Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann...

31
Production of α,ω diols from Biomass Thermal and Catalytic Sciences 2016 November 3, 2016 Jiayue He, Kefeng Huang, Pranav Karanjkar, Kevin J Barnett, Zachary Brentzal, Theodore Walker, Siddarth H Krishna, Sam Burt, Ive Hermans, Christos Maravelias, James A Dumesic, George W. Huber University of Wisconsin-Madison Department of Chemical & Biological Engineering http://biofuels.che.wisc.edu/ 1

Transcript of Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann...

Page 2: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

Catalytic Processes for Production of α,ω-diols

from Lignocellulosic Biomass

Chris Marshall

Michael Tspastsis,

Ilja Siepmann

Support from Bioenergy

Technology Office (BETO)

Page 3: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

High value infrastructure compatible commodity chemicals from biomass

3Source: Lux Research, Bio-based Materials and Chemical Intelligence Service, www.luxresearchinc.com

Volume (Million MT/yr.)

Pri

ce (

$/

MT

)

1,6-Hexanediol

(~130,000 MT/yr)

Pri

ce (

$/

MM

BT

U)

10

20

30

140

150

0

Natural gas

Crude oil ($50/bbl)

Biomass ($80/ton)

1,6-hexanediol

($4,400/ton)

Gasoline ($2.5/gal)

Source: ICIS, IEA

Page 4: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

There are several (aqueous-phase) acid catalyzed reactions in biomass conversion

• Hydrolysis

• Isomerization1

• Dehydration2

• Rehydration1) Y. Roman-Leshkov, M. Moliner, J.A. Labinger, and M.E. Davis, Angewandte Chemie International Edition 49 (2010) 8954-8957.

2) Y. Roman-Leshkov, J.N. Chheda, and J.A. Dumesic, Science 312 (2006) 1933-1937.4

Page 5: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

5

Low product selectivity is a key challenge in biomass conversion

Page 6: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

Proposed reaction scheme

6

Page 7: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

Activity of Acid sites are influenced by Solvent due to Solvation Effects

0 20 40 60 80 100

0

25

50

75

100

125

150

175

200

Based on total detectable products

Based on HMF

0.70.9

5

32

816

52

Turn

over

frequency / h

r-1

Initial water content in solvent / vol %

190

T=170 °C

P=1000 psig

Cellulose=5wt%

Acid= 5 mM H2SO4

Solvent = THF

R. Weingarten, A Rodriguez-Beuerman, F Cai, JS Luterbacher, DM Alonso, JA Dumesic, GW Huber, Selective

Conversion of Cellulose to Hydroxymethylfurfural in Polar Aprotic Solvents; ChemCatChem; (2014) 8 2229-2234.

Page 8: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

T=170 °C

P=1000 psig

Cellulose=3 gr

Acid=5 mM H2SO4

Reaction vol.=60 mL

High HMF yields are obtained in polar aprotic solvents

0 10 20 30 40 50 60

0

2

4

6

8

10

12

14

16

HM

F c

arb

on y

ield

(%

)

time (min.)

Water

THF

GVL

Ethyl Acetate

Acetone

Ethanol

Polar

aprotic

solvents

R. Weingarten, A Rodriguez-Beuerman, F Cai, JS Luterbacher, DM Alonso, JA Dumesic, GW Huber, Selective

Conversion of Cellulose to Hydroxymethylfurfural in Polar Aprotic Solvents; ChemCatChem; (2014) 8 2229-2234.

M A Mellmer, C Sener, JMR Gallo, JS Luterbachher, DM Alonso, JA Dumesic, Solvent Effects in Acid Catalyzed

Biomass Conversion Reactions,, Ang Chemie (2014) 53 11872-11875.

Page 9: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

Presence of water changes the product distribution

9

Reaction Conditions: 1 wt% cellulose, 7.5 mM H2SO4, 190 0C 1000 psig He, 60 mL total volume

Source: Cao, F.; Schwartz, T. J.; McClelland, D. J.; Krishna, S. H.; Dumesic, J. A.; Huber, G. W., “Dehydration of cellulose to

levoglucosenone using polar aprotic solvents” Energy & Environmental Science 2015, 8 (6), 1808-1815.

