Double-Tag Analysis of e DDindico.ihep.ac.cn/event/6114/session/8/contribution/32/...Motivation (±...

53
Double-Tag Analysis of e + e - π + (DD * ) - Andreas Pitka BESIII Physics & Software Workshop September 16 1 / 44 PhysSoft Sept16 N

Transcript of Double-Tag Analysis of e DDindico.ihep.ac.cn/event/6114/session/8/contribution/32/...Motivation (±...

  • Double-Tag Analysis ofe+e−→ π+(DD∗)−

    Andreas PitkaBESIII Physics & Software Workshop September 16

    1 / 44PhysSoft Sept16

    N

  • Overview

    1 Basic Event Reconstruction

    2 Overview of analysed Data Samples

    3 Background

    4 Fit Results√s = 4.23 GeV

    5 Fit Results√s = 4.26 GeV

    6 Fit Results√s = 4.36 GeV

    7 Fit Results√s = 4.42 GeV

    8 Fit Results√s = 4.6 GeV

    2 / 44PhysSoft Sept16

    N

  • Motivation

    )2) (GeV/cJ/±π(maxM3.7 3.8 3.9 4.0

    2Ev

    ents

    / 0.

    01 G

    eV/c

    0

    20

    40

    60

    80

    100

    )2) (GeV/cψ±(max

    2Ev

    ents

    / 0.

    01 G

    eV/c

    )2±(max

    2Ev

    ents

    / 0.

    01 G

    eV/c

    Data

    Total fitBackground fit

    PHSP MC

    Sideband

    )2) (GeV/c−*D0M(D3.9 3.95 4 4.05 4.1

    )2Ev

    ents/

    (4.0

    MeV

    /c

    0

    20

    40

    60

    )2) (GeV/c*0D−M(D3.9 3.95 4 4.05 4.1

    )2Ev

    ents/

    (4.0

    MeV

    /c

    0

    20

    40

    60

    )2) (GeV/c−*D0M(D3.9 3.95 4 4.05 4.1

    )2Ev

    ents/

    (4.0

    MeV

    /c

    0

    10

    20

    30

    )2) (GeV/c*0D−M(D3.9 3.95 4 4.05 4.1

    )2Ev

    ents/

    (4.0

    MeV

    /c

    0

    10

    20

    30

    40

    Nature of Zc(3885)± still unknown.DD∗ molecule.Hadro charmonium.Tetraquark.DD∗ threshold effect.. . .

    JP = 1+ is favored but needs confirmation.Perform full PWA at XYZ datasets to better understand nature of Zc and confirm quantumnumbers.

    3 / 44PhysSoft Sept16

    N

  • Basic Event Reconstruction

  • Basic Event Reconstruction

    Event Topology

    Simulation and Analysis withBOSS 6.6.5.p01

    Use (D0, D̄0)− and (D0, D−)− Tags

    red:Measurement via missing fourmomentum.

    D0 Decay ChannelsD0 → K−π+ (Br = 3.88 %)

    D0 → K−π+π0 (Br = 13.9 %)

    D0 → K−2π+π− (Br = 8.08 %)

    D0 → K−2π+π−π0 (Br = 4.2 %)∑Br i = 30.06 %

    D+ Decay ChannelsD+ → K−2π+ (Br = 9.13 %)

    D+ → K−2π+π0 (Br = 5.99 %)

    D+ → KSπ+ (Br = 1.47 %)

    D+ → KSπ+π0 (Br = 6.99 %)

    D+ → KS2π+π− (Br = 3.12 %)

    D+ → K−K+π+ (Br = 0.954 %)∑Br i = 27.65 %

    4 / 44PhysSoft Sept16

    N

  • Basic Event Reconstruction

    Basic Event Selection

    Good TracksCut on interaction region: Rxy < 1 cm, Rz < 10 cm.

    Cut on direction: | cosϑ| < 0.93.

    π± from KS DecaysCut on interaction region: Rxy < 2 cm, Rz < 20 cm.

    Cut on direction: | cosϑ| < 0.93.

    Good Photons0 < t < 14 · 50 ns.Endcap: Eγ > 50 MeV.

    Barrel: Eγ > 25 MeV.

    min. angle to next charged track: 20◦.Kinematic fitSelection of topology by best χ2.

    χ2 < 50.

    Cut on π0 mass112 MeV < mγγc

    2 < 145 MeV.

    Cut on KS mass487.8 MeV < mπ+π−c

    2 < 507.7 MeV.

    Cut to suppress D∗+D∗− Backgroundpπ± > 150 MeV/c.

    PID Pions (dE/dx, ToF1 and ToF2)L(π) > L(K).

    PID Kaons (dE/dx, ToF1 and ToF2)L(K) > L(π).

