surface tension-15

Surfactants  Liposome  applica9ons  

www.nature.com/nnano/journal/v7/n8/pdf/nnano.2012.84.pdf  

Local  delivery  of  vasodilators  for  trea9ng  atherosclerosis  (University  of  Geneva,  2012)    Atherosclerosis:    -­‐  no  specific  biomarkers  iden9fied    -­‐  high  shear  stress  due  to  the  narrowing  of  the  blood  vessel  

Vesicles  break  and  release  their  content  at  high  shear  stress  

Page 28: Nanobio I-surface tension-15

Dendrimers  

wikipedia  

Synthe9c  nanomaterials  that  are  approximately  5-­‐10  nanometres  in  diameter  

Page 29: Nanobio I-surface tension-15

Dendrimers  

 Catherine  A.  Brummond  ,  2004  

Hydroxycamptothecin  (cancer  drug)  encapsulated  in    a  biodegradable  polyether  dendrimer