P-N Junctions/Diodes - Department of Electrical and ...rlake/EE203/ee612_Taur2.pdf · (b) qψ bi...

42
P-N Junctions/Diodes p n V I V log I slope = 60 mV/decade V I

Transcript of P-N Junctions/Diodes - Department of Electrical and ...rlake/EE203/ee612_Taur2.pdf · (b) qψ bi...

P-N Junctions/Diodes

p n

V

I

V

log I

slope = 60 mV/decade

V

I

Static Properties

(b)qψbi

(a)

cE

Ev

EiE f

n-typep-type

cE

Ev

Ei

E f

cE

Ev

EiE f cE

Ev

Ei

E f

0=

+=

dxdn

qkTnqJ nn Eµ

dxd= iψ

−E

n n e n eiE E kT

iq kTf i i f= =− −( )/ ( )/ψ ψ

d Ed x

f = 0No net current flow at thermal equilibrium:

Built-in Potential

• Fermi level Ef is spatially constant (flat), causing a built-in potential difference across the diode.

• Built-in potential:

pp = (majority) hole density on p-side ≈ Napn = (minority) hole density on n-sidenn = (majority) electron density on n-side ≈ Ndnp = (minority) electron density on p-side

=

=

=

0

0

0

02 lnlnln

p

n

n

p

i

dabi n

nkTpp

kTnNNkTqψ

Abrupt Junctions: Depletion Approx.

0 xxn-xp

ρ (x)

x

E (x)

-E m

xψm

qN d

a-qN

Q uasi-neutralp-region

Q uasi-neutraln-region

D epletion region

-xp xn

xn-xp

0

0

pψ (x) -ψ (-x )i i

Emi

x

d n

si

a p

si

ddx

qN x qN x≡

−= =

=

ψε ε0

− =ddx

qNi d

si

2

ε

− = −ddx

qNi a

si

2

ε

for 0 ≤ x ≤ xn

for -xp ≤ x ≤ 0

W N NqN Nd

si a d m

a d

=+2ε ψ( )

ψ ψm bi appV= ±

2E

2)(E dmpnm

mWxx

=+

One-Sided n+-p Diode

0 x-x n

x p

ρ (x )qN d

a-qN

Q uasi-neu traln-region

Q uasi-neutralp-region

D epletion region

• Charge neutrality: Nd xn = Na xp, if Nd >> Na ⇒ xp >> xn,

i.e., depletion layer and voltage drop primarily appear on the lightly doped side.

One-Sided n+-p Diode• Built-in potential:

1E+14 1E+15 1E+16 1E+17 1E+180.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05Bu

ilt-in

pot

entia

l (V

)

Doping concentration (cm−3)

+≈

i

agbi n

NkTE

q ln2

ψ

⇒ Built-in potential a weak function of doping conc.

One-Sided n+-p Diode• Depletion-layer width:

• Depletion-layer capacitance: Cd ≡ dQd/dVapp = εsi /Wd

1E+14 1E+15 1E+16 1E+17 1E+180.01

0.1

1

10

0.01

0.1

1

10

Doping concentration (cm )

Dep

letio

n-la

yer c

apac

itanc

e (f

F/µm

2)

Dep

letio

n-la

yer w

idth

(µm

)

Cd

Wd

-3

ppna

appbisid xxx

qNV

W ≈+=±

=)(2 ψε

Quasi-Fermi Potentials φn and φp

cE

E v

E f(a) -qφn

-qφp

n-typep-type

qV <0app

(b)

-qφn

-qφp

cE

E v

E f qV >0app

cE

E v

E f

x n

x n

-xp

-xp

cE

E v

E f

[ ]pn n q kTi p n= −2 exp ( ) /φ φ

φ ψn ii

kTq

nn

≡ −

ln

φ ψp ii

kTq

pn

≡ +

ln

J qnddx

kTqn

dndx

qnddxn n

in

n= − −

= −µ

ψµ

φ

J qpddx

kTqp

dpdx

qpddxp p

ip

p= − +

= −µ

ψµ

φ

Nonequilibrium near the junction, pn≠ni

2.