    5 / 44PhysSoft Sept16

    N

  • Overview of Analysed Data Samples

  • Overview of analysed Data Samples

    Event yield and rough estimate of signal cross sections√s (MeV) 4230 4260 4360 4420 4600∫Ldt (pb−1) 1047.34± 0.03 825.67± 0.13 539.84± 0.10 1073.56± 0.14 566.93± 0.11

    (1 + δr) · (1 + δv) 0.838 0.957 0.828 0.866 0.971

    e+e− → π+D0D∗−

    Nrec [data] 1114 447 1285 3545 1298ε (%) [sig. MC] 5.38± 0.04 5.62± 0.04 6.38± 0.04 6.50± 0.04 7.04± 0.04Nbg [inc. MC] 27± 5 30± 4 79± 6 188± 8 98± 12σBorn (pb) 265.7± 2.3 108.4± 1.4 488.1± 3.9 640.9± 4.4 357.3± 4.9

    σold anaBorn (pb) 264± 5± 15 154± 5± 9 495± 10± 30 707± 9± 42 460± 13± 28

    e+e− → π+D−D∗0

    Nrec [data] 868 394 974 2985 1192ε (%) [sig. MC] 4.73± 0.04 5.04± 0.04 5.84± 0.04 6.05± 0.04 6.55± 0.04Nbg [inc. MC] 56± 6 35± 4 80± 6 200± 9 113± 12σBorn (pb) 181.5± 2.6 95.7± 1.5 313.9± 3.6 474.6± 4.1 321.8± 5.2

    Estimate of Born cross section

    σ =Nrec −NBg

    Br · (1 + δr) · (1 + δv) ·∫Ldt · ε

    Selected events for PWAMinimum:312 (

    √s = 4.26 GeV, D∗+ → D0π+)

    Maximum:2533 (

    √s = 4.42 GeV, D∗+ → D0π+)

    6 / 44PhysSoft Sept16

    N

  • Overview of analysed Data Samples

    Event yield and rough estimate of signal cross sections

    0

    200

    400

    600

    800

    1000

    4200 4250 4300 4350 4400 4450 4500 4550 4600 4650

    σ(p

    b)

    √s (MeV)

    e+e− → π+D0D∗− + ccBESIII Measurement e+e− → π+D0D∗− + cc

    e+e− → π+D−D∗0 + cc

    Good aggreement with old BESIII analysis.Cross section for channel with D∗0 shows similar shape as channel with D∗+.

    7 / 44PhysSoft Sept16

    N

  • Overview of analysed Data Samples

    Dalitz plots for different√s (all D∗ channels)

    4.85.25.6

    66.46.87.27.6

    4 4.8 5.6 6.4

    √s = 4230 MeV

    4.85.25.6

    66.46.87.27.6

    4 4.8 5.6 6.4

    √s = 4260 MeV

    4.85.25.6

    66.46.87.27.6

    4 4.8 5.6 6.4

    √s = 4360 MeV

    4.85.25.6

    66.46.87.27.6

    4 4.8 5.6 6.4

    √s = 4420 MeV

    4.85.25.6

    66.46.87.27.6

    4 4.8 5.6 6.4

    √s = 4600 MeV

    m2(πD∗)(G

    eV2/c4

    )

    m2(πD) (GeV2/c4)

    Available Phasespace grows with center of mass energy.8 / 44

    PhysSoft Sept16N

  • Overview of analysed Data Samples

    Dalitz plots for different√s (all D∗ channels)

    4.6

    4.8

    5

    5.2

    5.4

    5.6

    3.9 4.2 4.5 4.8 5.1

    √s = 4230 MeV

    4.64.8

    55.25.45.65.8

    4 4.4 4.8 5.2

    √s = 4260 MeV

    4.5

    4.8

    5.1

    5.4

    5.7

    6

    6.3

    4 4.5 5 5.5

    √s = 4360 MeV

    4.54.85.15.45.7

    66.36.6

    4 4.5 5 5.5 6

    √s = 4420 MeV

    4.85.25.6

    66.46.87.27.6

    4 4.8 5.6 6.4

    √s = 4600 MeV

    m2(πD∗)(G

    eV2/c4

    )

    m2(πD) (GeV2/c4)9 / 44

    PhysSoft Sept16N

  • Background from Open Charm Reactions

  • Background

    Contributing Background Channels (inc. MC)√s (MeV) 4230 4260 4360 4420 4600

    σ (nb) 6.5 4.4 10.6 10.6 7.8∫Ldt (pb−1) 43 + 1011 515 + 291 523 42 + 993 506

    N (inc. MC) 1.1 · 107 1.1 · 107 1.7 · 107 3.4 · 107 3 · 106Scaling Factor 1.6 3.1 3.1 3.1 0.78

    Signalπ+D0D∗− 1452 2148 8396 20638 2373π+D−D∗0 1258 1871 6984 18192 1988

    Backgroundπ+D∗0D∗− 5 29 122 311 28π0D0D̄∗0 19 31 85 253 32π0D∗+D− 4 14 47 180 32π0D∗0D∗0 0 0 2 6 1π0D∗+D∗− 0 1 5 24 6D0D̄∗0 36 51 54 122 16D∗+D− 17 17 24 55 8D∗0D̄∗0 20 12 51 102 12D∗+D∗− 6 13 31 62 6D0D̄0 0 1 1 4 0D+D− 1 0 2 6 0D+s D