Pure THF2.7% water, bal. THF11.6% water, bal. THF

0 50 100 150 200 250 300

0

10

20

30

40

Yie

ld (

% C

arb

on

)

Time (min)

0 50 100 150 200 250 300

0

10

20

30

40

Yie

ld (

% C

arb

on

)

Time (min)0 50 100 150 200 250 300

0

5

10

15

20

Yie

ld (

% C

arb

on

)

Time (min)

0 50 100 150 200 250 300

0

20

40

60

80

Yie

ld (

% C

arb

on

)

Time (min)0 50 100 150 200 250 300

0

10

20

30

40

Yie

ld (

% C

arb

on

)

Time (min)

0 50 100 150 200 250 300

0

10

20

30

40

Yie

ld (

% C

arb

on

)

Time (min)0 50 100 150 200 250 300

0

5

10

15

20

Yie

ld (

% C

arb

on

)

Time (min)

0 50 100 150 200 250 300

0

20

40

60

80

Yie

ld (

% C

arb

on

)

Time (min)0 50 100 150 200 250 300

0

10

20

30

40

Yie

ld (

% C

arb

on

)

Time (min)

0 50 100 150 200 250 300

0

10

20

30

40

Yie

ld (

% C

arb

on

)

Time (min)0 50 100 150 200 250 300

0

5

10

15

20

Yie

ld (

% C

arb

on

)

Time (min)

0 50 100 150 200 250 300

0

20

40

60

80

Yie

ld (

% C

arb

on

)

Time (min)

LGO HMF

GlucoseLGA

SOLVENT:

Page 10: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

Levoglucosenone (LGO)• Chiral carbon

Sometimes referred to as “the next HMF”

10F Cao, TJ Schwartz, D McClelland, S Krishna, JA Dumesic, GW Huber, Dehydration of

Cellulose to Levoglucosenone using Polar Aprotic Solvents, EES, (2015) 4 1808-1885.

Page 11: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

Levoglucosenone (LGO)• Chiral carbon

• Double bond conjugated with a ketone

Sometimes referred to as “the next HMF”

11F Cao, TJ Schwartz, D McClelland, S Krishna, JA Dumesic, GW Huber, Dehydration of

Cellulose to Levoglucosenone using Polar Aprotic Solvents, EES, (2015) 4 1808-1885.

Page 12: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

Levoglucosenone (LGO)

• Chiral carbon

• Double bond conjugated with a ketone

• Protected aldehyde

Sometimes referred to as “the next HMF”

12F Cao, TJ Schwartz, D McClelland, S Krishna, JA Dumesic, GW Huber, Dehydration of

Cellulose to Levoglucosenone using Polar Aprotic Solvents, EES, (2015) 4 1808-1885.

Page 13: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

Levoglucosenone (LGO)

• Chiral carbon

• Double bond conjugated with a ketone

• Protected aldehyde

• Two protected hydroxyl groups

Sometimes referred to as “the next HMF”

13F Cao, TJ Schwartz, D McClelland, S Krishna, JA Dumesic, GW Huber, Dehydration of

Cellulose to Levoglucosenone using Polar Aprotic Solvents, EES, (2015) 4 1808-1885.

Page 14: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

Reaction Pathway for Dehydration of Cellulose in Polar Aprotic Solvents

14

Page 15: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

LGO is hydrogenated to levoglucosanol over a metal catalyst (Pd/Al2O3)

S.H. Krishna, D.J. McClelland, Q.R. Rashke, J.A. Dumesic, G.W. Huber, “Catalytic hydrogenation of levoglucosenone to value-added chemicals”.

Submitted.