Spatial Variations of φn and φp

cE

E v

E f(a) -qφn

-qφp

n-typep-type

qV <0app

(b)

-qφn

-qφp

cE

E v

E f qV >0app

cE

E v

E f

x n

x n

-xp

-xp

cE

E v

E f

Vapp = φp − φn at junction boundaries.

Inside the space-charge region: Jn is constant (neglect G-R currents)

⇒ [nnµndφn/dx]xn = [npµndφn/dx]−xp

⇒ [dφn/dx at xn] << [dφn/dx at −xp]

⇒φn ~ constant inside space-charge region

Practically all spatial variation in φn occurs in p-region,

Likewise, all spatial variation in φp occurs in n-region.

Spatial Variations of φn and φp

cE

E v

E f(a) -qφn

-qφp

n-typep-type

qV <0app

(b)

-qφn

-qφp

cE

E v

E f qV >0app

cE

E v

E f

x n

x n

-xp

-xp

cE

E v

E f

Vapp = φp − φn at junction boundaries.

pn = ni2exp[q(φp − φn)/kT]

Vapp > 0 for forward bias,Vapp < 0 for reverse bias.

(1) np(x = −xp) ≈ np0(x = −xp) exp(qVapp/kT ) (2) pn(x = xn) ≈ pn0(x = xn) exp(qVapp/kT )

(1) and (2) are the most important boundary conditions governing a p-n diode.

Currents in a p-n Junction

0 x-xn

xp

ρ (x)qN d

a-qN

Quasi-neutraln-region

Quasi-neutralp-region

Depletion region

Ec

Ev

0 W0

eh

n+

p

Generation-recombination currents in space-charge region are usually negligible.

⇒ Electron current leaving n-side = electron current entering p-side.⇒ Hole current leaving p-side = hole current entering n-side.

Need to consider minority carriers and currents only.

Total current in diode = electron current + hole current.

Excess Electrons in the p-Region

W/L = 0.2

0.5 1.0 2.0

exp(-x/L)

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

x/L

Nom

aliz

ed e

xces

s ele

ctro

n de

nsity

01=+−= nn

n GRxJ

qtn

∂∂

∂∂

dxdnkT

dxdn

qnkT

dxdqnJ nnn µψµ =

−−=

nnn

nnGRτ

0−=−

L DkT

qn n nn n≡ =τ

µ τd ndx

n nL

p p p

n

2

20

2 0−−

= , where is the

minority carrier diffusion length.

Boundary conditions:

at x=0, and

at x=W (ohmic contact).

( )n n qV kTp p app= 0 exp /

n np p= 0

[ ] [ ]n n n qV kTW x L

W Lp p p appn

n

− = −−

0 0 1exp( / )sinh ( ) /

sinh( / ).

Wide-Base and Narrow-Base Diodes

J x qDdndxn n

p

x

( )= =

=

00

[ ]= −

−qD n qV kTL W L

n p app

n n

0 1exp( / )tanh( / )

[ ]= −

−qD n qV kTp L W L

n i app

p n n

2

0

1exp( / )tanh( / )

Wide-base: W>>LnForward-bias: Jn(x = 0)= −[qDnni

2/NaLn]exp(qVapp/kT)Current increases exponentially with Vapp, at 60 mV per decade at RT.

Reverse-bias: Jn(x = 0)= +[qDnni2/NaLn]

Electrons on p-side but within a diffusion length of the depletion-region boundary diffuse towards n-side.

Narrow-base: W<<LnForward-bias: Jn(x = 0)= −[qDnni

2/NaW]exp(qVapp/kT)Reverse-bias: Jn(x = 0)= +[qDnni

2/NaW]Currents increase rapidly as W decreases!

Minority-Carrier Diffusion Length

1E+17 1E+18 1E+19 1E+200.1

0.3

1

3

10

30

100

300

Doping concentration (cm )

Diff

usio

n le

ngth

(µm

)

Electrons Holes

-3

Most p-n junctions in silicon technology are narrow-base diodes.(e.g., source and drain in MOSFETs, emitter and base in bipolars.)