    −s 0 0 2 0 0

    D∗+s D−s 13 5 18 41 1

    D∗+s D∗−s 0 2 1 2 0

    S/B 22± 2 22± 2 34± 2 33± 1 31± 3S/√S +B 50.9± 0.5 62.1± 0.5 122.3± 0.5 194.2± 0.5 65.0± 0.5

    B/S (%) 4.5± 0.4 4.4± 0.3 2.9± 0.2 3.0± 0.1 3.3± 0.3

    Studied backround contamination with the available inc. MC samples.For most reactions the cross section is not known.Big systematic uncertainty by assumed σ in EvtGen model (EvtOpenCharm).

    9 / 44PhysSoft Sept16

    N

  • Background

    Contributing Background Channels (inc. MC)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    4.26 4.36 4.42 4.6

    NB

    g/N

    S(1

    0−

    2)

    √s (GeV)

    π+D∗0D∗−

    π0D0D̄∗0

    π0D∗+D−

    π0D∗0D∗0

    π0D∗+D∗−

    D0D̄∗0

    D∗+D−

    D∗0D̄∗0

    D∗+D∗−

    D0D̄0

    D+D−

    D+s D−s

    D∗+s D−s

    D∗+s D∗−s

    No large variation of NBg/NS by√s.

    The variation is dominated by the variation of the assumed σ in the EvtGen model.

    10 / 44PhysSoft Sept16

    N

  • Background

    Distribution of Background in Dalitz plot (inc. MC)

    4.6

    4.8

    5

    5.2

    5.4

    5.6

    3.9 4.2 4.5 4.8 5.1

    √s = 4230 MeV

    4.64.8

    55.25.45.65.8

    4 4.4 4.8 5.2

    √s = 4260 MeV

    4.5

    4.8

    5.1

    5.4

    5.7

    6

    6.3

    4 4.5 5 5.5

    √s = 4360 MeV

    4.54.85.15.45.7

    66.36.6

    4 4.5 5 5.5 6

    √s = 4420 MeV

    4.85.25.6

    66.46.87.27.6

    4 4.8 5.6 6.4

    √s = 4600 MeV

    m2(πD∗)(G

    eV2/c4

    )

    m2(πD) (GeV2/c4)

    Events not scaled to data.Distributions relatively flat.

    11 / 44PhysSoft Sept16

    N

  • Background

    Why Extraction of Background Distribution frommD Side-bands does not work

    0

    100

    200

    300

    400

    500

    1.75 1.8 1.85 1.9 1.95 2 1.75 1.8 1.85 1.9 1.95 2

    events

    mD0 (GeV/c2)

    Signal MCπ+D∗0D∗−

    π0D0D̄∗0

    π0D∗+D−

    D0D̄∗0

    D∗0D̄∗0

    D∗+D∗−

    D∗+D−

    mD+ (GeV/c2)

    Distributions for 106 events per channel.Background is peaking under signal region.Sidebands are not representative for open charm background distribution.Tried also sidebands in mD∗ , Emiss, pmiss, mmiss, ED − Ebeam and mbc.Plot for

    √s = 4.42 GeV.

    12 / 44PhysSoft Sept16

    N

  • √s = 4.23GeV

  • Fit Results√s = 4.23 GeV

    Dalitz Distribution at√s = 4.23GeV

    4.6

    4.8

    5

    5.2

    5.4

    5.6

    4.6

    4.8

    5

    5.2

    5.4

    5.6

    0 20 40 60 80

    0

    10

    20

    30

    40

    50

    60

    70

    4 4.4 4.8 15 15.5 16 16.50

    10

    20

    30

    40

    50

    60

    70

    m2(πD∗)(G

    eV2/c4

    )

    m2(πD∗)(G

    eV2/c4

    )

    eventsdatainc. MC Bg

    events

    m2(πD) (GeV2/c4)

    events

    m2(DD∗) (GeV2/c4)

    Channel: D∗+ → D0π+811 events

    13 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.23 GeV

    Resonances at√s = 4.23GeV

    4.85.25.6

    4.85.25.6

    4.85.25.6

    4.85.25.6

    4.85.25.6

    4.85.25.6

    4 4.5 5 4 4.5 5 4 4.5 5 4 4.5 5

    m2(πD∗)(G

    eV2/c4

    )

    Production: aLSDecay: bLS

    a01

    b00

    a21

    b00D∗0(2400)

    a10

    b11D(2550)

    a01

    b01

    a01

    b21

    a21

    b01

    a21

    b21D1(2420)

    a01

    b20

    a21

    b20

    a22

    b20

    a23

    b20

    a43

    b20

    D2(2460)

    → πDa22

    b21

    D2(2460)

    → πD∗

    m2(πD) (GeV2/c4)

    a01

    b01

    a01

    b21

    a21

    b01

    a21

    b21Zc

    Partial waves for possible resonances.Added a small phasespace term to show suppression (resonance out of phasespace, angularmomentum barrier).

