Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf ·...

20
Light and sound in bubble polycrystals F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December 2013 Probing foam acoustics with coherent light Institut des Nanosciences de Paris Université Pierre et Marie Curie

Transcript of Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf ·...

Page 1: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

Light and sound in bubble polycrystals

F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler

GdR MesoImage December 2013

Probing foam acoustics with coherent light

Institut des Nanosciences de Paris Université Pierre et Marie Curie

Page 2: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

Liquid foam structure and elasticity Shaving foam.

𝑆ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠

𝐺 = 2.8𝛾

𝑑φ φ − 0.64

𝐵𝑢𝑙𝑘 𝑚𝑜𝑑𝑢𝑙𝑢𝑠

𝐵 =1

𝜒𝜑

𝜑 𝑔𝑎𝑠 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝜒 𝑔𝑎𝑠 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝛾 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛

100 µm

d

𝜑 = 0.9, 𝑅 = 90 µ𝑚

𝐵

𝐺≈105 𝑃𝑎

102Pa ≈ 103 ≫ 1

Cohen-Addad et al. 2013. Annual Review of Fluid Mechanics

Page 3: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

Pentamode materials

3

𝑐11 𝑐12 𝑐12𝑐12 𝑐11 𝑐12𝑐12 𝑐12 𝑐11

0

0𝑐44 0 𝑐44 0 𝑐44 ℬ

3𝑐11 0 0

0

00 0 0 ℬ′

𝑐11 ≫ 𝑐44

𝑐12 = 𝑐11 − 2𝑐44

𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛

Pentamode: 5 zero eigenvalues

Kadic et al. 2012. APL

𝑐11 𝑐44 = 𝐵 𝐺 ~103

Could foam be used as a self-assembled anisotropic pentamode material?

Milton & Cherkaev. 1995. J. of Eng. Mat. and Tech.

Stiffness tensor c

100 µm

3D pentamode materials with anisotropic acoustic properties would have many applications (lenses, cloaking…)

Polymer structure obtained by laser lithography

Low acoustic attenuation is required!

Page 4: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

Viscoelasticity and shear wave propagation

𝑘∗ = 𝜔𝜌

G∗

Ferry et al. 1947. Journal of Polymer Science

4 High frequency dispersion relation?

Liu et al. 1996. PRL Tighe. 2011. PRL

𝐺∗ 𝑓 = 𝐺 1 +𝑖𝑓

𝑓𝑐+ 2𝑖𝜋𝜂∞𝑓

Krishan et al. PRE 2010

Mechanical measurements for aqueous foam

𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑤𝑎𝑣𝑒𝑛𝑢𝑚𝑏𝑒𝑟 𝑘∗ =2𝜋

𝜆+ 𝑖1

𝑙𝐴

𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑠ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝐺∗ = 𝐺′ + 𝑖𝐺′′

Page 5: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

Laser

Camera Computer

Sample

Acoustic emitter

Laser speckle visibility acoustic spectroscopy

𝒙𝟏

𝒙𝟐 𝒙𝟑

Displacement 𝒙𝟐

𝒙𝟏

Wintzenrieth et al. 2013. PRE. (Submitted)

Page 6: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

Durian & Bandyopadhyay, RSI 2005

CA

MER

A

𝑆𝑝𝑒𝑐𝑘𝑙𝑒 𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦

𝑉 =1

𝛽

Ι2 − Ι 2

Ι 2

Speckle visibility

6

Electric field autocorrelation:

𝑔1 𝑡, 𝜏 =𝐸 𝑡 + 𝜏 𝐸∗ (𝑡)

𝐸(𝑡) 2

𝑉 𝑇, 𝑡 = 2 1 −𝜏

𝑇𝑔1 𝑡, 𝜏

𝑑𝜏

𝑇

𝑇

0

Interfering light paths

LASER

𝑇 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒

Page 7: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

Principle of wavelength measurement

𝑥1

𝑆𝑡𝑟𝑎𝑖𝑛 𝜀21

𝑥1

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑥2

𝑥1

𝑆𝑝𝑒𝑐𝑘𝑙𝑒 𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑉

𝝀/𝟐

1

𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡 𝑎𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 𝑡

7

𝜔Τ ≪ 2𝜋,

𝑉 = 1 −4𝜔𝑇𝜀0𝛾𝜅𝑙

3 10sin 𝑘𝑥1 − 𝜔𝑡

𝑔1 𝑡, 𝜏 = 𝑒−𝛾𝜅𝑙∗ 2 𝑇𝑟 ∆𝜀(𝜏)2 /10

𝜀 𝑠𝑡𝑟𝑎𝑖𝑛 𝑡𝑒𝑛𝑠𝑜𝑟 𝑙∗ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑚𝑒𝑎𝑛 𝑓𝑟𝑒𝑒 𝑝𝑎𝑡ℎ 𝜅 𝑙𝑎𝑠𝑒𝑟 𝑙𝑖𝑔ℎ𝑡 𝑤𝑎𝑣𝑒𝑛𝑢𝑚𝑏𝑒𝑟

