Page 17 Macaulay’s Method,

40
1 Hints to Problems Chapter-1 1.18 150 mm 200 mm 550 mm 40 kN 10 kN 20 kN 50 kN Elongation is given by, AE PL = = ( ) 224 . 0 200 000 50 550 000 30 150 000 40 000 205 30 ) 4 / ( 1 2 = + + X X X X π mm 1.22 Area of column = 300 246 560 4 2 = X π mm 2 ; Area of steel = 4072 36 4 4 2 = X X π mm 2 Area of concrete = 246 300 – 4072 = 242 228 mm2 We have, c c s s E E σ σ = or 000 15 000 210 c s σ σ = or c s σ σ 14 = σ s X A s + σ c X A c = 800 000 14 σ c X 4072 + σ c X 242 228 = 800 000 or σ c = 2.673 MPa σ s = 2.673 X 14 = 37.429 MPa Average compressive stress = 248 . 3 300 246 000 800 = MPa 1.23 P 1 2 3 P 1 P 2 P 1 P θ θ θ θ 2 1

description

mac

Transcript of Page 17 Macaulay’s Method,

  • 1

    Hints to Problems

    Chapter-1

    1.18

    150 mm 200 mm550 mm

    40 kN 10 kN 20 kN 50 kN

    Elongation is given by, AEPL=

    = ( ) 224.020000050550000301500004000020530)4/(

    12 =++ XXXX mm

    1.22

    Area of column = 3002465604

    2 =X mm2; Area of steel = 4072364

    4 2 =XX mm2 Area of concrete = 246 300 4072 = 242 228 mm2

    We have, c

    c

    s

    s

    EE = or

    00015000210cs = or cs 14=

    s X As + c X Ac = 800 000 14 c X 4072 + c X 242 228 = 800 000 or c = 2.673 MPa s = 2.673 X 14 = 37.429 MPa

    Average compressive stress = 248.3300246000800 = MPa

    1.23

    P

    1 2 3 P 1P 2 P 1

    P

    21

  • 2

    On welding, tensile stresses will be developed in 1 and 3 whereas compressive stress in 2. From equilibrium equation, 2 P1 cos = P2 .(assuming negligible change in ) (i) From compatibility equation, 1 = 2 cos

    or

    =

    22

    22

    11

    11

    EALP

    EALP cos or

    =

    22

    22

    11

    21

    cos EALP

    EALP

    cos

    or 222

    22

    2

    111 cos

    =

    EALP

    LEAP

    If all rods are of same material and section,

    222

    222

    21 coscos

    =

    = P

    LAE

    AELP

    LAEP

    From (i), 23

    22

    cos2 PPLAE =

    or

    )cos21(cos2

    32

    3

    2

    +=

    LAEP and

    )cos21(cos

    32

    2

    1

    +=

    LAEP

    1.24 Here, Lt= ;

    222

    226-2

    22

    222

    2

    111 cos40120010 X 191200

    0008542cos

    =

    =

    EALPXXX

    EALPtL

    LEAP

    From (i), 23

    22

    222

    2

    11 cos2 PEALPtL

    LEA =

    or 23

    22

    222

    2

    11 cos2 PEALPtL

    LEA =

    or ( ) ( )

    +

    =+

    =

    311

    222

    222

    3

    22

    11

    32

    2

    11

    2

    cos21cos

    21

    cos2

    EAEAL

    tLEA

    EAEA

    tLL

    EA

    P

    1.26 Aa = 80420 =X mm2 , As = 3201620 =X mm2 Total compression in Al = Total tension in steel

    32080 XX sa = or sa 4=

    c

    cccc

    s

    ssss E

    LtLE

    LtL =+ or c

    cc

    s

    ss E

    tE

    t =+ 1.28 Let 3 be the stress in the direction of restraint. Then,

    1 = 1/E 3/E (i) 2 = 3/E 1/E (ii)

  • 3

    and 3 = 3/E 1/E (iii) If there is no restraint in the third direction, 13 ' E= However, for the given restraint, 133 2

    2/' E

    ==

    113 2 EE

    = or 13 2 =

    Substituting in (i), 1 = ( )212111 222

    12

    . =

    =

    EEEE

    Modified modulus of elasticity, E = 21

    1

    22

    =E

    Chapter-2

    2.11 Both stresses are compressive,

    tan = 816.0180120 ==

    y

    x

    or = 39.23o

    r = 2222 sincos yx +

    129598640

    23.39sin18023.39cos120 2222

    +=+= oo

    = 147 MPa compressive 2.14

    OL

    R

    FMCE

    S

    P

    N60

    5

    10

    10.952.5

    2.5

    2

    10.9

    5

    0.9

  • 4

    2.15

    (i)Principal stress }4){(21)(

    21 22 ++= yxyx

    8.5380

    1000016002180

    })50(4)60100{(21)60100(

    21 22

    =+=

    ++=

    = 133.8 MPa (tensile) and 26.2 MPa (tensile)

    tan2 = yx

    2 = 5.2

    60100502 =

    X

    or 2 = 68.2 or 1 = 34.1o and 2 = 34.1o + 90o = 124.1o max = )2.268.133(

    21 = 53.8 MPa at 34.1o + 45o =79.1o

    2.16

    30o240 MPa

    180 MPa

    A B

    C

    30o240 MPa

    180 MPa

    A B

    C

    120 MPa

    120 MPa

    207.8 MPa

    On plane BC, x = 8.20730cos240 =o MPa 12030sin240 == o MPa The equivalent state of stress on the panes is shown in the figure. Resultant stress on plane AB = 22 120180 + =216.3 MPa

    5.1120180tan == or = 56.3o

    Principal stress }4){(21)(

    21 22 ++= yxyx

    8.1208.193

    1000025600219.193

    })120(4)1808.207{(21)1808.207(

    21 22

    =+=

    ++=

  • 5

    = 314.6 MPa (tensile) and 73 MPa (tensile)

    tan2 = yx

    2 = 63.8

    1808.2071202 =

    X

    or 2 = 83.4o or 1 = 41.7o and 2 = 131.7o max = )736.314(

    21 = 120.8 MPa at 41.7o + 45o = 86.7o and 176.7o

    2.18

    pq r

    40080200

    P

    R'

    Q

    R

    CO

    28oO

    r60o q

    60op80

    400200

    60o 60

    E F(a)

    (b)

    O'

    32o

    OF = 449 MPa inclined at 28/2 or 14o to 400 MPa stress OE = 251 MPa inclined at 32/2 or 16o to 200 MPa stress 2.19

    p q r

    1.6 X 10-6

    P

    R'

    QC

    O

    10oO

    r45o

    q

    45op

    45oE F

    (a)

    O'

    10o

    45o

    3 X10-64 X10-6

    1.6 X 10-6

    3 X10-64 X10-6

    Major principal strain 1= OF = 4.04 X 10-6 at 10/2 or 5o clockwise of plane p

  • 6

    Minor principal strain 2 = OE = 1.58 X 10-6 at 95o clockwise of plane p.