    14 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.23 GeV

    Fit with Zc and phasespace term: Dalitz

    4 4.2 4.4 4.6 4.8 5

    4.6

    4.8

    5

    5.2

    5.4

    5.6

    4 4.2 4.4 4.6 4.8 5

    Data

    4 4.2 4.4 4.6 4.8 5

    Fit

    −3−2.5−2−1.5−1−0.500.511.52

    (N−N

    fit)/√N

    Residuals

    m2(πD∗)(G

    eV2/c4

    )

    m2(πD) (GeV2/c4)

    0 2 4 6 8 10

    Fit Result at√s = 4.23 GeV

    Resonance fit fraction (%) massMeV/c2 widthMeV

    Z−c 48.6± 5.5 3895.0± 1.7 70.0± 6.9constant phasespace 51.4± 5.5 − −

    Sum: 100.0± 7.4

    Fit does not describe the structure at the border (bottom right) of the Dalitz plot.

    15 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.23 GeV

    Fit with Zc and phasespace term: m2ij

    10

    20

    30

    40

    50

    60

    70

    80

    01020304050607080

    −3−2−1

    0123

    02468

    101214

    4.2 4.5 4.8 4.8 5.1 5.4 15 15.5 16 16.5

    events

    DataFit

    events

    N−N

    fit

    √N

    ε(%

    )

    m2πD (GeV2/c4) m2πD∗ (GeV

    2/c4) m2DD∗ (GeV2/c4)

    Enhancement in m2(πD) can not fully described by a kinematic reflection of Zc.

    16 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.23 GeV

    Fit with Zc and phasespace term: Helicity Angles

    10

    20

    30

    40

    50

    60

    70

    80

    −3−2−1

    0123

    1

    02468

    101214

    -1 -0.5 0 0.5 -0.5 0 0.5 1-0.5 0 0.5

    events

    DataFit

    N−N

    fit

    √N

    ε(%

    )

    cos(θπR(πD)) cos(θπR(πD∗)) cos(θ

    DR(DD∗))

    Symmetric distribution in cos(θπRπD) could indicate dynamics in the πD system.To get a non flat distribution in cos(θπRπD): JRes ≥ 1.For a decay Res→ πD and J = 1 → Parity P = −1.No D∗∗ with JP = 1− in the mass region of interest!

    17 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.23 GeV

    Fit with D1(1−)+ and phasespace term: Dalitz

    4 4.2 4.4 4.6 4.8 5

    4.6

    4.8

    5

    5.2

    5.4

    5.6

    4 4.2 4.4 4.6 4.8 5

    Data

    4 4.2 4.4 4.6 4.8 5

    Fit

    −5−4−3−2−10

    1

    2

    3

    (N−N

    fit)/√N

    Residuals

    m2(πD∗)(G

    eV2/c4

    )

    m2(πD) (GeV2/c4)

    0 5 10 15 20 25

    Fit Result at√s = 4.23 GeV

    Resonance fit fraction (%) massMeV/c2 widthMeV

    D1(1−)+ 27.8± 4.3 2223.4± 2.7 19.3± 5.4

    constant phasespace 72.2± 5.4 − −

    Sum: 100.0± 6.4

    Fit with a (hypothetic) resonance D1(1−)→ π+D0.Let mass and width float: Startvalues m = 2430 MeV/c2, Γ = 25 MeV.

    18 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.23 GeV

    Fit with D1(1−)+ and phasespace term: m2ij

    10

    20

    30

    40

    50

    60

    70

    80

    01020304050607080

    −3−2−1

    0123

    02468

    101214

    4.2 4.5 4.8 4.8 5.1 5.4 15 15.5 16 16.5

    events

    DataFit

    events

    N−N

    fit

    √N

    ε(%

    )

    m2πD (GeV2/c4) m2πD∗ (GeV

    2/c4) m2DD∗ (GeV2/c4)

    Good description of m2(πD) and m2(πD∗).Better description of m2(DD∗) might be gained by including D1(2420).

    19 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.23 GeV

    Fit with D1(1−)+ and phasespace term: Helicity Angles

    10

    20

    30

    40

    50

    60

    −3−2−1

    0123

    1

    02468

    101214

    -1 -0.5 0 0.5 -0.5 0 0.5 1-0.5 0 0.5

    events

    DataFit

    N−N

    fit

    √N

    ε(%

    )

    cos(θπR(πD)) cos(θπR(πD∗)) cos(θ

    DR(DD∗))

    Good description of angular distribution.