• High yields of Cyrene or Lgol achievable using monometallic catalysts

• Excess of exo-Lgol produced over endo-Lgol

Page 16: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

Selective Hydrogenolysis of Cyclic Ethers: Literature

16

Bifunctional catalyst with a reducible metal and an oxophilic promoter;

Low temperatures

Sources: [1] Chia et al., Journal of the American Chemical Society, 2011, 133, 12675-12689

[2] Chen et al., ChemCatChem, 2010, 2, 547-555

Reactant Transition state Product

Tetrahydrofurfuryl

alcohol

Hydride transfer

creates a stable

oxocarbenium ion

97% selectivity to

α,ω-diols

Proposed reaction pathway in literature

with a RhRe/C catalyst through formation

of a stable oxocarbenium ion[1]

THP-2M

2-methyltetrahydropyran (2-MTHP)

1-hexanol1,6-HDO (>95% selectivity)

1,2-HDO

2-hexanol

C-C cracking products

Proposed reaction scheme

for THP-2M hydrogenolysis

with a IrRe/SiO2 catalyst[2]

Page 17: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

Synergy between the reducible metal and oxophilicpromoter is important

17

† VXC = Vulcan XC-72, a carbon black by Cabot Corporation

‡ other products include over-hydrogenolysis and C-C cracking products

Additional reaction conditions and details: Feedstock: 5% aq. THP-2M feedstock, Catalyst:Feedstock (g/g) = 2:7,

Temperature = 120 oC, Pressure = 34 bar H2, Time = 4 h

Batch reactor activity data by Chia et al.[1]:

THP-2M 1,6-HDO

CatalystConversion

(%)

Rate

(μmol·g-1·min-1)

1,6-HDO

selectivity (%)

Byproducts

selectivity (%)

Rh/VXC†

(4 wt% Rh)3 4 44

1,2-hexanediol (11%),

1-hexanol (3%), others‡ (42%)

Re/VXC(3.6 wt% Re)

No reaction - - -

RhRe/VXC(4 wt% Rh, 3.6 wt% Re)

28 90 97 1-hexanols (3%),

Source: [1] Chia et al., Journal of the American Chemical Society, 2011, 133, 12675-12689

Page 18: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

0 10 20 30 40 50 60 70 800

20

40

60

80

100

0

20

40

60

80

100

High selectivity to 1,6-HDO is achievable using RhRe/VXC bifunctional catalysts

18

Byproducts include small amounts of 1-hexanol, 2-MTHP, 1-pentanol

Reaction conditions for continuous reaction: 5% aq. THP-2M, catalyst:

RhRe/VXC, WHSV = 1.44 h-1, 120 oC, 34 bar H2, 40 sccm H2

Time (h)

TH

P-2

M c

on

vers

ion

(%

)

1,6-H

DO

sele

cti

vity

(%

)

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

THP-2M solution

through HPLC pump

Hydrogen

Reacto

rG

as-

Liq

uid

sep

ara

tor

To back-pressure regulator

Page 19: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

High selectivity to 1,6-HDO is achievable using RhRe/VXC bifunctional catalysts

19

Reaction conditions: 5% aq. THP-2M (initial reaction volume = 50 mL), catalyst: RhRe/VXC,

catalyst:feedstock (g/g) = 1:7, 120 oC, 34 bar H2.

Byproducts include small amounts of 1-hexanol, 2-MTHP, 1-pentanol with RhRe/VXC catalyst

0 10 20 30 40 50 60 70 800

20

40

60

80

100

0

20

40

60

80

100

Time (h)

TH

P-2

M c

on

vers

ion

(%

)

1,6-H

DO

sele

cti

vity

(%

)

RhRe/VXC

RhRe/NDC

0 10 20 30 40 50 60 70 800

20

40

60

80

100

0

20

40

60

80

100

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

Page 20: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

Carbon Blacks vs. Activated Carbons

20

Hydrocarbons

Carbon black

Gas-phase pyrolysis

Formation of carbon blacks

(vapor phase)

Low-rank coals,

wood, thermosetting

polymers

Glassy carbon

Thermal decomposition by charring

Activated

carbons (chars)

Activation

1. Selective gasification

2. Chemical treatment

3. …

Formation of activated carbons

(solid phase)

Source: L. R. Radovic, in Carbon Materials for Catalysis, John Wiley & Sons, Inc., 2008, pp. 1-44

Carbon supports discussed here:

Vulcan XC-72, Cabot Corp., carbon black Norit Darco 12X40, Cabot Corp., activated carbon&