    Chapter-3 3.13 A = (/4)X242 = 144

    Diameter of the reduced section = 24/2 = 12 mm Area of the reduced section = (/4).122 = 36

    When the bar is turned down to half the diameter along half of its length, let P be the equivalent load to induce the same maximum stress.

    =000205144

    60000020536

    600X

    PXXPX

    + = 0.000 03235 P = kP ..... (Taking k =0.000 03235)

    Using the energy equation

    W (h+ ) = 21 P.

    W (h+ kP) = 21 P. kP

    P2 2WP 2Wh/k = 0 (multiplying throughout by 2/k)

    3.15 As = ( /4)242 = 144 ; Ab = ( /4)(362 - 242) = 180 Let x = Extension of bar in mm

    L

    xEss

    .= and L

    xEbb

    .=

    Strain energy of the bar LAELxELA

    ELxELA

    ELA

    E bbb

    ss

    sb

    b

    bs

    s

    s

    2.2.22 222

    2

    2222

    +=+=

    )(222

    222

    bbssbb

    ss AEAE

    LxA

    LxEA

    LxE +=+=

    )18000098144000205(30002

    2

    XXX

    x += = 24693 x2 N.mm Potential energy lost by the weight = W(h + x) = 13500 (6 + x) N.mm

    Chapter-4

  • 7

    4.11

    B

    (b) SF Diagram

    (c) BM Diagram

    C A

    (a)6m1m 3m

    6 kN 8 kN

    D

    8

    36

    246

    Taking moments about end A = 016986 =+ XXXRb or kNRb 11= ; and kNRa 31114 ==

    4.14

    40 kN 20 kN40 kN 20 kN

    1 m 1 m2 m2 m2 m

    A BC D E F

    40

    40

    20

    80

    20

    Taking moments about end A = 2404206202405 XXXXXRb ++=+ or kNRb 40= ; and 804020204040 =+++=aR kN Shearing force diagram Portion AC: Fx = kNRa 40= (constant ) Portion AD: Fx = kN408040 =+ (constant ) Portion DE: Fx = 04040 = (constant )

  • 8

    Portion BE: Fx = 20 kN (constant ) Portion BF: Fx = kN204020 =+ (constant ) Bending moment diagram Portion AC: Mx = - x40 (linear )

    At A, x = 2 m and Ma = -80 kN.m; Portion AD: Mx = )2(8040 + xx (linear )

    At D, x = 4 m and Md = 0 Portion DE: Mx = 0 Portion EB: Mx = - x20 (x from E) (linear )

    At B, x = 1 m and MB = -20 kN.m Portion BF: Mx = - )1(4020 + xx (x from E) (linear )

    At F, x=2m, Mf = 0

    4.17 The loading on the beam is shown in the figure

    10 m

    w

    A BDE

    R a R ba 4-a6 mC

    Let distance of pier at A be a m from the end D, the other will be at B, (6-a) m from end E. Distance CB = CE BE = 5- (4-a) = 1+ a

    Taking moments about B, )1(106 awRa += or 3)1(5 awRa

    += Bending moment

    Portion DA: Mx = 22wx (parabolic); Md = 0; Ma = 2

    2wa (negative value)

    Portion AB: Mx = )(3

    )1(52

    2

    axawwx ++

    It is maximum when dM/dx = 0 or 03

    )1(5 =++ awwx or 0)1(53 =++ ax or x = 5(1+a)/3 Maximum bending moment =

    ++++ aaawaw )1(

    35

    3)1(5

    2)]1)(3/5[( 2

    = )25(9

    )1(5)1(18

    25 2 aawaw ++++

    = [ ])41055)(1(185 aaaw +++

  • 9

    = [ ])5)(1(185 aaw +

    = )45(185 2aaw +

    The maximum bending moment will be as small as possible if the magnitudes of the

    sagging and the hogging bending moment are equal.

    4.19

    8 kN/m

    B

    l = 15 m8 m

    CA

    16 kN

    5 m D

    25 kN 18.33 kN2.33 kN

    51 kN

    32 kN

    113.9 kN.m 114.9 kN.m

    85 kN.m

    SF

    BM

    5.81 m

    13.05 m

    (a)

    (b)

    (c) Taking moments about B,

    38

    288

    315

    2815101615 XXXXXXRa +=

    or 25=aR kN and 8325282316 =

    += XRb kN Intensity of distributed loading at any cross-section at a distance x from A = (w/l).x=wx/l Shear force diagram

    Portion AD: Fx = 75.3

    25152

    82521 22 x

    Xxx

    lwxRa == (parabolic)

    Fa = 25 kN; Fd = 18.33 kN

    Portion DB: Fx = 1675.3

    252

    x ..(parabolic); Fd = 2.33 kN; Fb = -51 kN Between DB, shear force is zero when Fx = 1675.3/25 2 x =0 or x= 5.81 m

  • 10

    Portion BC: It is convenient to deal this portion by using variable x from end C.

    Fx = 2828

    21 22 x

    Xxx

    lwx == (parabolic); Fc = 0; Fb = 32 kN

    Shear force diagram is shown in Fig. 4.21b.

    Bending moment diagram

    Portion AD: Mx = 25.11

    253

    .75.3

    2532 xxxxx = (cubic); Fa = 0; Fd = 113.9 kN.m

    Portion DB: Mx = 25.11

    )5(16253xxx (cubic)

    Fd(x=5) = 113.9 kN.m; Fb(x=15) = - 85 kN Mmax(x=5.81) =

    9.11425.11

    81.5)581.5(1681.52525.11

    )5(162533

    == Xxxx kN.m

    Bending moment is zero at 25.11

    )5(16253xxx = 0 or 090025.1013 = xx

    Solving by trial and error, x = 13.05 m Portion BC: x from end C.