    20 / 44PhysSoft Sept16

    N

  • √s = 4.26GeV

  • Fit Results√s = 4.26 GeV

    Dalitz Distribution at√s = 4.26GeV

    4.64.85

    5.25.45.65.8

    4.64.855.25.45.65.8

    0 10 20 30

    0

    5

    10

    15

    20

    25

    30

    35

    3.9 4.2 4.5 4.8 5.1 15 15.5 16 16.5 17051015202530354045

    m2(πD∗)(G

    eV2/c4

    )

    m2(πD∗)(G

    eV2/c4

    )

    eventsdatainc. MC Bg

    events

    m2(πD) (GeV2/c4)

    events

    m2(DD∗) (GeV2/c4)

    Channel: D∗+ → D0π+312 events

    21 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.26 GeV

    Resonances at√s = 4.26GeV

    4.85.25.6

    4.85.25.6

    4.85.25.6

    4.85.25.6

    4.85.25.6

    4.85.25.6

    4 4.5 5 4 4.5 5 4 4.5 5 4 4.5 5

    m2(πD∗)(G

    eV2/c4

    )

    Production: aLSDecay: bLS

    a01

    b00

    a21

    b00D∗0(2400)

    a10

    b11D(2550)

    a01

    b01

    a01

    b21

    a21

    b01

    a21

    b21D1(2420)

    a01

    b20

    a21

    b20

    a22

    b20

    a23

    b20

    a43

    b20

    D2(2460)

    → πDa22

    b21

    D2(2460)

    → πD∗

    m2(πD) (GeV2/c4)

    a01

    b01

    a01

    b21

    a21

    b01

    a21

    b21Zc

    Partial waves for possible resonances.Added a small phasespace term to show suppression (resonance out of phasespace, angularmomentum barrier).

    22 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.26 GeV

    Fit with Zc and phasespace term: Dalitz

    4 4.2 4.4 4.6 4.8 5 5.2

    4.6

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    4 4.2 4.4 4.6 4.8 5 5.2

    Data

    4 4.2 4.4 4.6 4.8 5 5.2

    Fit

    −4

    −3

    −2

    −1

    0

    1

    2

    3

    (N−N

    fit)/√N

    Residuals

    m2(πD∗)(G

    eV2/c4

    )

    m2(πD) (GeV2/c4)

    0 2 4 6 8 10 12 14

    Fit Result at√s = 4.26 GeV

    Resonance fit fraction (%) massMeV/c2 widthMeV

    Z−c 45.6± 6.0 3888.9± 1.5 27.4± 10.4constant phasespace 54.4± 6.4 − −

    Sum: 100.0± 7.9

    Fit does not describe the structure at the border (bottom right) of the Dalitz plot.

    23 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.26 GeV

    Fit with Zc and phasespace term: m2ij

    10

    20

    30

    40

    0

    10

    20

    30

    40

    −3−2−1

    0123

    02468

    101214

    4.2 4.5 4.8 5.1 4.8 5.1 5.4 5.7 15 15.5 16 16.5 17

    events

    DataFit

    events

    N−N

    fit

    √N

    ε(%

    )

    m2πD (GeV2/c4) m2πD∗ (GeV

    2/c4) m2DD∗ (GeV2/c4)

    Fitted width ΓZc = (27± 11) MeV.Much broader at

    √s = 4.23 GeV: ΓZc = (70± 7) MeV.

    Double-tag BESIII publication ΓZc = (31.5± 3.3) MeV.24 / 44

    PhysSoft Sept16N

  • Fit Results√s = 4.26 GeV

    Fit with Zc and phasespace term: Helicity Angles

    5

    10

    15

    20

    25

    −3−2−1

    0123

    1

    02468

    101214

    -0.5 0 0.5 -0.5 0 0.5 1-0.5 0 0.5

    events

    DataFit

    N−N

    fit

    √N

    ε(%

    )

    cos(θπR(πD)) cos(θπR(πD∗)) cos(θ

    DR(DD∗))

    Note: With only Zc the cos(θDRDD∗ ) distribution would be symmetric.

    Compared to√s = 4.23 GeV: Less pronounced (cos2 +1) distribution in cos(θπRπD).

    25 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.26 GeV

    Fit with D1(1−)+ and phasespace term: Dalitz

    3.9 4.2 4.5 4.8 5.1

    4.6

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    3.9 4.2 4.5 4.8 5.1

    Data

    3.9 4.2 4.5 4.8 5.1

    Fit

    −6−5−4−3−2−10

    1

    2

    3

    (N−N

    fit)/√N

    Residuals

    m2(πD∗)(G

    eV2/c4

    )

    m2(πD) (GeV2/c4)

    0 2 4 6 8 10

    Fit Result at√s = 4.26 GeV

    Resonance fit fraction (%) massMeV/c2 widthMeV

    D1(1−)+ 37.0 2241.3± 1.4 23.7± 6.2

    constant phasespace 63.0 − −

    Sum: 100

    At√s = 4.26 GeV has moved into the available phasespace.

    Does not describe data.26 / 44

    PhysSoft Sept16N

  • Fit Results√s = 4.26 GeV

    Fit with D1(1−)+ and phasespace term: m2ij

    10

    20

    30

    40

    0

    10

    20

    30

    40

    −3−2−1

    0123

    02468

    101214

    4.2 4.5 4.8 5.1 4.8 5.1 5.4 5.7 15 15.5 16 16.5 17

    events

    DataFit

    events

    N−N

    fit

    √N

    ε(%

    )

    m2πD (GeV2/c4) m2πD∗ (GeV

    2/c4) m2DD∗ (GeV2/c4)

    Very bad description in region of Zc.

