PD - 94754 IRFR120Z IRFU120Z - Infineon Technologies 5 1E-006 1E-005 0.0001 0.001 0.01 t1 ,...

12

Click here to load reader

Transcript of PD - 94754 IRFR120Z IRFU120Z - Infineon Technologies 5 1E-006 1E-005 0.0001 0.001 0.01 t1 ,...

Page 1: PD - 94754 IRFR120Z IRFU120Z - Infineon Technologies 5 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) 0.01 0.1 1 10 T h e r m a l τ R e s p o n s e (Z 0.20

IRFR120ZIRFU120Z

HEXFET® Power MOSFET

VDSS = 100V

RDS(on) = 190mΩ

ID = 8.7A

www.irf.com 1

AUTOMOTIVE MOSFET

PD - 94754

Specifically designed for Automotive applications, this HEXFET®

Power MOSFET utilizes the latest processing techniques toachieve extremely low on-resistance per silicon area. Additionalfeatures of this design are a 175°C junction operating tempera-ture, fast switching speed and improved repetitive avalancherating . These features combine to make this design an extremelyefficient and reliable device for use in Automotive applications anda wide variety of other applications.

S

D

G

Description

Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax

Features

D-PakIRFR120Z

I-PakIRFU120Z

HEXFET® is a registered trademark of International Rectifier.

Absolute Maximum RatingsParameter Units

ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)

ID @ TC = 100°C Continuous Drain Current, VGS @ 10V A

IDM Pulsed Drain Current

PD @TC = 25°C Power Dissipation W

Linear Derating Factor W/°CVGS Gate-to-Source Voltage VEAS (Thermally limited) Single Pulse Avalanche Energy mJEAS (Tested ) Single Pulse Avalanche Energy Tested Value

IAR Avalanche Current AEAR Repetitive Avalanche Energy mJ

TJ Operating Junction and

TSTG Storage Temperature Range °C

Soldering Temperature, for 10 seconds

Mounting Torque, 6-32 or M3 screw

Thermal ResistanceParameter Typ. Max. Units

RθJC Junction-to-Case ––– 4.28

RθJA Junction-to-Ambient (PCB mount) ––– 40 °C/W

RθJA Junction-to-Ambient ––– 110

-55 to + 175

300 (1.6mm from case )

10 lbfin (1.1Nm)

35

0.23 ± 20

Max.8.7

6.1

35

20

18

See Fig.12a, 12b, 15, 16

Page 2: PD - 94754 IRFR120Z IRFU120Z - Infineon Technologies 5 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) 0.01 0.1 1 10 T h e r m a l τ R e s p o n s e (Z 0.20

2 www.irf.com

S

D

G

Electrical Characteristics @ TJ = 25°C (unless otherwise specified)Parameter Min. Typ. Max. Units

V(BR)DSS Drain-to-Source Breakdown Voltage 100 ––– ––– V∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.084 ––– V/°CRDS(on) Static Drain-to-Source On-Resistance ––– 150 190 mΩVGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V

gfs Forward Transconductance 16 ––– ––– SIDSS Drain-to-Source Leakage Current ––– ––– 20 µA

––– ––– 250IGSS Gate-to-Source Forward Leakage ––– ––– 200 nA

Gate-to-Source Reverse Leakage ––– ––– -200Qg Total Gate Charge ––– 6.9 10Qgs Gate-to-Source Charge ––– 1.6 ––– nCQgd Gate-to-Drain ("Miller") Charge ––– 3.1 –––td(on) Turn-On Delay Time ––– 8.3 –––tr Rise Time ––– 26 –––td(off) Turn-Off Delay Time ––– 27 ––– nstf Fall Time ––– 23 –––LD Internal Drain Inductance ––– 4.5 ––– Between lead,

nH 6mm (0.25in.)LS Internal Source Inductance ––– 7.5 ––– from package

and center of die contactCiss Input Capacitance ––– 310 –––Coss Output Capacitance ––– 41 –––Crss Reverse Transfer Capacitance ––– 24 ––– pFCoss Output Capacitance ––– 150 –––Coss Output Capacitance ––– 26 –––Coss eff. Effective Output Capacitance ––– 57 –––

Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units

IS Continuous Source Current ––– ––– 8.7

(Body Diode) AISM Pulsed Source Current ––– ––– 35

(Body Diode)VSD Diode Forward Voltage ––– ––– 1.3 Vtrr Reverse Recovery Time ––– 24 36 ns

Qrr Reverse Recovery Charge ––– 23 35 nCton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz

VGS = 0V, VDS = 80V, ƒ = 1.0MHz

VGS = 0V, VDS = 0V to 80V

VGS = 10V

VDD = 50V

ID = 5.2A

RG = 53 Ω

TJ = 25°C, IS = 5.2A, VGS = 0V

TJ = 25°C, IF = 5.2A, VDD = 50Vdi/dt = 100A/µs

ConditionsVGS = 0V, ID = 250µA

Reference to 25°C, ID = 1mA

VGS = 10V, ID = 5.2A

VDS = VGS, ID = 250µA

VDS = 100V, VGS = 0V

VDS = 100V, VGS = 0V, TJ = 125°C

MOSFET symbol

showing theintegral reverse

p-n junction diode.