    Mx = 632

    32 xxx = (cubic) ; Fc = 0; Fb = -85 kN.m 4.20

    w'xx' w

    x

    C

    AB

    dx

    wx

    67503600

    3600

    Let w = rate of loading at the midspan

    Then total load = wwX 4632 =

    or w47200 = or w = 1800 kN/m Taking C as origin of the parabola, At a distance x from A or x from C,

  • 11

    2'' kxw x = , when x =3 m, 1800' =xw kN or k = 200 22 )3(200)1800('200' xworxw xx == or 2)3(2001800 xwx = or 22 2001200)69(2001800 xxxxwx =+= ( ) 1322 3200600360020012003600 CxxdxxxFx ++== At x = 0, 3600=xF , C1 = 0

    32006003600

    32 xxFx +=

    0 1 2 3 4 5 6 Fx 3600 3067 1733 0 -1733 -3067 -3600

    2

    43

    32

    3502003600

    32006003600 CxxxdxxxFM xx ++=

    +==

    At x = 0, Mx =0 C2 = 0

    3502003600

    43 xxxM x +=

    0 1 2 3 4 5 6 Mx 0 3417 5867 6750 5867 3417 -3600

    4.21

    4 kN4 kN

    2 m2 m3 m3 m

    A BC D

    8 kN.m

    1

    3

    4 kN

    E

    3

    8 kN.m5

    2

    Chapter-5

    5.13

  • 12

    64444

    1045.3664

    )200220(64

    )( XdDIxx === mm4 3

    6

    max

    104.331110

    1045.36 XXyIZ xxx === mm3

    Internal area of pipe = 01.0)2.0(4

    2 = m2 Weight of water /m run of pipe = 3082.081.9101.0 =XX kN Area of cross-section of pipe = 2

    22

    3.65974

    )200220( mm= Weight of pipe /m run = 0.0065973 X 70 X1 = 0.4618 kN Total weight/m run = 0.3082 + 0.4618 = 0.77 kN 5.14

    D

    b

    d

    A B

    CD

    sinDBC = and cosDAB = ;6

    cos.sin6

    222 DbdZ == If beam is to be strongest, Z must be maximum.

    i.e. 0=ddZ or ( ) 0cossin2.cossin

    63

    2

    =+ D or 22 cos2sin = or 2tan2 = or 2tan = or 3/2sin = or 3/1cos =

    DDXBC 816.03/2 == and DDAB 577.03/1 ==

    5.16

  • 13

    80 mm

    20 mmx x

    y

    y

    120 mm

    643 10394.11)40(64

    12080121 XXXIxx == mm4

    10503

    5.135002450 =+= XXXRa N ; 90010501950 ==bR N Bending moment between CB,

    22

    2504506002

    500)1(4501050 xxxxxM x +==

    For maximum value, 0=dx

    dM x or 0500600 = x or x =1.2 m 810)2.1(2504502.1600 2max =+= XM N.m

    5.17

    2030 30

    30 2504/110004/max === XWlM N.m

    31907)2030(64

    44 == xI mm4 1.2127

    1531907

    max

    ===yIZ xxx mm

    3; 5.1171.2127

    000250/max === ZM MPa For composite section, Moment of inertia about neutral axis,

    ( ) 4810561520304

    319074 222 =

    + X mm4

  • 14

    5.18

    Neglecting self weight W of the beam, ''.44

    'maxmaxmax

    max kWWyIly

    IlWy

    IM =

    ===

    If W is considered,

    +=

    +=

    +=2

    '4

    .2

    '84

    '' maxmaxWWky

    IlWW

    IyWllW

    %Error = 1002/'

    2/100

    2'

    '2

    '100

    '' X

    WWWX

    WWk

    kWWWkX +=

    +

    +=

    or 1002/'

    2/ XWW

    We += or eWeWW += '2100 or '2)100( eWWe =

    or e

    eWW

    2100' =

    5.21

    b

    t

    t'

    b/2

    t

    t'

    Modular ratio is 2. The equivalent steel section is shown in the figure. As the neutral axis of the section is to be at the dividing line,

    2''.

    22. ttbtbt = or 707.0

    21

    '. ==tt

    5.22

    2028

    If the stress in steel reaches to maximum value, the stress induced in brass

    = 1410

    75.1150 X = 61.22 MPa

    brasssteelr MMM += = 20028720.

    3222.61

    282028

    32150 3

    44

    =

    +

    XX N.mm

  • 15

    5.25

    10 m

    x

    16080

    At a section x-x, at a distance x from the top, side of the square,

    xs .10000

    8016080 += or )80(125 = sx mm

    Moment of inertia about the diagonal or the neutral axis = 12

    4s mm4

    Bending moment at the section = 1000x =1000 X 125 (s-80) N.mm

    3

    6

    4

    3 )80(.2105.1

    212/)80(10125

    ssXsX

    ssX == MPa

    For bending stress to be maximum, 0=dsd

    Chapter-6

    6.12 Area = 2bt + t(2b-2t) = 4bt - 2t2 = 4bt (Neglecting higher values t)

    [ ] [ ] tbtbbbtbbtbtbbbIx 33444433 38)4(32)(3212 )22)((12)2( ==== shear stress (maximum) at neutral axis,

    zIyAF=

    23

    22)(

    2

    222

    2 tbtbtbtbttbbtyA =+=+

    = neglecting higher powers t.

    btF

    tbttb

    FzIyA

    F169

    )3/8.(2/3

    3

    2

    === Average shear stress = F/4bt

    25.2=

    AverageMax

    6.15

  • 16

    z

    h

    b

    t

    Refer Fig., 3233

    101.5075.2755512

    555212

    605 XXXXXIx =

    ++= mm4 The shear stress in the flanges,

    At a distance z from the tip, zFXXtX

    XztFtI

    yAF .102.54101.5075.27... 6

    3===

    Total force in each flange,

    FzXFXdzFztXtdzFf 448.025102.54.102.54.

    5.27

    0

    266 =

    ===

    Chapter-7

    7. 9

    ==lxpw

    dxdF sin

    Integrating, dx

    dMClxplF =+

    = 1cos

    Integrating, 2122

    .sin CxClxplM ++

    = At x =0, M=0 , C2 = 0; At x =l, M=0 , C1 = 0

    Maximum bending moment = 22

    pl

    Reaction at support (Value of F at x=0) = pl

    7.10

    P

    l/2l

    W=wlA BC

  • 17

    Taking moments about A, 2/.2/3 lWlPXXlRb += or 2/)3( WPRb += Consider a cross-section at distance x from C,

    2

    2

    2

    222

    += lxwlxRPxdx

    ydEI b

    Integrating, 1322

    26222ClxwlxRxP

    dxdyEI b +

    +=

    Integrating again, 21433

    .224266

    CxClxwlxRxPEIy b ++

    += 7.15

    4 kN/m

    A BC

    8 m

    6 kN

    D3 m 3 m 3 m

    E

    2 m

    4 kN/m

    A

    B

    C

    8 m

    6 kND

    3 m 3 m 3 m

    E

    2 m

    To apply Macaulays method, uniformly distributed load has to be continuous upto the end of the beam. To compensate the same an upward uniformly distributed load has to be considered from D to E as shown in the figure. Taking moments about A, 5.3341168 XXXXRb += or 5.13=bR kN and 5.45.1318 ==aR kN At any section x from A, )8(5.13