    27 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.26 GeV

    Fit with D1(1−)+ and phasespace term: Helicity Angles

    5

    10

    15

    20

    25

    −3−2−1

    0123

    1

    02468

    101214

    -0.5 0 0.5 -0.5 0 0.5 1-0.5 0 0.5

    events

    DataFit

    N−N

    fit

    √N

    ε(%

    )

    cos(θπR(πD)) cos(θπR(πD∗)) cos(θ

    DR(DD∗))

    Again: Good description of angular distribution.

    28 / 44PhysSoft Sept16

    N

  • √s = 4.36GeV

  • Fit Results√s = 4.36 GeV

    Dalitz Distribution at√s = 4.36GeV

    4.5

    5

    5.5

    6

    4.5

    5

    5.5

    6

    0 20 40 60 80 100

    0

    10

    20

    30

    40

    50

    60

    4 4.4 4.8 5.2 5.6 15.3 16.2 17.1 180

    10

    20

    30

    40

    50

    60

    m2(πD∗)(G

    eV2/c4

    )

    m2(πD∗)(G

    eV2/c4

    )

    eventsdatainc. MC Bg

    events

    m2(πD) (GeV2/c4)

    events

    m2(DD∗) (GeV2/c4)

    Channel: D∗+ → D0π+946 events

    29 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.36 GeV

    Resonances at√s = 4.36GeV

    4.85.4

    6

    4.85.46

    4.85.46

    4.85.46

    4.85.46

    4.85.46

    4.5 5.4 4.5 5.4 4.5 5.4 4.5 5.4

    m2(πD∗)(G

    eV2/c4

    )

    Production: aLSDecay: bLS

    a01

    b00

    a21

    b00D∗0(2400)

    a10

    b11D(2550)

    a01

    b01

    a01

    b21

    a21

    b01

    a21

    b21D1(2420)

    a01

    b20

    a21

    b20

    a22

    b20

    a23

    b20

    a43

    b20

    D2(2460)

    → πDa22

    b21

    D2(2460)

    → πD∗

    m2(πD) (GeV2/c4)

    a01

    b01

    a01

    b21

    a21

    b01

    a21

    b21Zc

    Partial waves for possible resonances.Added a small phasespace term to show suppression (resonance out of phasespace, angularmomentum barrier).

    30 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.36 GeV

    Fit with Zc, D1(2420)0 and phasespace term: Dalitz

    4 4.5 5 5.5

    4.5

    5

    5.5

    6

    4 4.5 5 5.5

    Data

    4 4.5 5 5.5

    Fit

    −4

    −3

    −2

    −1

    0

    1

    2

    3

    (N−N

    fit)/√N

    Residuals

    m2(πD∗)(G

    eV2/c4

    )

    m2(πD) (GeV2/c4)

    0 4 8 12 16 20 24

    Fit Result at√s = 4.36 GeV

    Resonance fit fraction (%) massMeV/c2 widthMeV

    D1(2420)0 31.8± 4.6 2423.0± 2.7 41.3± 6.4

    Z−c 29.2± 3.6 3894.9± 2.6 70.0± 14.1constant phasespace 34.5± 3.4 − −

    Sum: 95.5± 6.5

    Already an acceptable fit with Zc, D1(2420)0 and phasespace term.31 / 44

    PhysSoft Sept16N

  • Fit Results√s = 4.36 GeV

    Fit with Zc, D1(2420)0 and phasespace term: m2ij

    102030405060708090

    100

    0102030405060708090100

    −3−2−1

    0123

    02468

    101214

    4.2 4.5 4.8 5.1 5.4 4.8 5.2 5.6 6 15.2 16 16.8 17.6

    events

    DataFit

    events

    N−N

    fit

    √N

    ε(%

    )

    m2πD (GeV2/c4) m2πD∗ (GeV

    2/c4) m2DD∗ (GeV2/c4)

    Main features of the distribution are well described.Systematic underestimation of data for small m2(πD).