VDS = 25V, ID = 5.2A

ID = 5.2A

VDS = 80V

Conditions

VGS = 10V

VGS = 0V

VDS = 25V

ƒ = 1.0MHz

VGS = 20V

VGS = -20V

Page 3: PD - 94754 IRFR120Z IRFU120Z - Infineon Technologies 5 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) 0.01 0.1 1 10 T h e r m a l τ R e s p o n s e (Z 0.20

www.irf.com 3

Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward TransconductanceVs. Drain Current

0 1 10 1000.1 1 10 100

VDS, Drain-to-Source Voltage (V)

0.01

0.1

1

10

100

I D, D

rain

-to-

Sou

rce

Cur

rent

(A

)

60µs PULSE WIDTHTj = 25°C

4.5V

0 1 10 1000.1 1 10 100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

I D, D

rain

-to-

Sou

rce

Cur

rent

(A

)

60µs PULSE WIDTHTj = 175°C

4.5V

4.0 5.0 6.0 7.0 8.0

VGS, Gate-to-Source Voltage (V)

0.1

1.0

10.0

100.0

I D, D

rain

-to-

Sou

rce

Cur

rent

)

VDS = 25V

60µs PULSE WIDTH

TJ = 25°C

TJ = 175°C

0 2 4 6 8

ID, Drain-to-Source Current (A)

0

2

4

6

8

10

12

Gfs

, For

war

d T

rans

cond

ucta

nce

(S)

TJ = 25°C

TJ = 175°C

VDS = 10V

380µs PULSE WIDTH

Page 4: PD - 94754 IRFR120Z IRFU120Z - Infineon Technologies 5 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) 0.01 0.1 1 10 T h e r m a l τ R e s p o n s e (Z 0.20

4 www.irf.com

Fig 8. Maximum Safe Operating Area

Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage

Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage

Fig 7. Typical Source-Drain DiodeForward Voltage

1 10 100

VDS, Drain-to-Source Voltage (V)

0

100

200

300

400

500

C, C

apac

itanc

e (p

F)

Coss

Crss

Ciss

VGS = 0V, f = 1 MHZCiss = Cgs + Cgd, C ds SHORTED

Crss = Cgd Coss = Cds + Cgd

0 2 4 6 8 10

QG Total Gate Charge (nC)

0

4

8

12

16

20

VG

S, G

ate-

to-S

ourc

e V

olta

ge (

V) VDS= 80V

VDS= 50VVDS= 20V

ID= 5.2A

FOR TEST CIRCUITSEE FIGURE 13

0.0 0.5 1.0 1.5

VSD, Source-toDrain Voltage (V)

0.1

1.0

10.0

100.0

I SD

, Rev

erse

Dra

in C

urre

nt (

A)

TJ = 25°C

TJ = 175°C

VGS = 0V

1 10 100 1000

VDS , Drain-toSource Voltage (V)

0.1

1

10

100

1000

I D,

Dra

in-t

o-S

ourc

e C

urre

nt (

A)

Tc = 25°CTj = 175°CSingle Pulse

1msec10msec

OPERATION IN THIS AREA LIMITED BY R DS(on)

100µsec

Page 5: PD - 94754 IRFR120Z IRFU120Z - Infineon Technologies 5 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) 0.01 0.1 1 10 T h e r m a l τ R e s p o n s e (Z 0.20

www.irf.com 5

1E-006 1E-005 0.0001 0.001 0.01

t1 , Rectangular Pulse Duration (sec)

0.01

0.1

1

10

The

rmal

Res

pons

e (

Z th

JC )

0.20

0.10

D = 0.50

0.020.01

0.05

SINGLE PULSE( THERMAL RESPONSE )

Notes:1. Duty Factor D = t1/t22. Peak Tj = P dm x Zthjc + Tc

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 9. Maximum Drain Current Vs.Case Temperature

Fig 10. Normalized On-ResistanceVs. Temperature

25 50 75 100 125 150 175

TJ , Junction Temperature (°C)

0

2

4

6

8

10

I D ,

Dra

in C

urre

nt (

A)