    2)5(4

    2)2(45.4

    22

    2

    2

    += xxxxdx

    ydEI

    Integrating, 2

    )8(5.136

    )5(46

    )2(425.4 233

    1

    2 ++= xxxCxdxdyEI

    Integrating again, 6

    )8(5.1324

    )5(424

    )2(4.65.4 344

    21

    3 +++= xxxCxCxEIy At A, (x=0), y = 0, 02 =C (consider only first part)

    At B, (x=8m), y = 0, 24

    )58(424

    )28(486

    85.4044

    1

    3 ++= CX ; C1 = 22.69 slope and deflection equations are as follows:

  • 18

    2)8(5.13

    3)5(2

    3)2(27.2225.2

    2332 ++= xxxx

    dxdyEI

    6)8(5.13

    6)5(

    6)2(7.22

    65.4 3443 ++= xxxxxEIy

    Deflection at E, x=11m

    6

    )811(5.136

    )511(6

    )211(117.226

    115.4 3443 ++= XXEIy =68.2 kN.m3

    mmXX

    Xy 7.221015000200

    102.686

    12

    == For maximum deflection at distance x, making slope equal to zero,

    mxxxorxx 27.301.6875.6)2(23

    )2(27.2225.20 233

    2 ==+++=

    4.486

    )227.3(27.37.226

    27.35.4 43 =++= XXEIy kN.m3

    mmXX

    Xy 1.161015000200

    104.486

    12

    == 7.16

    xA B

    Mb

    l

    Ma

    MaMb

    BM diagram

    ymaxzab

    A' B'

    D'

    C

    As the intercepts on a given line ( on BD) between the tangents to the elastic curve of a beam at any two points is equal to the net moment taken about that line of the area of the bending moment diagram between the two points divided by EI.

    ( ) [ ]baabaab MMEIlllMMllM

    EIz +=

    += 2

    63..

    21

    2..1

    2

    Slope of A, [ ] ( )babaa MMEIlMM

    lEIl +=+= 2

    621.

    6

    2

  • 19

    Now, the difference of slopes between any two points on an elastic curve of a beam is equal to the net area of the bending moment diagram between these two points divided by EI. At C, the section at which deflection is maximum, slope is zero,

    Slope of A, ( ) ( )

    +=

    += abaabaa MMlxxM

    EIxMM

    lxxM

    EI 2.1

    2.1

    2

    Equating the two,

    ( ) ( )baabaa MMEIlMM

    lxxM

    EI+=

    += 2

    62.1

    2

    ( ) ( )

    ( )( ) 03

    2.2

    23.62

    2

    22

    =++

    +=+

    ab

    ab

    ab

    a

    baaba

    MMMMlx

    MMlMx

    MMlMMxxlM

    or ( )( ) 0810382108.

    810882 22 =

    ++XxXXx or 03.277642 =+ xx ; x= 4.07 m

    Deflection at A= ( ) ( )

    +=

    += abaabaa MMlxM

    EIxxxMM

    lxxxM

    EI23

    632.

    22..1

    2

    ( ) mmormXXXXXXXX

    76.51076.5810108

    07.42108310126

    07.4 3336

    2=

    +=

    7.18

    6 kN/m

    A BC

    5 m

    4 kN.m4 kN.m

    4 kN.m4 kN.m -+ wl2/8

    As the loading is symmetrical, area of half the bending moment diagram can be considered. Moments of the bending moment diagram about A

    = 8384

    54

    .2

    .165.

    8.

    2.

    32 242 MlwlllMlwll =

    Deflection at A

    = mmmXXXXX

    MlwlEI

    363.010363.08

    54000384

    56000510100

    18384

    51 3246

    24

    ==

    =

    7.20

  • 20

    Let l be the length. Then maximum bending moment is 3000l at the fixed end (the strongest section of 40 mm diameter).

    Thus mmlorXXl 1572040)64/(

    300075 4 == Let d be the diameter at a distance x from the free end of cantilever. Then for uniform strength throughout,

    xdordXXdx 407

    2)64/(300075 34 ==

    Moments of the bending moment at x about A= xx.3000

    Deflection = == 1570

    3/4

    2

    3/4

    157

    0

    24

    0

    2 .407

    291.0.3000.)64/(210000

    1.30001 dxxxdxx

    dXdxx

    EI

    l

    mmXxXdxxX 265.0)4569(109.573/5

    105.96.105.96 6157

    0

    3/56

    157

    0

    3/26 ==

    ==

    7.22

    W

    A B

    B.M.

    4l

    Wl

    l

    4I

    EIWl

    54

    ll

    EIWl

    45.2.

    5

    EIWl5

    C D

    EIWl

    54

    I

    The simply supported beam is shown in the figure a. Reaction at A = Wl/5; Reaction at B = 4Wl/5 Bending moment diagram for the real beam is shown in Fig. b. Now, in the conjugate beam method, this diagram is to be considered as loading diagram and a new bending moment diagram is to be drawn which will give the deflection of the beam. For the same, first we need to find the reaction on the supports.

    EIWlRorlXl

    EIWllll

    EIWllXR bb

    2

    56.0324.

    24.

    534.

    2.

    545 =

    +

    +=

    EIWl

    EIWll

    EIWll

    EIWlRa

    22

    24.056.024.

    52.

    54 =+=

    Slope at A= shear force at A for conjugate beam

  • 21

    = radXX

    XXEI

    Wl 0014.01020205000

    2000600024.024.0 622

    == Deflection at midspan = bending moment at C for conjugate beam

    mmXX

    XEI

    WlllXll

    EIWllX

    EIWl 5.5

    10202050002000600047.047.0

    35.2.

    25.2

    45.2.

    55.224.0 6

    332

    ===

    For maximum deflection, the bending moment is to be maximum or shear force is to be zero. 7.23

    W

    A B

    B.M.

    l/2

    Wl

    l/2

    Wl/2

    I16I

    EIWl2

    EIWl

    32EI

    Wl16

    C

    Let moment of inertia of portion CB be 4)2/(

    64dI =

    For portion AC, IdIac 16644 == ,

    The cantilever is shown in the figure a. Bending moment diagram for the real beam in Fig. b. the conjugate beam in Fig. c. The fixed end is transformed into a free end and the free end into a fixed end.

    Slope at C= shear force at C for conjugate beam = EI

    WllEI

    WllEI

    Wl1283

    21.

    2.

    322.

    32

    2

    =+

    Slope at B= shear force at B for conjugate beam = EI

    WllEI

    WlEI

    Wl12819

    21.

    2.

    21283 22 =+

    Deflection at C = bending moment at C for conjugate beam

    = EI

    WlllEI

    WlllEI

    Wl7685

    321.

    2.

    324.

    2.