VXC NDC

Page 21: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

Characterization of Carbon Supports

21

Carbon support NDC VXC

Type of carbon support Activated (acid washed) Carbon black

BET surface area (m2·g-1) 671 240

50 500100 1000

0.000

0.005

0.010

0.015

0.020

Po

re v

olu

me

(cm

3 g

-1 Å

-1)

Pore width (Å)

NDC

VXC

Pore size distribution

Pore width (Å)

Po

re v

olu

me (

cm

3g

-1Å

-1)

0.0 0.2 0.4 0.6 0.8 1.0

0

100

200

300

400

500

Qu

an

tity

ad

sorb

ed (

cm3 g

-1 S

TP

)

Relative pressure (P/Po)

Adsorption

Desorption

VXC

NDC

Nitrogen adsorption isotherm

Qu

an

tity

ad

sorb

ed

(cm

3g

-1)

Relative pressure (P/Po)

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

Page 22: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

NDC has more surface oxygen present

22

Surface elemental composition (mol %)

Carbon C O S Si Na Al

VXC 99.4 0.4 0.2 - - -

NDC 88.8 8.8 - 1.9 0.2 0.3

Water vapor adsorption isotherm

Water adsorption capacity of VXC = 1.2 mmol·g-1

Water adsorption capacity of NDC = 17.5 mmol·g-1

XPS analysis of carbon

supports

0.0 0.2 0.4 0.6 0.8 1.00

4

8

12

16

20

Adsorption

Desorption

0

1

2

3

4

Qu

an

tity

ad

sorb

ed

(m

mo

lg

-1)

Qu

an

tity

ad

sorb

ed

(m

mo

lg

-1)

Relative pressure (P/Po)

VXC

NDC

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

Page 23: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

Higher density of oxidized species on NDC than VXC – more

sites for interaction with metal and metal precursors

Sources: [1] Figueiredo et.al., Carbon, 1999, 37, 1379-1389

23

Abundance shown is relative to C=C stretch (the only signal due to

a non-oxygenated bond)

Band

Position

(cm-1)

AssignmentRelative abundance

NDC VXC

477C-CO deformation of cyclic

ketone3.40 0

792

C-O-C stretch of aromatic

cyclic anhydride or O-H bend

of carboxylic acid

1.69 0

1025Acid Anhydride C-O-C

stretch7.92 0

1055 Phenol O-H bend 0.26 0

1119 Ether C-O-C stretch 13.07 0.16

1173 Phenol C-OH stretch 0.80 0.42

1215 Lactone C=O stretch 2.05 0.51

1280 Carb. Acid C=O stretch 0.56 1.79

1350Carboxyl Carbonate C=O

stretch0.05 2.41

1586C=C stretch (conjugated

aromatic)1.00 1.00

3473O-H stretch of water or

carboxylic acid1.99 0.96

Support characterization with DRIFTS

4000 3500 1750 1500 1250 1000 750 500 250

Wavenumber (cm-1)

Sig

nal

(a.u

.)

NDC

VXC

[2] Fanning et al., Carbon, 1993, 31, 721–730

[3] Collins et al., Carbon, 2013, 57, 174–183

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

Page 24: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

Characterization of Bimetallic Catalysts

† Reaction conditions for batch reactions: 120 oC, 34 bar H2, 5% aq. THP-2M (Initial reaction volume = 25 mL),

catalyst: RhRe/C, catalyst:feedstock (g/g) = 1:7, Reaction time = 4 h

24

Catalyst Rh/NDC RhRe/NDC Rh/VXC RhRe/VXC

Rh loading (wt%) 4.1 4.0 4.1 4.0

Rh:Re atomic ratio - 1:0.5 - 1:0.5

Rh atom density

(atoms/nm2)0.36 0.36 1.02 1.00

CO uptake (μmol/g) 204 232 130 76

CO:Rh (mol:mol) 0.51 0.60 0.32 0.19

Rate of THP-2M [†]

hydrogenolysis

(μmol/g/min)