𝐹𝑜𝑟 𝑎 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛 𝜀21 = 𝜀0cos (𝜔𝑡 − 𝑘𝑥1)

Erpelding et al. 2010. Phys. Rev. E Bicout et al. 1991. J. de Physique Wu et al. 1990. J. Opt. Soc. Am. B

Page 8: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

Time 𝑡

20

mm

𝑥1

10 ms

𝒙𝟏 = 𝒗𝒕 𝑓 = 100 𝐻𝑧

8

Spatio-temporal visibility diagram

𝒗 = 𝟑. 𝟕 𝒎. 𝒔−𝟏 𝜆 = 37 𝑚𝑚

𝛽𝑉

0.02

0.26

Consistent with previous mechanical measurements. (Krishan et al. PRE 2010)

Page 9: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

Measurement of the attenuation length 𝑙𝐴

𝜔Τ > 2𝜋,

V ≅ 1 − 𝛾 𝜅 𝑙 𝜀0 𝑒−𝑥1/𝑙𝐴

9

𝑥1

𝑥1

𝑥

𝑥1

𝑆𝑝𝑒𝑐𝑘𝑙𝑒 𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦

𝑇𝑖𝑚𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

1

0

𝑆𝑡𝑟𝑎𝑖𝑛 𝜀12 𝐹𝑜𝑟 𝑎𝑛 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑒𝑑 𝑠𝑡𝑟𝑎𝑖𝑛

𝜀12 = 𝜀0𝑒

−𝑥1/𝑙𝐴 cos (𝜔𝑡 − 𝑘𝑥1)

Wintzenrieth, Cohen-Addad, Le Merrer & Höhler.

2013. PRE. (Submitted)

Page 10: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

= 1.00 = 0.71 = 0.50 = 0.35

Sp

eckle

vis

ibili

ty

Propagation distance (mm)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40

Sp

eckle

vis

ibili

ty

Shifted propagation distance (mm)

10

Visibility evolution with propagation distance and displacement amplitude

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑢 𝑥1 = 𝜉 𝑢0 𝑒−𝑥1 𝑙𝐴 cos (𝜔𝑡 − 𝑘𝑥1) = 𝑢0𝑒

−(𝑥1−𝑙𝐴 ln 𝜉 ) 𝑙𝐴 cos (𝜔𝑡 − 𝑘𝑥1)

𝑓 = 100 𝐻𝑧, 𝑙𝐴 = 11.8 𝑚𝑚

Shift distance

Master plot

Consistent with previous mechanical measurements. (Krishan et al. PRE 2010)

𝑢0 = 3.2 µm 𝑢0 = 3.2 µm

Page 11: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

Experimental results

11

100

101

102

103

104

1 10 100 1000

Atte

nu

atio

n le

ng

th l

A (m

m)

Frequency f (Hz)

* Liu et al. 1996. PRL

Mechanical measurements LSVAS

Viscoelastic response of this foam is well described by Liu’s model up to 1 kHz.

Our results validate the LSVAS technique. Can we elaborate foams that are anisotropic, stable and less attenuating?

Predictions*

Mechanical measurements LSVAS

100 µm

d

100

101

102

103

104

1 10 100 1000

Wlg

th 4

5 µ

m (

mm

)

Frequency f (Hz)

Wave

len

gth

(

mm

)

Bubble

diameter (µm)

45

62

75

95

Page 12: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

Confined gelatine crystalline foams are stable for many days

12

5 mm

𝜑 = 0.8𝑑 = 600 µ𝑚𝐺𝑔𝑒𝑙 ≅ 10 𝑘𝑃𝑎

X-ray tomography. (Collaboration: Ovarlez, Lenoir (IFSTAR))

FOAMING GELATINE SOLUTION

GAS MIX (N2, C6F14)

MILLIFLUIDIC GENERATOR

2 mm

106 1 mm 𝑡 (𝑠)

𝐺𝑔𝑒𝑙 (kPa)