    32

    2

    =+ Deflection at B = bending moment at B for conjugate beam

  • 22

    = EI

    WlEI

    WlllEI

    WlllEI

    WlllEI

    Wl38423

    768)3259(

    3.

    21.

    2.

    265

    21.

    2.

    3243.

    2.

    32

    22

    =++=++

    Chapter-8

    8.12

    A B

    15 kN

    6m3m

    20 kN

    6m

    8 kN/m

    Fixing moment at each end for uniformly distributed load, 12

    2wlM = (Example 8.2) Fixing moment for point load,

    22

    lbWaMb = and 2

    2

    lWabM a = . (Example 8.3)

    By combination,

    6.20712158

    156920

    1512315 2

    2

    2

    2

    2

    =++= XXXXXM a kN.m

    4.20012158

    156920

    1512315 2

    2

    2

    2

    2

    =++= XXXXXMb kN.m Maximum bending moment = 207.6 kN.m

    Section modulus = 66

    10977.1105

    104.200 XX = mm3 or 0.00198 m3 8.13

    A B

    5 m200 kN

    4 m

    80 kN/m

    C

    Fixing moment at each end for uniformly distributed load, 12

    2wlM = (Example 8.2) Fixing moment for point load,

    22

    lbWaMb = and 2

    2

    lWabM a = . (Example 8.3)

    By combination,

    5.34212

    9809

    45200 22

    2

    =+= XXXM a kN.m (hogging)

  • 23

    1.29312

    9809

    45200 22

    2

    =+= XXXMb kN.m (hogging) To find reactions, take moments about B,

    kNRorX

    XXR aa 7.3411.2935.3422980

    420092

    ==+ 3.1787.341200980 == XRb kN

    8.15

    W

    l/2 l/2

    A B

    C

    MaMc =

    (Ma+ Mb)/2

    Mb

    Wl/4

    As the slope at A is equal to slope at B =0, net area of the moment diagram must be zero, i.e.

    bab

    bba

    a

    baa

    EIlWl

    EIlWl

    EIlMMM

    EIlMMM

    2.

    4.

    21

    2.

    4.

    21

    2.

    22/)(

    2.

    22/)( +=+++++

    or bab

    baa

    ba IWl

    IWl

    IlMM

    IlMM

    22)3()3(

    22

    +=+++

    +=

    ++

    +

    babab

    baa II

    WlII

    MII

    M 112

    3113

    ++=

    +++

    ba

    ba

    ba

    baba II

    IIWlIIIIMM

    3233 (i)

    Deflection of A relative to B is zero, so net moments of areas about B must be zero, i.e.

    +

    +=+

    ++

    ++

    32.

    22.

    4.

    21

    31.

    22.

    2.

    4.

    21

    6.

    21

    2.

    2)(

    4.

    2.

    2)(

    2.

    31

    221.

    2.

    2)(

    43.

    2l

    EIlWlll

    EIlWll

    EIlMM

    lEIlMMll

    EIlMMl

    EIlM

    bab

    ab

    b

    ba

    a

    ab

    a

    a

  • 24

    bab

    ab

    b

    ba

    a

    ab

    a

    a

    IWl

    IWl

    IlMM

    IlMM

    IlMM

    IlM

    482448)(

    16)(

    12)(

    83 332222 +=++++

    +=

    +++

    +

    babbab

    bbaaa II

    WlIII

    MIIII

    M211

    6121

    41

    31

    121

    41

    31

    23

    ++=+

    ++ba

    ba

    ba

    baba II

    IIWlIIIIMM

    7)2

    27)(2 (ii)

    From (i) and (ii),

    +++=

    baba

    baaa IIII

    IIIWlM14

    )3(2 22

    and

    +++=

    baba

    babb IIII

    IIIWlM14

    )3(2 22

    8.20

    A B C

    6 kN/m

    5 m4 m

    10 kN/m

    I 2I

    12

    31.2525.5

    5.625

    18.375

    30.1

    19.9

    8.22

    AB C

    Dw

    l2ll The load diagram is shown in Fig. Applying the three moment equation for uniformly distributed loads to the spans AB and BC,

    ( )

    +=+++

    12

    33

    26

    4)2(

    4222

    llEIlwwllXMllMlM accba

    In this equation, ,0=aM and 0; == cbc MM (From symmetry of the beam, B and C have same load, so level of C is the

    same as of B)

  • 25

    The above equation reduces to 22

    43

    329

    lEIwlM ab

    = (i)

    Also, cbda RRRR == ; (From symmetry of the beam) Thus, badcba RRRRRRW 22 +=+++= or bba RwlRwlR =

    = 2

    24

    and ba R=

    (i) becomes, 22

    4.3

    329

    lREIwlM bb

    = (ii) Bending moment at B,

    =

    +=+=

    82820

    2

    2 WRWlWRWlwllRMM bbaab (hogging)

    or

    =8

    3WRlM bb (iii)

    From (ii) and (iii)

    2

    22

    4.3

    329

    812

    lREIwlwlRl bb

    =

    +=+=+==

    EIl

    lwlEIl

    wl

    lEI

    wl

    Rorl

    REIwlR bbb 3457

    8348

    57

    43132

    57

    4.3

    3257

    3

    3

    3

    4

    3

    3

    ++=

    +=

    +=

    =

    EIlEIlwl

    EIllwl

    EIllwllwXRWR ba

    34487

    8345716

    8

    3457

    824

    2

    3

    3

    3

    3

    3

    3

    8.28

  • 26

    A B6 m 4 m

    60kN/mC

    +

    +

    _

    180

    8032.7

    A

    197.3

    Maximum bending moment for the spans AB and BC treating as simply supported beams,

    For span AB, 2708

    6608

    22

    max === XwlM kN.m

    For span BC, 1208

    4608

    22

    max === XwlM kN.m For fixing moments, assume the continuous beam ABC to be made up of fixed beams

    AB and BC.