Turning Off a p-n Diode

Excess electrons in p-region

Effective turn off starts only after most excess minority carriers have recombined or have drained off.

t ts

i(t)IF

-IR

0

t = 0

t > 0

t = ts

x

(n - n )p0p

0

t < 0n+ p

VF R i(t)

VR

n+ p

R i(t)

t > 0

x0

Q q n n dxB

W

p p= − −∫ ( )0 0

1E+17 1E+18 1E+19 1E+201E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

Doping concentration (cm )

Min

ority

-car

rier l

ifetim

e (s

) Electrons Holes

-3

Diffusion Capacitance

Diffusion capacitance CD is due to stored minority carriers responding to applied voltage.

CD due to electrons stored in p-type region:

CDn = dQB/dVapp ∝ exp(qVapp/kT)

For a diode or bipolar transistor to switch fast, it must have minimal diffusion capacitance.

To minimize diffusion capacitance: increase doping concentration and minimize charge-storage volume.

Modern high-speed bipolar transistors require very thin base.

MOS Device

Vacuum level

Vacuum level

Ec

Ec

Ev

Ev

= 4.10 eV

0.95 eV

8-9 eV

= 4.05 eVqχq mφq sφ

Metal(aluminum)

Silicondioxide

Silicon(p-type)

1.12 eV

Eg =q Bψ Ei

Ef

Ef

Silicon dioxide

Gate electrode(metal or polysilicon)

Silicon substrate

tox

φ χ ψsg

B

Eq

= + +2

Accumulation, Depletion, Inversion

(a)

(b)

(c)

(d) (h)

(g)

(f)

(e)Ec

Ev

Ef

Ef

V = 0g

Ec

Ev

Ef

Ef

Ec

Ev

Ef

Ef

V = 0g

Ec

Ev

Ef Ef

p-type n-type

flatband

accumulation

depletion

inversion

V < 0g V > 0g

Ec

Ev

Ef Ef

V > 0g

Ec

Ev

Ef

Ef

V < 0g

Ec

Ev

Ef

Ef

V > 0g

Ec

Ev

Ef

Ef

V < 0g

+ + + + + +

+ + + + + +

+ +

_ _ _ __ __ _

_ __ __

+ +

_ _ __ ______ __

++++ ++ ++

+ + + + +

_ _ _ __ __

+ +

+ + + +

__ __

+ +

_ ____ __ ___ _____

++ +++++ +++

+

Assume φm=φs:

Poisson’s Equation

q sψ(> 0)

Ec

Ei

Ev

Egq Bψ

Oxide p-type silicon

x

Siliconsurface

q xψ ( )

Ef

[ ])()()()(2

2

xNxNxnxpqdxd

dxd

adsi

−+ −+−−=−=ε

ψ E

( ) ( )

−−−−= − 11 /

2/

2

2kTq

a

ikTqa

si

eNneNq

dxd ψψ

εψ

p x n e n e N eiq kT

iq kT

aq kTf i B( ) ( )/ ( )/ /= = =− − −ψ ψ ψ ψ ψ

n x n e n enN

eiq kT

iq kT i

a

q kTi f B( ) ( )/ ( )/ /= = =− −ψ ψ ψ ψ ψ2

Solving Poisson’s Equation

−−+

−+=

= − 112)( /

2

2/

2

kTqe

Nn

kTqekTN

dxdx kTq

a

ikTq

si

a2 ψψε

ψ ψψE

2/1

/2

2/ 112

−−+

−+±=−= −

kTqe

Nn

kTqekTNQ skTq

a

iskTqasissis

ssψψεε ψψE

Depletion Approximation(1-D Uniform Doping)

Wdx

qNa

ρ

xWd

E

xWd

ψ

E

Qd = qNaWd

E = qNa(Wd - x)/εsi

ψ = qNa(Wd - x)2/2εsi

⇒ ψs = qNaWd2/2εsi

WqNd

si s

a=

2ε ψ

ψ ψ= −

s

d

xW

12

Condition for Strong Inversion

q sψ(> 0)

Ec

Ei

Ev

Egq Bψ

Oxide p-type silicon

x

Siliconsurface

q xψ ( )

Ef

ψ ψs Ba

iinv

kTq

Nn

( ) ln= =

2 2

i.e., (ni2/Na

2)exp(qψs/kT) = 1.