    32 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.36 GeV

    Fit with Zc, D1(2420)0 and phasespace term:Helicity Angles

    10

    20

    30

    40

    50

    60

    −3−2−1

    0123

    1

    02468

    101214

    -0.5 0 0.5 -0.5 0 0.5 1-0.5 0 0.5

    events

    DataFit

    N−N

    fit

    √N

    ε(%

    )

    cos(θπR(πD)) cos(θπR(πD∗)) cos(θ

    DR(DD∗))

    Main features of the distribution are described.Including D̄∗2(2460)

    0 → D∗−π+ might yield a better description.33 / 44

    PhysSoft Sept16N

  • √s = 4.42GeV

  • Fit Results√s = 4.42 GeV

    Dalitz Distribution at√s = 4.42GeV

    4.5

    5

    5.5

    6

    6.5

    4.5

    5

    5.5

    6

    6.5

    0 100 200 300

    0

    20

    40

    60

    80

    100

    4 4.4 4.8 5.2 5.6 15 16 17 180

    20

    40

    60

    80

    100

    120

    m2(πD∗)(G

    eV2/c4

    )

    m2(πD∗)(G

    eV2/c4

    )

    eventsdatainc. MC Bg

    events

    m2(πD) (GeV2/c4)

    events

    m2(DD∗) (GeV2/c4)

    Channel: D∗+ → D0π+2533 events

    34 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.42 GeV

    Resonances at√s = 4.42GeV

    4.85.66.4

    4.85.66.4

    4.85.66.4

    4.85.66.4

    4.85.66.4

    4.85.66.4

    4 5 6 4 5 6 4 5 6 4 5 6

    m2(πD∗)(G

    eV2/c4

    )

    Production: aLSDecay: bLS

    a01

    b00

    a21

    b00D∗0(2400)

    a10

    b11D(2550)

    a01

    b01

    a01

    b21

    a21

    b01

    a21

    b21D1(2420)

    a01

    b20

    a21

    b20

    a22

    b20

    a23

    b20

    a43

    b20

    D2(2460)

    → πDa22

    b21

    D2(2460)

    → πD∗

    m2(πD) (GeV2/c4)

    a01

    b01

    a01

    b21

    a21

    b01

    a21

    b21Zc

    Partial waves for possible resonances.Added a small phasespace term to show suppression (resonance out of phasespace, angularmomentum barrier).

    35 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.42 GeV

    Fit with D1(2420)0, D∗2(2460)0, D∗2(2460)

    + andphasespace term: Dalitz

    4 4.5 5 5.5 6

    4.5

    5

    5.5

    6

    6.5

    4 4.5 5 5.5 6

    Data

    4 4.5 5 5.5 6

    Fit

    −6−5−4−3−2−10

    1

    2

    3

    (N−N

    fit)/√N

    Residuals

    m2(πD∗)(G

    eV2/c4

    )

    m2(πD) (GeV2/c4)

    0 5 10 15 20 25 30 35

    Fit Result at√s = 4.6 GeV

    Resonance fit fraction (%) massMeV/c2 widthMeV

    D1(2420)0 42.9± 3.0 2447.8± 2.2 63.4± 1.2

    D̄∗2(2460)0 → D∗−π+ 18.1± 2.4 2537.8± 6.0 54.5± 8.6

    D∗2(2460)+ → D0π+ 5.0± 1.1 2401.7± 4.3 15.5± 3.5

    constant phasespace 32.1± 2.0 − −

    Sum: 98.1± 4.3

    Structure in lower half of Dalitz plot is most probable caused by background.Significant discrepancy to known D∗∗ masses.

    36 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.42 GeV

    Fit with D1(2420)0, D∗2(2460)0, D∗2(2460)

    + andphasespace term: m2ij

    20406080

    100120140160180200220

    020406080100120140160180200220

    −3−2−1

    0123

    02468

    101214

    4 4.4 4.8 5.2 5.6 4.8 5.2 5.6 6 6.4 15.2 16 16.8 17.6 18.4

    events

    DataFit

    events

    N−N

    fit

    √N

    ε(%

    )

    m2πD (GeV2/c4) m2πD∗ (GeV

    2/c4) m2DD∗ (GeV2/c4)

    Main features of the distribution are described by the fit.Significant discrepancy to known D∗∗ masses.Most probable caused by incomplete ampltiude model (possible contribution fromD∗0(2400)

    +, D(2550)0).37 / 44

    PhysSoft Sept16N

  • Fit Results√s = 4.42 GeV

    Fit with D1(2420)0, D∗2(2460)0, D∗2(2460)

    + andphasespace term: Helicity Angles

    20

    40

    60

    80

    100

    120

    −3−2−1

    0123

    1

    02468

    101214

    -1 -0.5 0 0.5 -0.5 0 0.5 1-0.5 0 0.5

    events

    DataFit

    N−N

    fit

    √N

    ε(%

    )

    cos(θπR(πD)) cos(θπR(πD∗)) cos(θ

    DR(DD∗))

    Main features of the distribution are described by the fit.Systematic discrepancies might indicate the used model is too simple.