    For span AB: Fixing moments at A, 18012

    66012

    22

    === XwlM a kN.m

    Fixing moments at B, 18012

    66012

    22

    === XwlMb kN.m

    For span BC: Fixing moments at B, 8012

    46012

    22

    === XwlMb kN.m

    Fixing moments at C, 8012

    46012

    22

    === XwlMc kN.m In span AB, moments at A and B due to sinking of support B by 8 mm,

    2

    6lEIM = (Example 8.7, -ve being counter-clockwise)

    or 626

    103.1090006

    8104000002056 XXXXXM == N.mm or -109.3 kN.m Due to sinking of support B by 8 mm, moments at B and C (Refer example 8.7),

    2

    6lEIM = (-ve being counter-clockwise)

    or 626

    102460004

    8104000002056 XXXXXM == N.mm or 246 kN.m Distribution factors at B:

  • 27

    Stiffness factor for AB, 3/26

    4 EIEIsba == (as the beam is fixed at A)

    and for BC, 4

    34

    3 EIEIsbc == (as the beam is simply supported at C)

    Distribution factor for AB, 178

    4/33/23/2 =+=+= EIEI

    EIss

    skbcab

    abba

    Distribution factor for BC, 179

    4/33/24/3 =+=+= EIEI

    EIss

    skbcab

    bcbc

    Distribution factors 16/31 15/31 Fixed end moments Moments due to sinking

    -180 180 -109.3 -109.3

    -80 80 246 246

    Initial moments Release C Carry over

    -289.3 70.7

    166 326 -326 -163

    Net moments Distribute Carry over

    -289.3 70.7 -38 -19

    3 0 -35.7

    Final moments -197.3 32.7 -32.7 0

    Chapter-9 9.16 M =WR (1-cos )

    [ ] [ ] dEI

    RWdRWREIEI

    dsMU .cos1.)cos1(2

    122 0

    232

    0

    22 ===

    Vertical deflection = [ ] ( ) dEIWRd

    EIWR

    Wu .cos2cos12.cos12

    0

    23

    0

    23 ++==

    0

    3

    0

    3

    sin242sin

    22.cos2

    22cos112

    +++=

    +++= EIWRdEIWR

    68.3)12/612(000200

    150533002

    23

    333

    ===

    +++=XX

    XXXEIWR

    EIWR mm

    9.8

  • 28

    20 kN

    20 kN

    100 m

    m

    80mm

    P Q

    d = 80 mm ; R = 50+40 = 90 mm ; A = 5.502680

    42 =X mm2

    5.4399080.

    1281

    1680...

    12816 242

    2

    422 =+=++=

    Rddp mm2

    As bending moment tends to increase the curvature, it is positive. Resultant stress = Direct stress +Bending stress Stress at outside face (P), y = 290 - 202=88 mm

    409040

    5.43990.

    5.502620000.1

    2

    2

    2

    2

    2

    +=+=

    +++= yR

    ypR

    AW

    yRy

    pR

    ARWR

    AW

    o 56.22= MPa (tensile) Stress at inside face (Q)

    yRy

    pR

    AW

    yRy

    pR

    ARWR

    AW

    i =

    += ..1 2

    2

    2

    2

    67.584090

    4082.105 == X MPa (compressive) Chapter-10

    10.12

    TNP60

    2= , If P is constant, T

    N 1

    But 16

    3dT = , If stress is same,

    3dT ; 31dN or 3/11

    Nd , 64.4

    505000 3/1 =

    =

    b

    a

    dd

    10.16

    aa

    aa

    ss

    ss

    JGlT

    JGlT ==

    Angle of twist per unit length,

  • 29

    aa

    a

    ss

    s

    JGT

    JGT = or 444 60

    327.0)60(2

    32XXGTX

    dXXGT

    aa = d =50.5 mm

    Also, asast ll

    =

    7.0 , ast GrGr

    =

    7.0

    As r is same, 4.17.027.0 === XGG

    a

    st

    a

    st

    As maximum limits are 65 MPa for alloy and 80 MPa for steel, the maximum stress will reach in steel first. 10.18 Maximum shear stress occurs at smallest diameter.

    MPaorXX 5.99.16801010

    36 ==

    ( ) ( ) radXX

    rrrrrl

    GT 0171.0

    401

    601

    101200.

    8200031010

    '1

    '1

    '.

    3 336

    33 =

    =

    +=

    = 0.98o

    Chapter-11

    11.13

    Under axial torque, 3704.012000200

    1210020000646444 === XXXX

    EdTDn rad

    Increase in the number of turns = 059.023704.0 =

    Bending stress, 9.11712200003232

    33 == XX

    dT

    MPa Torsional stiffness (torque /rad) = 54

    3704.020 = N.m/rad

    11.17

    4

    38Gd

    nWD= or 441.220)5.28(8

    5.2000808 3

    4

    3

    4

    1 ==== XXXX

    nDGdWs N/mm

    '302.115)'8(8'00080

    8 34

    3

    4

    2 dXdXXd

    nDGdWs ====

    21

    21

    sssss += or mmdordXdord

    dX 136.2''302.1441.2'693.1173.3'302.1441.2'302.1441.23.1 ==++=

    The maximum load will be that taken by the spring with smaller diameter.

  • 30

    11.18 E =2G(1+) =2G(1+0.3)=2.6G

    For a closed-coiled spring, 438

    GdnWD

    c =

    and for an open-coiled spring,

    +=

    EGdnWD

    o

    22

    4

    2 sin2coscos.

    8

    Now, 02.0=o

    io

    or 02.0

    sin2coscos.

    8

    8

    122

    4

    2

    4

    2

    =

    +

    EGd

    nWDGd

    nWD

    975.0sin2cos6.2

    cos6.2025.0sin2cos

    cos1 2222 =+=+

    GGGor

    GEE

    or 975.02cos6.0

    cos6.2975.0)cos1(2cos6.2

    cos6.2222 =+=+

    or

    02cos6.2cos585.0975.02cos6.0

    cos6.2 22 =+=+ or

    On solving, o2.17= 11.20

    'RE

    RE

    IM

    y== (Eq. 11.14)

    At proof load, R is infinite and thus E/R = 0

    RE

    y= or

    R000208

    2/10630 = or R = 1650 mm or 1.65 m

    Let We be the equivalent static load which produces the same maximum stress and deflection as the impact load.

    also, 223

    nbtlWe=

    As the maximum stress is one half of the proof stress, 21080101400.

    23

    2630

    XXXWe=

    or 12000=eW N 2.74

    000208108010140012000.

    83

    83

    3

    3

    3

    3

    ===XXX

    XEnbt

    lWe mm

    Chapter-12

  • 31

    12.16 Assuming the deflected form under the action of the crippling load be

    =

    =400

    cos12

    cos1 xalxay and thus,

    400sin

    400xa

    dxdy =

    dxx

    adxxadxdxdyl .

    2200

    cos1

    400.

    400sin

    400.

