Problem4.) - Home | University of Colorado Boulder · Kittel 2.6 ) € n(r)= e−2r/a 0 πa ...

3
Solutions for Homework 5 1. Kittel 2.4 a) | F 2 | = 1 e [ iM ( a⋅Δk )] 1 e [ i( a⋅Δk )] 1 e [ iM ( a⋅Δk )] 1 e [ i( a⋅Δk )] Expanding the parentheses and using: cos( x ) = (e ix + e ix )/2 We get: | F 2 | = 2 2cos( Ma⋅Δk ) 2 2cos( a⋅Δk ) = sin 2 ( Ma⋅Δk ) sin 2 ( a⋅Δk ) b) For F 2 to be zero the numerator must be zero. sin[(M(2πh+ε)/2]=0 Using trig. Identities: sin[(M(2πh+ε)/2]=sin(Mπh)cos(Mε/2)+cos(Mπh)sin(Mε/2)= sin(Mε/2)=0 Therefore Mε/2=nπ, and for the first zero n=1 and ε=2π/M. 2. Kittel 2.5 a) The basis points are: (0,0,0), a/2(1,1,0). a/2(1,0,1), a/2(0,1,1), a/4(1,1,1), a/4(1,1,1),a/4(1,1,1),a/4(1,1,1). We write G=(n1b1+n2b2 +n3b3) The structure factor is then given by: S G = 1 + e iπ ( n 1 + n 2 ) + e iπ ( n 1 + n 3 ) + e iπ ( n 3 + n 2 ) + e iπ ( n 1 + n 2 + n 3 )/2 + e iπ ( n 1 n 2 + n 3 )/2 + e iπ ( n 1 n 2 n 3 )/2 + e iπ ( n 1 + n 2 n 3 )/2 ) b) Let n= n1+n2 +n3 . Then we can write SG as: S G = (1 + e iπn /2 )(e iπ ( n 1 + n 3 ) + e iπ ( n 3 + n 2 ) + e iπ ( n 1 + n 2 ) ) Then the zeros are n=4m+2 with m –integer coming from the first factor. The second factor gives zeroes when one of the n1,n2 ,n3 is odd AND the others are even or one of the n1,n2 ,n3 is even AND the others are odd. So for reflections with the nonzero structure factor 1)n must be odd or 2)n=4m with all even n1,n2 ,n3 3. Kittel 2.6

Transcript of Problem4.) - Home | University of Colorado Boulder · Kittel 2.6 ) € n(r)= e−2r/a 0 πa ...

Page 1: Problem4.) - Home | University of Colorado Boulder · Kittel 2.6 ) € n(r)= e−2r/a 0 πa ...

Solutions  for  Homework  5    

1. Kittel  2.4  

a)  

|F 2 |= 1− e[− iM (a⋅Δk )]

1− e[−i(a⋅Δk )]⎛

⎝ ⎜

⎠ ⎟ 1− e[iM (a⋅Δk )]

1− e[i(a⋅Δk )]⎛

⎝ ⎜

⎠ ⎟  

 Expanding  the  parentheses  and  using:  

cos(x) = (eix + e− ix ) /2    

We  get:  

|F 2 |= 2 − 2cos(Ma⋅ Δk)2 − 2cos(a⋅ Δk)

=sin2(Ma⋅ Δk)sin2(a⋅ Δk)

 

 b)  For  F2  to  be  zero  the  numerator  must  be  zero.    sin[(M(2πh+ε)/2]=0    Using  trig.  Identities:    sin[(M(2πh+ε)/2]=sin(Mπh)cos(Mε/2)+cos(Mπh)sin(Mε/2)=  sin(Mε/2)=0    Therefore  Mε/2=nπ, and for the first zero n=1 and ε=2π/M.

2. Kittel 2.5  

a) The  basis  points  are:  (0,0,0),  a/2(1,1,0).  a/2(1,0,1),  a/2(0,1,1),  a/4(1,1,1),    a/4(-­‐1,1,-­‐1),a/4(-­‐1,-­‐1,1),a/4(1,-­‐1,-­‐1).  