Ri (°C/W) τi (sec)0.33747 0.000053

1.793 0.000125

2.150 0.000474

τJ

τJ

τ1

τ1τ2

τ2 τ3

τ3

R1

R1 R2

R2 R3

R3

ττC

Ci i/RiCi= τi/Ri

-60 -40 -20 0 20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

3.0

RD

S(o

n) ,

Dra

in-t

o-S

ourc

e O

n R

esis

tanc

e

(

Nor

mal

ized

)

ID = 5.2A

VGS = 10V

Page 6: PD - 94754 IRFR120Z IRFU120Z - Infineon Technologies 5 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) 0.01 0.1 1 10 T h e r m a l τ R e s p o n s e (Z 0.20

6 www.irf.com

QG

QGS QGD

VG

Charge

D.U.T.VDS

IDIG

3mA

VGS

.3µF

50KΩ

.2µF12V

Current RegulatorSame Type as D.U.T.

Current Sampling Resistors

+

-

Fig 13b. Gate Charge Test Circuit

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche EnergyVs. Drain CurrentFig 12b. Unclamped Inductive Waveforms

Fig 12a. Unclamped Inductive Test Circuit

tp

V(BR)DSS

IAS

Fig 14. Threshold Voltage Vs. Temperature

RG

IAS

0.01Ωtp

D.U.T

LVDS

+- VDD

DRIVER

A

15V

20VVGS

25 50 75 100 125 150 175

Starting TJ, Junction Temperature (°C)

0

20

40

60

80

EA

S, S

ingl

e P

ulse

Ava

lanc

he E

nerg

y (m

J) I DTOP 0.9A 1.2BOTTOM 5.2A

-75 -50 -25 0 25 50 75 100 125 150 175 200

TJ , Temperature ( °C )

2.0

3.0

4.0

5.0

VG

S(t

h) G

ate

thre

shol

d V

olta

ge (

V)

ID = 250µA

Page 7: PD - 94754 IRFR120Z IRFU120Z - Infineon Technologies 5 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) 0.01 0.1 1 10 T h e r m a l τ R e s p o n s e (Z 0.20

www.irf.com 7

Fig 15. Typical Avalanche Current Vs.Pulsewidth

Fig 16. Maximum Avalanche EnergyVs. Temperature

Notes on Repetitive Avalanche Curves , Figures 15, 16:(For further info, see AN-1005 at www.irf.com)1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a

temperature far in excess of Tjmax. This is validated for every part type.2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.

3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.

4. PD (ave) = Average power dissipation per single avalanche pulse.5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).6. Iav = Allowable avalanche current.7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11)

PD (ave) = 1/2 ( 1.3·BV·Iav) =T/ ZthJC

Iav = 2T/ [1.3·BV·Zth]EAS (AR) = PD (ave)·tav

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02

tav (sec)

0.01

0.1

1

10

Ava

lanc

he C

urre

nt (

A)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax

0.01

25 50 75 100 125 150 175

Starting TJ , Junction Temperature (°C)

0

4

8

12

16

20

EA

R ,

Ava

lanc

he E

nerg

y (m

J)

TOP Single Pulse BOTTOM 1% Duty CycleID = 5.2A

Page 8: PD - 94754 IRFR120Z IRFU120Z - Infineon Technologies 5 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) 0.01 0.1 1 10 T h e r m a l τ R e s p o n s e (Z 0.20

8 www.irf.com

Fig 17. for N-ChannelHEXFETPower MOSFETs

• ! • " • #$!%&

P.W.Period

di/dt

Diode Recoverydv/dt

Ripple ≤ 5%

Body Diode Forward DropRe-AppliedVoltage

ReverseRecoveryCurrent

Body Diode ForwardCurrent

VGS=10V

VDD

ISD

Driver Gate Drive

D.U.T. ISD Waveform

D.U.T. VDS Waveform

Inductor Curent

D = P.W.Period

+

-

+

+

+-

-

-

''• ()""*+

• '(&,'-• !""*'./'/• '-0'(-

VDS

90%

10%VGS

td(on) tr td(off) tf

'

"12≤ 1 3'.≤ 0.1 %

'

+-''

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

Page 9: PD - 94754 IRFR120Z IRFU120Z - Infineon Technologies 5 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) 0.01 0.1 1 10 T h e r m a l τ R e s p o n s e (Z 0.20

www.irf.com 9

6.73 (.265)6.35 (.250)

- A -

4

1 2 3

6.22 (.245)5.97 (.235)

- B -

3X0.89 (.035)0.64 (.025)

0.25 (.010) M A M B

4.57 (.180)

2.28 (.090)

2X1.14 (.045)0.76 (.030)

1.52 (.060)1.15 (.045)

1.02 (.040)1.64 (.025)

5.46 (.215)5.21 (.205)

1.27 (.050)0.88 (.035)

2.38 (.094)2.19 (.086)

1.14 (.045)0.89 (.035)

0.58 (.023)0.46 (.018)

6.45 (.245)5.68 (.224)

0.51 (.020) MIN.