    180

    0

    2180

    0

    22

    0

    2

    =

    =

    22180

    0

    2

    17006.02004002

    1200

    sin2004002

    1 aXaxxa =

    =

    =

    Also, 400

    cos400

    cos1)( xPaxPaPayaPM =

    ==

    += 200100

    2

    2100

    01

    222

    0

    2400

    cos400

    cos

    22dx

    I

    x

    dxI

    x

    EaPdx

    EIMl

    12.18

    ( ) 95100445664

    44 ==I mm4; ( ) 30044564

    22 ==A mm2

    317300

    951002 ===AIk mm2

    Euler load, 1261122200

    951000002072

    2

    2

    2

    === XXlEIPe N

    Actual load for failure = 126112 X 0.75 = 94584 N

    77.49.77sec36.1sec95100000207

    945842

    2200sec2

    sec2

    sec ===== oXEI

    Pll

    +=

    += 77.4317

    28130094584

    2sec..1 2max X

    eXlkye

    AP c

    MPa

    or ( )e421.0136.100290 += or 1 + 0.421e = 2.89 or e = 4.49 mm 12.21 w = 0.8 kN/m = 0.8 N/mm;

    ( ) 400004064

    4 ==I mm4; ( ) 400404

    2 ==A mm2

    968.140000000200

    000362

    320022

    ===

    XEIPll rad (=109.7o)

  • 32

    ( )17.109sec00036

    400000002008.012

    sec =

    = oXXlP

    wEIM 66 10215.2)1967.2(105585.0 XXX == N.mm

    7.3527.2840000

    2010215.2400

    00036. 6max ===

    XXIyM

    AP c

    - 381.4 MPa (compressive) and -324 MPa compressive

    Chapter-13

    13.13

    Internal volume of cylinder = 62 107.70314008004

    XXX = mm3 180

    1028005.4

    2===

    XX

    tpd

    c MPa (tensile) and 904 == tpd

    l MPa (tensile) Increase in volume, [ ]).(2).().2( lcclcl E

    VVv +=+=

    [ ] )360450(2050000

    1500800)4/()90180(2)18090(1012452

    3 =+= XXXXEVX

    340360450)360450(205000

    107541012506

    3 == orXX 306.0=

    13.16

    Internal volume of shell = 767.15.16

    3 =X m3 = 6101767X mm3 For tube:

    Volumetric strain = 3 X hoop strain = ( ) ( ) == 14313

    tEpd

    E (13.9)

    Decrease in volume, ( ) ( ) tEVVtEXXV

    tEpd /15753.01

    41500231

    43 ===

    For water: Increase in volume, V

    KpVv w .. ==

    Thus change volume of water VKp

    tEV += 1575

    or 63 1017672000

    2000200

    1575104000 XXt

    X

    += or t=6.23mm

    13.20

  • 33

    Maximum circumferential stress in a tube subjected to internal pressure p is at the inner

    surface and is pdddd

    io

    ioc .22

    22

    += or pc 57.3150200

    15020022

    22

    =+=

    Thus 4457.3 =p or p =12.32 MPa Longitudinal stress =

    )(.

    22

    2

    io

    i

    rrpr

    = pXp 2857.1

    7510075

    22

    2

    =

    )150200(

    4

    2200002875.122

    =X

    p or p =12.43 MPa

    Maximum pressure =12.43 MPa 13.22

    The maximum hoop stress is at d=di, iio

    ioc pdd

    dd .2222

    +=

    or 35606055 22

    22

    Xdd

    o

    o

    += or )60(

    553560 2222 += oo dd

    or )60(7601111 2222 += oo dXd or 8.84=od mm Maximum shear stress,

    )( 222

    io

    oi

    dddp= or )60(

    3550 222

    = oo

    dd

    or 222 7601010 oo dXd = or 5.109=od mm Thickness = 75.24

    2605.109 = mm

    13.25 (i) Increase of inner diameter of the collar

    [ ]E

    pdEpdpp

    Edd

    Ed rc 425.23.0125.2.

    150250150250. 22

    22

    =+=

    ++=+=

    or 000200150425.21.0 pX= or p = 55 MPa

    13.27

    )(2)2(

    33

    33

    io

    ioi

    ddddp

    += or 30

    )80(280275 33

    33

    Xd

    Xd

    o

    o

    +=

    or )80(5802 3333 =+ oo dXd or 33 8074 Xdo = or do = 96.4 mm t = 16.4/2=8.2 mm

  • 34

    Chapter-14 14.12 Let the shrinkage pressure between the disc and the shaft at stand still be p.

    09.0=iR m and 4.0=oR m Shrink allowance = 08.0 mm

    At stand still, the hollow disc acts similar to a thick cylinder subjected to internal pressure (Refer section 13.9).

    Shrinkage allowance (initial difference in radii))(

    222

    2

    io

    oi

    RRERpR= (Eq. 13.31)

    or )90400(000206

    40090208.0 222

    =XpX or p = 86.9 MPa

    Maximum hoop stress is at the inner radius and is given by Eq. 13.7.

    2.969.86107.1107.1.09.04.009.04.0. 22

    22

    22

    22

    ===+=

    += XpppRRRR

    iio

    io MPa

    (ii) When the disc rotates and the shrink fit loosens, radial pressure is zero and thus

    the radial stress is also zero.

    [ ]222 )3()1(4 oi

    RR ++= (Eq. 14.17)

    14.13

    1006030002 == X

    At stand still Let the shrinkage pressure between the disc and the shaft at stand still be p.

    At stand still, the hollow disc acts similar to a thick cylinder subjected to internal pressure only and thus the results of the same may be used. - For the outer disc, hoop stress at the inner radius (50 mm),

    08.0=iR m and 24.0=oR m ppp

    RRRR

    iio

    io 25.1.08.024.008.024.0. 22

    22

    22

    22

    =+=

    += N/mm2

    Hoop strain = ss Ep

    Epp 55.13.025.1 =+

    14.15 Let t be the thickness of the disc at radius r. Now as 2/..

    22

    . reAt = At r = 0, AeA == 2/0.. 22.180 (i)

  • 35

    At r = 0.2 m, 2/2.0..22

    . = eAt (ii) Dividing (ii) and (i),

    2/)04.0(.2/2.0..

    222

    .8.180

    == eA

    eAXt

    where 1234.0101202

    04.0603000275002/04.0 6

    22 =

    =

    XXXXXX

    1598 1234.0 == et mm

    Chapter-15

    15.6

    62

    3

    2

    3

    108.61)3.01(12

    15000200)1(12

    XXEtC ===

    =

    =

    2300

    108.61324.0

    232

    22

    6

    222

    2 xXX

    xxRC

    wxy

    Deflections at different cross-sections are tabulated below:

    x (mm) 0 60 120 180 240 300 y (mm) 0 0.064 0.24 0.48 0.72 0.82

    0.9

    0.30.6

    r (mm)0 12060 240180 300

    Figure shows the profile of the deflected plate.