    38 / 44PhysSoft Sept16N

  • √s = 4.6GeV

  • Fit Results√s = 4.6 GeV

    Dalitz Distribution at√s = 4.6GeV

    4.5

    5

    5.5

    6

    6.5

    7

    7.5

    4.5

    5

    5.5

    6

    6.5

    7

    7.5

    0 10 20 30 40 50

    010203040506070

    4.2 4.8 5.4 6 6.6 15 16 17 18 19 200510152025303540

    m2(πD∗)(G

    eV2/c4

    )

    m2(πD∗)(G

    eV2/c4

    )

    eventsdatainc. MC Bg

    events

    m2(πD) (GeV2/c4)

    events

    m2(DD∗) (GeV2/c4)

    Channel: D∗+ → D0π+935 events

    39 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.6 GeV

    Resonances at√s = 4.6GeV

    5678

    5678

    5678

    5678

    5678

    5678

    4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7

    m2(πD∗)(G

    eV2/c4

    )

    Production: aLSDecay: bLS

    a01

    b00

    a21

    b00D∗0(2400)

    a10

    b11D(2550)

    a01

    b01

    a01

    b21

    a21

    b01

    a21

    b21D1(2420)

    a01

    b20

    a21

    b20

    a22

    b20

    a23

    b20

    a43

    b20

    D2(2460)

    → πDa22

    b21

    D2(2460)

    → πD∗

    m2(πD) (GeV2/c4)

    a01

    b01

    a01

    b21

    a21

    b01

    a21

    b21Zc

    Partial waves for possible resonances.Added a small phasespace term to show suppression (resonance out of phasespace, angularmomentum barrier).

    40 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.6 GeV

    Fit with D∗1(2420)0, D∗2(2460)

    0, D∗2(2460)+ and phases-

    pace term: Dalitz

    4 4.5 5 5.5 6 6.5

    4.5

    5

    5.5

    6

    6.5

    7

    7.5

    4 4.5 5 5.5 6 6.5

    Data

    4 4.5 5 5.5 6 6.5

    Fit

    −5−4−3−2−10

    1

    2

    3

    (N−N

    fit)/√N

    Residuals

    m2(πD∗)(G

    eV2/c4

    )

    m2(πD) (GeV2/c4)

    0 2 4 6 8 10 12 14 16 18

    Fit Result at√s = 4.6 GeV

    Resonance fit fraction (%) massMeV/c2 widthMeV

    D1(2420)0 8.7± 1.8 2425.9± 2.3 20.1± 5.6

    D̄∗2(2460)0 → D∗−π+ 6.9± 1.7 2473.6± 3.9 24.4± 7.7

    D∗2(2460)+ → D0π+ 37.1± 3.0 2470.9± 1.7 39.3± 4.4

    constant phasespace 46.4± 3.7 − −

    Sum: 99.1± 5.0

    Acceptable description of data with D1(2420)0, D∗2(2460)0, D∗2(2460)

    + and phasespaceterm.

    41 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.6 GeV

    Fit with D1(2420)0, D∗2(2460)0, D∗2(2460)

    + and phases-pace term: m2ij

    102030405060708090

    100110120

    0

    10

    20

    30

    40

    50

    60

    70

    −3−2−1

    0123

    02468

    101214

    4 4.5 5 5.5 6 6.5 5 5.5 6 6.5 7 15 16 17 18 19

    events

    DataFit

    events

    N−N

    fit

    √N

    ε(%

    )

    m2πD (GeV2/c4) m2πD∗ (GeV

    2/c4) m2DD∗ (GeV2/c4)

    Biggest deviation between data and fit in m2(DD∗).Masses of D∗∗ are estimated in the fit with to high values (O(10 MeV)).

    42 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.6 GeV

    Fit with D1(2420)0, D∗2(2460)0, D∗2(2460)

    + and phases-pace term: Helicity Angles

    10

    20

    30

    40

    50

    60

    −3−2−1

    0123

    1

    02468

    101214

    -1 -0.5 0 0.5 -0.5 0 0.5 1-0.5 0 0.5

    events

    DataFit

    N−N

    fit

    √N

    ε(%

    )

    cos(θπR(πD)) cos(θπR(πD∗)) cos(θ

    DR(DD∗))

    Improvent of logL for fit with Zc not very significant: 2.1σ (by likelihood ratio test).

    43 / 44PhysSoft Sept16

    N

  • Fit Results√s = 4.6 GeV

    Summary

    What has been doneFirst PWA fits performed at

    √s = 4.23, 4.26, 4.36, 4.42, 4.6 GeV.

    ResultsMain features of the data can be described with D1(2420)0, D∗2(2460)

    0 andD∗2(2460)

    +.

    Strong Zc signal at√s = 4.36 GeV.

    Simple Breit-Wigner-Amplitude hypothesis of Zc with JP = 1+ fails to describe dataat√s = 4.23, 4.26 GeV.

    What’s in progressOptimize cuts for each

    √s.

    Not only use D∗+ → D0π+ but also D∗+ → D+π0, D∗0 → D0π0 and D∗0 → D0γ.Compare different quantum numbers for Zc.

    Allow in the fit a coupling of Zc to J/ψπ (Flatte, K-Matrix).

    Check by MC if shift of D∗∗ resonances in mass is systematic.

    Find a way to extract background shape from data.44 / 44

    PhysSoft Sept16N

    Basic Event ReconstructionOverview of analysed Data SamplesBackgroundFit Results s=4.23GeVFit Results s=4.26GeVFit Results s=4.36GeVFit Results s=4.42GeVFit Results s=4.6GeV