 We  write  G=(n1b1+  n2b2  +  n3b3)    The  structure  factor  is  then  given  by:    

SG =1+ eiπ (n1 +n2 ) + eiπ (n1 +n3 ) + eiπ (n3 +n2 ) +

eiπ (n1 +n2 +n3 ) / 2 + eiπ (−n1 −n2 +n3 ) / 2 + eiπ (n1 −n2 −n3 ) / 2 + eiπ (−n1 +n2 −n3 ) / 2)  

 b) Let  n=  n1+  n2  +  n3  .  Then  we  can  write  SG  as:  

SG = (1+ eiπn / 2)(eiπ (n1 +n3 ) + eiπ (n3 +n2 ) + eiπ (n1 +n2 ))    Then  the  zeros  are  n=4m+2  with  m  –integer  coming  from  the  first  factor.  The  second  factor  gives  zeroes  when  one  of  the  n1,  n2  ,  n3  is  odd  AND  the  others  are  even  or  one  of  the  n1,  n2  ,  n3  is  even  AND  the  others  are  odd.  So  for  reflections  with  the  nonzero  structure  factor  1)n  must  be  odd  or  2)n=4m  with  all  even  n1,  n2  ,  n3    

3. Kittel 2.6  

Page 2: Problem4.) - Home | University of Colorado Boulder · Kittel 2.6 ) € n(r)= e−2r/a 0 πa ...

n(r) =e−2r / a0

πa03  

 

The  form  factor  is:  

f = 4π drn(r) sin(Gr)Gr0

∫ ;  

 Looking  this  up  in  an  integral  table  (say  in  Wikipedia)    

gives:  

f =16

(4 +G2a02)2  

   Problem  4.    

   

a)  1st:   2acos(30º)=  

           

2nd:  -­‐ acos(30º)+ (2a-­‐asin(30º))=  

-­‐ /2+ 1.5a    

3rd:   2c  

b) =-2 c( cos(30º)+ cos(30º))=-2 c( +0.5 )=- c( +)

=-2 c

=1.5

-3ac =-33/2a2c

Page 3: Problem4.) - Home | University of Colorado Boulder · Kittel 2.6 ) € n(r)= e−2r/a 0 πa ...

b1 =2π(a2 × a3)a1⋅ (a2 × a3)

=

b2 =2π(a1 × a3)a1⋅ (a2 × a3)

= =

= =

c) SHKL=

eigHKL ⋅riunitcell

∑ , where gHKL are reciprocal lattice vectors, ri are coordinates of ith

atom in the unit cell. For graphite we have 4 atoms in the unit cell. The coordinates are:

r1=(0,0,0), r2=(-1/3,2/3,0), r3=(-1/3,2/3,0.5), r4=(-2/3,4/3,0.5) in the coordinates defined by normalized unit vectors.

r1=(0,0,0), r2=(0,a,0), r3=(0,a,c), r4=(0,2a,c) in the coordinates defined by x,y,z. (Note that the top layer is simply shifted by a in the y-direction.

SHKL=1+exp(i((2π/3)H+(4π/3)K))+ exp(i((2π/3)H+(4π/3)K+πL))+ exp(i((4π/3)H+(8π/3)K+πL))=

=1+exp(i((2π/3)H-(2π/3)K))+ exp(i((2π/3)H-(2π/3)K+πL))+ exp(i((-2π/3)H+(2π/3)K+πL))=

= 1+exp(i((2π/3)(H-K))+(-1)L2cos ((2π/3)(H-K)).

or:

SHKL=1+exp(i((2π/3)H+(4π/3)K))+ exp(i((2π/3)H+(4π/3)K+πL))+ exp(i((4π/3)H+(8π/3)K+πL))=

=1+exp(i((2π/3)H+(4π/3)K))+(1+exp(i((2π/3)H+(4π/3)K)))exp exp(i((2π/3)H+(4π/3)K)+πL)=

(1+exp(i((2π/3)H+(4π/3)K)))(1+exp exp(i((2π/3)H+(4π/3)K)+πL))= (1+exp(i((2π/3)(H-K))(1+exp(i((2π/3)(H-K)+πL))=

(1+exp(i((2π/3)(H-K))(1+(-1)Lexp(i((2π/3)(H-K)).

d) S10L=1+exp(i((2π/3)H)+( -1)L2cos ((2π/3)H).