1 76

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

Page 25: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

X-ray Absorption Near Edge Structure

10.52 10.53 10.54 10.55 10.560

1

2

3

4

Re foil

ReO2

Re2O7

RhRe/NDC

reduced at 200 oC

RhRe/VXC

reduced at 200 oC

Energy (keV)

No

rmali

zed

ab

sorp

tio

n

CatalystTreatment prior

to scan in He

XANES fit for Re edge

Re(VII) Re(IV) Re(0)

Re/NDC 200 0C reduction 0.298 0.702 -

Re/VXC 200 0C reduction 0.358 0.642 -

Re catalysts RhRe catalysts

25

CatalystTreatment prior

to scan in He

XANES fit for Re edge

Re(VII) Re(IV) Re(0)

RhRe/NDC 200 0C reduction - 0.678 0.322

RhRe/VXC 200 0C reduction - 0.610 0.390

10.52 10.53 10.54 10.55 10.560

1

2

3

4

Energy (keV)

No

rmali

zed

ab

sorp

tio

n

Re foil

ReO2

Re2O7Re/NDC

reduced at 200 oC

Re/VXC

reduced at 200 oC

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

Page 26: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

Scanning Transmission Electron Microscopy (STEM)

26

RhRe/NDC

RhRe/VXC

0 1 2 3 4 5 6 7 8 9 10 150.0

0.1

0.2

0.3

0.4

0.5

Particle size (nm)

Fra

cti

on

Average = 1.98±0.73 nm

793 particles analyzed

0 1 2 3 4 5 6 7 8 9 10 150.0

0.2

0.4

0.6

0.8

1.0

Particle size (nm)

Fra

cti

on

Average = 1.61±0.61 nm

868 particles analyzed

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

Page 27: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

STEM-EDS images for catalyst nanoparticles

27

Map

Drift ref.

Rh

Re

Map

Drift ref.

Rh

Re

RhRe/NDC

RhRe/VXC

Avg. particle size : 1.61±0.61 nm

Avg. particle size : 1.98±0.73 nm

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

Page 28: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

STEM-EDS indicates segregation of Re species in NDC

28

Re content (atomic %)

Nu

mb

er

of

part

icle

s

0 10 20 30 40 50 60 70 80 90 1000

5

10

15

61.3 atomic% Re

Re content (atomic %)

Nu

mb

er

of

part

icle

s

0 10 20 30 40 50 60 70 80 90 1000

5

10

36.7 atomic% Re

Theoretical ICP EDS

Re content

(% atomic)33.3% 35.5% 61.3%

Rh:Re

(mol:mol)1:0.5 1:0.55 1:1.58

Theoretical ICP EDS

Re content

(% atomic)33.3% 33.8% 36.7%

Rh:Re

(mol:mol)1:0.5 1:0.51 1:0.58

RhRe/NDC

RhRe/VXC

Note: The distribution considers composition of ~60 particles analyzed with EDS

Page 29: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

29

Note: Schematic is for visualization purposes only!

RhRe/NDC RhRe/VXC

• Nanoparticles with relatively uniform

composition

• Anchoring of metals/metal-precursors

is relatively absent because of low

surface oxygen

• Formation of small Rh particles (<1

nm) may be avoided because of smaller

surface area of support

• Nanoparticles with segrated particle

composition

• Many small particles (<1 nm) rich in

Rh are present that evade detection in

STEM

• Many Re only particles also present and

larger particles are rich in Re

• Higher surface oxygen content may

restrict mobility of metals/metal-

precursors resulting in segregation of

Rh and Re

100% Re

Tiny Rh

particles

(<1 nm)

65% Re

~33% Re

Page 30: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

Conclusion

• New pathways for production of high value oxygenated commodity chemicals from biomass

• Cellulose can be converted into LGO and HMF in high yields in polar aprotic solvents

• LGO is a promising platform molecule• LGO and HMF hydrogenated into THFDM which

then undergoes hydrogenolysis into 1,6 hexanediol

• 1,5 pentanediol can be produced from biomass without expensive RhRe catalysts

30

Page 31: Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann Support from Bioenergy Technology Office (BETO) High value infrastructure compatible commodity

31