0.58 (.023)0.46 (.018)

LEAD ASSIGNMENTS

1 - GATE

2 - DRAIN

3 - SOURCE

4 - DRAIN

10.42 (.410)

9.40 (.370)

NOTES:

1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.

2 CONTROLLING DIMENSION : INCH.

3 CONFORMS TO JEDEC OUTLINE TO-252AA.

4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,

SOLDER DIP MAX. +0.16 (.006).

EXAMPLE:

LOT CODE 9U1P

THIS IS AN IRFR120WITH ASSEMBLY

WEEK = 16

DATE CODEYEAR = 0

LOGORECTIFIER

INTERNATIONAL

ASSEMBLYLOT CODE

016

IRFU120

9U 1P

Notes : This part marking information applies to devices produced before 02/26/2001

INTERNATIONAL

LOGORECTIFIER

3412

IRFU120

916A

LOT CODEASSEMBLY

EXAMPLE:WITH ASSEMBLYTHIS IS AN IRFR120

YEAR 9 = 1999DATE CODE

LINE AWEEK 16IN THE ASSEMBLY LINE "A"

ASSEMBLED ON WW 16, 1999LOT CODE 1234

PART NUMBER

Notes : This part marking information applies to devices produced after 02/26/2001

Page 10: PD - 94754 IRFR120Z IRFU120Z - Infineon Technologies 5 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) 0.01 0.1 1 10 T h e r m a l τ R e s p o n s e (Z 0.20

10 www.irf.com

6.73 (.265)6.35 (.250)

- A -

6.22 (.245)5.97 (.235)

- B -

3X0.89 (.035)0.64 (.025)

0.25 (.010) M A M B2.28 (.090)

1.14 (.045)0.76 (.030)

5.46 (.215)5.21 (.205)

1.27 (.050)0.88 (.035)

2.38 (.094)2.19 (.086)

1.14 (.045)0.89 (.035)

0.58 (.023)0.46 (.018)

LEAD ASSIGNMENTS

1 - GATE

2 - DRAIN

3 - SOURCE

4 - DRAIN

NOTES:

1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.

2 CONTROLLING DIMENSION : INCH.

3 CONFORMS TO JEDEC OUTLINE TO-252AA.

4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,

SOLDER DIP MAX. +0.16 (.006).

9.65 (.380)8.89 (.350)

2X

3X

2.28 (.090)1.91 (.075)

1.52 (.060)1.15 (.045)

4

1 2 3

6.45 (.245)5.68 (.224)

0.58 (.023)0.46 (.018)

WEEK = 16

DATE CODEYEAR = 0

Notes : This part marking information applies to devices produced before 02/26/2001

EXAMPLE:

LOT CODE 9U1P

THIS IS AN IRFR120WITH ASSEMBLY

ASSEMBLY

INTERNAT IONALRECT IFIER

LOGO

LOT CODE

IRFU120

9U 1P

016

INTERNATIONAL

LOGORECTIFIER

LOT CODEASSEMBLY

EXAMPLE:WITH ASSEMBLYTHIS IS AN IRFR120

YEAR 9 = 1999DATE CODE

LINE AWEEK 19

IN THE ASSEMBLY LINE "A"ASSEMBLED ON WW 19, 1999LOT CODE 5678

PART NUMBER

Notes : This part marking information applies to devices produced after 02/26/2001

56

IRFU120919A

78

Page 11: PD - 94754 IRFR120Z IRFU120Z - Infineon Technologies 5 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) 0.01 0.1 1 10 T h e r m a l τ R e s p o n s e (Z 0.20

www.irf.com 11

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market.

Qualification Standards can be found on IR’s Web site.

TR

16.3 ( .641 )15.7 ( .619 )

8.1 ( .318 )7.9 ( .312 )

12.1 ( .476 )11.9 ( .469 )

FEED DIRECTION FEED DIRECTION

16.3 ( .641 )15.7 ( .619 )

TRR TRL

NOTES :1. CONTROLLING DIMENSION : MILLIMETER.2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES :1. OUTLINE CONFORMS TO EIA-481.

16 mm

13 INCH

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.10/03

Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 1.29mH RG = 25Ω, IAS = 5.2A, VGS =10V. Part not recommended for use above this value. Pulse width ≤ 1.0ms; duty cycle ≤ 2%.

Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS .Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.This value determined from sample failure population. 100% tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994

Page 12: PD - 94754 IRFR120Z IRFU120Z - Infineon Technologies 5 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) 0.01 0.1 1 10 T h e r m a l τ R e s p o n s e (Z 0.20

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/