10

20

103

GELLIFIED FOAM

Page 13: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

Longitudinal modes in a cylindrical wave guide

𝑢

Displacement profile

𝑘

𝜔

Evanescent regime

𝑘

Propagative regime

Fixed boundary conditions

λ/2

Transducer

𝜔

𝑘= 𝑣𝐿

2R

𝑖𝑘

2.4𝑣𝑇𝑅

5.5𝑣𝑇𝑅

𝒙

𝒛

𝑢𝑧 𝑢𝑥

𝑢𝑧 𝑢𝑥

𝑅

𝑅 𝑅

𝑅

Page 14: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

50100 100 200 300Wavevector 1 m

100

300

500

700

800

1000

1200

Frequency Hz

Predicted dispersion relation for a homogeneous elastic medium

𝑣𝐿 ≫ 𝑣𝑇 , 𝑘2 J1[𝑅𝜔 𝑣𝑇 ] +1

2

𝑅𝜔

𝑣𝑇

𝜔2

𝑣𝐿2− 𝑘2 J0[𝑅𝜔 𝑣𝑇 ] = 0

J1[𝑅𝜔 𝑣𝑇 ] = 0, 𝑘 =𝜔

𝑣𝐿,

𝐵𝑢𝑙𝑘 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑤𝑎𝑣𝑒

J0[𝑅𝜔 𝑣𝑇 ] = 0 𝐸𝑣𝑎𝑛𝑒𝑠𝑐𝑒𝑛𝑡 𝑤𝑎𝑣𝑒

𝑣𝑃 = 27 𝑚/𝑠 𝑣𝑇 = 1.3 𝑚/𝑠

J0, J1 𝐵𝑒𝑠𝑠𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝑅 = 2 𝑚𝑚

𝜔

𝑘= 𝑣𝐿

Page 15: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

Acoustic pulse propagation in space and time

𝑇𝑖𝑚𝑒 𝑡

𝒙𝟏 = 𝒗 𝒕

𝑓 = 300 𝐻𝑧

𝒙𝟏 = 𝒗𝒈 𝒕

𝑥1

𝑃ℎ𝑎𝑠𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣 = 𝜔 𝑘

𝐺𝑟𝑜𝑢𝑝 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣𝑔 = 𝑑𝜔 𝑑𝑘

Excitation

𝑡

𝑢

50

mm

50 ms

Page 16: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

Dispersion relation in bubble polycrystals

Reduced variables Ω =𝑅𝜔

𝑣𝑇 K = 𝑅𝑘

𝑣𝐿𝑣𝑇, K2 𝐽1 Ω +

1

2Ω Ω2 − K2 𝐽0[Ω] = 0

𝑣𝐿 =𝐵𝑔𝑎𝑠

1 − 𝜑 𝜑 𝜌𝑔𝑒𝑙

𝑣𝑇 =1 − 𝜑 𝐺𝑔𝑒𝑙

𝜌𝑔𝑒𝑙

𝐶𝑢𝑡𝑜𝑓𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ω𝐶 𝑦𝑖𝑒𝑙𝑑𝑠 𝑣𝑇

1.0 𝑚/𝑠 ≤ 𝑣𝑇 ≤ 1.8 𝑚/𝑠

Cellular solids. Ashby & Gibsons. 1999.

𝐹𝑖𝑡𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝐿

27 𝑚/𝑠 ≤ 𝑣𝐿 ≤ 33 𝑚/𝑠

0

3

6

9

12

0 2 4 6 8 10 12 14 16

Predictions

Measurements

Red

uce

d a

ng

ula

r fr

eq

ue

ncy

Reduced wavenumber

2 𝑚𝑚 ≤ 𝑅 ≤ 5 𝑚𝑚

𝛺

𝐾= 1

Ω𝐶

𝜆𝐿 > 𝜆𝑇 > 𝑑

A Textbook of Sound. Wood. 1944.

Consistent with Wood’s model!

Page 17: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

0.75 0.80 0.85 0.90 0.95

102

103

104

How can pentamode behaviour be optimized? 𝑃𝑒𝑛𝑡𝑎𝑚𝑜𝑑𝑒 𝑟𝑎𝑡𝑖𝑜:

𝐵𝑓𝑜𝑎𝑚

𝐺𝑓𝑜𝑎𝑚=

𝑣𝐿𝑣𝑇

2

=𝐵𝑔𝑎𝑠

1 − 𝜑 2 𝜑 𝐺𝑔𝑒𝑙

𝐺𝑔𝑒𝑙 = 5 𝑘𝑃𝑎

𝐺𝑔𝑒𝑙 = 10 𝑘𝑃𝑎

𝐺𝑔𝑒𝑙 = 20 𝑘𝑃𝑎

𝐺𝑎𝑠 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝜑

𝐵𝑓𝑜𝑎𝑚

𝐺𝑓𝑜𝑎𝑚

𝑆𝑎𝑚𝑝𝑙𝑒𝑠

Page 18: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

7 10-1

8 10-1

9 10-1

100

0 40 80 120 160

Deviation from continuum model at higher frequencies

VIS

IBIL

ITY

𝑇𝑖𝑚𝑒 𝑡

𝑥1

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250

Pulse results

Continuous results

Fre

qu

ency (

Hz)

Wavenumber (/m)

𝑓 = 450 𝐻𝑧

𝑓 = 3250 𝐻𝑧

Pulse excitation:

𝑣𝐴𝑖𝑟

Abscissa (mm)

Continuous excitation: standing waves (Collaboration:

A. Spadoni. EPFL.)

Page 19: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

Conclusions

• Laser visibility acoustic spectroscopy is a new method for measuring acoustic dispersion relations in soft turbid materials

• Gelatine foams behave as self-assembled pentamode effective materials in the kHz frequency range

• What is the origin of non-linear dispersion at higher frequencies in crystalline gellified foams?

• Can these foams be made anisotropic?

19

Page 20: Probing foam acoustics with coherent lightmesoimage.grenoble.cnrs.fr/IMG/pdf/wintzenrieth13.pdf · F. Wintzenrieth, S. Cohen-Addad, M. Le Merrer & R. Höhler GdR MesoImage December

Questions?

20