    [ ] [ ]222223 22 )3()1(.83)3()1()1(12.16.1 )2/( xRtwxREtwEtx ++=++= [ ] [ ]2222 3.3117000000667.0)3.03(300)3.01(154.0.83 xxX =++=

    [ ] [ ]222223 22 )13()1(83)13()3()1(12.16.1 )2/( xRtwxREtwEtz ++=++= [ ] [ ]2222 9.1000117000667.0)13.03(300)3.01(158 4.03 xxXXX =++=

    15.8

  • 36

    62

    3

    2

    3

    1026.2)28.01(12

    5000200)1(12

    XXEtC ===

    ++= )1(log

    11log2

    21

    8

    2

    xRC

    Pxy

    ++= )1(log

    28.0128.01100log2

    21

    1026.282000

    6

    2

    xXXx

    [ ]xxX log773.101021.35 26 =

    Chapter-16

    16.9

    60

    80

    10

    60

    y'

    AN

    10

    A'N' y10

    (a) (b)

    .45

    (mm)

    Let N-A and N-A be the elastic and plastic neutral axes respectively.

    =++=

    1070106045107051060

    XXXXXXy 26.54 mm

    I = 23

    23

    )54.2645(701012

    7010)554.26(106012

    1060 +++ XXXXXX =807.76X103 mm4 5000 278383 285833 238540 Yield will start at the bottom edge,

    Moment of resistance at first yield, My= yyyX

    yI 15110.

    )54.2680(1076.807.

    3

    == In fully plastic state, the neutral axis divides the total area of the beam into two

    equal parts.

    16.12

    STRESS

    30

    72

    12

    24

    (mm)

    280 MPa

    Let Wy be the load at first yield at the mid-span,

  • 37

    322

    10725828067230.

    6XXXbhM yy === N.mm or 7258 N.m

    Thus, 72584

    2.1 =XWy or Wy = 24.2 X103 N or 24.2 kN

    For elastoplastic state, moment of resistance,

    =

    34.

    22 ahbM y

    =

    324

    47230280

    22

    X =9274 X 103 N.mm or 9274 N.m

    or 92744

    2.1 =XWy or Wy = 30.9 X103 N or 30.9 kN For this required depth of yield, let the yield occur beyond a cross-section at

    distance x m from one end of the beam. Then this cross-section will be having the first yield and thus the moment of resistance will be equal to the first yield at the midspan i.e. 7258X103 N.mm.

    16.13

    120 mm

    200mm15mm

    15 mm

    y

    50mm

    yyy

    150

    .

    yyy

    150)15(

    y

    150-y

    (a) (b) Solution As the load increases and the yield spreads upto 50 mm from the lower edge of web, assume that the top of the flange is still in the elastic state. Let the neutral axis be at a distance y from the top edge. The stress distribution in the beam section will be as shown in Fig. b.

    Stress at the top of flange, t = ..150 yy

    y

    Stress at the bottom of flange, b = ..150

    15yy

    y

    Total tensile stress force 15)15.(2

    )15120.(2

    ++= yX bbt

  • 38

    +=

    +++=

    +

    +=

    yyy

    yyyyy

    yy

    yy

    yy

    y

    y

    y

    yy

    1505.1181215755.7

    1505.16872255.713500900900

    )15(150

    155.7150

    15150

    900

    2

    2

    Compressive force = )5.71875(1550)150(15.2

    yXXyX yyy =+

    16.14

    10 mm

    100 mm

    80mm

    AN

    10 mm

    y

    y(a) (b)

    y

    y

    Solution Let the neutral axis be at a distance y from the top edge. The yield starts at the bottom of the web and will cover some portion when the top of the flange will just yield. The stress distribution in the beam section is shown in Fig. b. Let the stress at the bottom of the flange be when the top of flange just yields. Then yy

    y .15=

    Positive force = yyX yy 545050010)10.(

    2)10100.(

    2++=++

    Negative force = yyyy yXyy 800.1510)280(10.

    2+=+

    Chapter-17

    17.8

    A B

    C D

    E F

    6 m

    3 m

    3 m

    50 kN

    AB

    C D

    E F

    6 m

    3 m

    3 m

    50 kN

    50 kN 50 kN

    AB

    C D

    E F 50 kN

    50 kN

    50 kN 50 kN

  • 39

    To find the reaction at support B, take moments about A,

    6506 XXRb = or 50=bR kN (upwards); 50=aR kN (downwards) 50=ahR kN

    oABC 6.26)6/3(tan == Joint A: kNFAB 50= (T) )(50 TFAC = kN, Joint B Considering FH = 0, 06.26cos50 =+ oBCF or kNFBC 9.55= (C) Considering FV = 0, 06.26sin9.5550 =+ BDo F or 25=BDF kN (compressive) 17.9

    A B

    C D

    E F

    2 m

    2 m

    2 m

    50 kN

    2 m

    100 kN

    H

    G

    A

    B

    C D

    E F

    2 m

    2 m

    2 m

    50 kN

    2 m

    100 kN

    H

    G100 kN

    50 kN

    F EG

    F CE

    E

    G100F GD

    F GF =o

    FH= 0D

    FV= 0D

    50 kN

    100 kNG100

    F GD

    F GF =o

    FV= 0

    To find the reaction at support B, take moments about A, 45041004 XXXRb = or 50=bR kN (upwards); 0=avR

    100=ahR kN Joint E: kNFCE 50= (C) 100=EGF kN (C) by judgement Joint F: 0== FDFG FF (C) by judgement Joint G Considering forces along GD,

    FGD = 0, 045cos =+ oGEGD FF or 045cos100 =+ oGDF or kNFGD 7.70= (C) Considering FV = 0, 045cos45cos = oGCoGD FF or 7.70=GCF (T)

  • 40

    17.11

    200 kN

    C

    D

    E

    A

    F

    B

    4 m 4 m

    2 m

    2 m

    200 kN

    C

    D

    E

    A

    F

    B

    200

    447.2

    400

    200

    400

    400

    400

    0

    0

    447.1200

    0 Taking moments about F,

    82004 XXFAH = or 400=AHF kN (inwards); 400=FHF kN (outwards) Joint D: 0=EDF as there is no other horizontal member to balance the force. 200=CDF kN (C) tan-1(4/2)= CBE or oCBE 43.63= Joint C: 20043.63cos =oBCF or 2.447=BCF kN (C)

    CEo F=43.63sin2.447 or 400=ECF kN (T)

    Joint B: BEo F=43.63cos2.447 or 200=BEF kN (T)

    ABo F=43.63sin2.447 or 400=ABF kN (C)

    Joint A: 0=AEF 0=AVF Joint F: 200=FVF 40043.63sin =oEFF or 1.447=EFF kN (T) 17.12

    DCBA

    EFG 40 kN

    80 kN40 kN

    60o 60o

    DCBA

    EFG 40 kN

    80 kN40 kN

    40 kN

    Taking moments about F, 464.34068024012 XXXXFDV ++= or 21.58=DVF kN; 40=DHF kN

    8.612.58120 ==AVF kN Joint D: 2.6721.5860sin == EDoED ForXF kN (C) 6.3360cos2.67 == oCDF kN (T)