And the electron concentration at the surface equals the hole concentration in the bulkSi.

Max. Depletion Width in MOS(1-D Uniform Doping)

W kT N nq Ndm

si a i

a

=4

2ε ln( / )

In contrast to p-n junctions, Wdreaches a maximum value Wdmat the onset of strong inversion when

ψs = 2ψB = 2(kT/q)ln(Na/ni):

This defines the threshold condition of a MOSFET.Wdm also plays a key role in the short-channel scaling of a MOSFET, namely, Lmin∝Wdm.

1.0E+14 1.0E+15 1.0E+16 1.0E+17 1.0E+18 1.0E+190.01

0.1

1

10

Substrate Doping Concentration (cm )M

axim

um D

eple

tion

Wid

th (µ

m)

-3

Strong Inversion

ddx

kTN qkT

nN

ea

si

i

a

q kTψε

ψ ψ= − +

2 2

2/

0 50 100 150 2000

2E+18

4E+18

6E+18

8E+18

1E+19

1.2E+19

Na = −1016 3 cm

ψ s = 088. V

ψ s = 085. V

Distance from surface, x ( )Å

Elec

tron

conc

entra

tion,

n(x

) (c

m

)-3 Charge per area:

Electron conc. at surface:

Inversion layer thickness: Qi/qn(0) = 2εsikT/qQi

QkTnN

eisi i

a

q kTs= −2 2

2ε ψ /

nnN

ei

a

q kTs( ) /02

= ψ

Quantum Effect in MOS Inversion

q sψEc

Ev

Oxide p-type silicon

Siliconsurface

Ej

Slope = Es

Ec′

Ef

In an MOS inversion layer, carriers are confined in the direction perpendicular to the surface and therefore need be treated quantum mechanically (2-D).

E hqm

jjs

x

= +

34 2

34

2 3E

/

xEqj

j

s

=23 E

Discrete energy levels:

Average distance of inversion layer from the surface:

Self-Consistent QM SolutionEl

ectro

n en

ergy

Conductionband edge

Bottom of the well

Lowest subband

Oxi

deEl

ectro

n de

nsity

Classical

Quantum

Depth

Electron ground state isat some finite energy above the bottom of theconduction band.

Band bending mustexceed 2ψB to invertsurface.

The centroid of inversionlayer is farther awayfrom the surface than inthe classical case.

MOSFET Charge and Potential

0 0.5 1 1.5 2 2.5 3 3.50

0.2

0.4

0.6

0.8

1

1.2

0E+0

2E-7

4E-7

6E-7

8E-7

1E-6

Gate Voltage (V)

Surfa

ce P

oten

tial

(

V)

Cha

rge

Den

sity

(C

/cm

)

t = 10 nmoxN = 10 cma17 -3

Vg

ψsψ s

2

Qs

Qd

Qi

2ψB

Oxide p-type silicon

q sψ

Ec

Ei

Ev

q Bψ

Metal

Vg > 0

Vox

QM

QdQi

0

Qs QM= −

x

Deple-tionregion

Inversionregion

Neutral region

−tox

Wdm

Ef

Ef

Gate voltage equation (Vfb=0):

V VQ

Cg o x ss

o xs= + =

−+ψ ψ

Note: Cox=εox/toxand εoxEox=εsiEs

2/1

/2

2/ 112

−−+

−+±=−= −

kTqe

Nn

kTqekTNQ skTq

a

iskTqasissis

ssψψεε ψψE

Inversion Charge in Log Scale

0 0.5 1 1.5 2 2.5 3 3.51E-17

1E-15

1E-13

1E-11

1E-9

1E-7

1E-5

0E+0

2E-7

4E-7

6E-7

8E-7

1E-6

Gate Voltage (V)

Inv.

Cha

rge

Den

sity

(C

/cm

)

Inv.

Cha

rge

Den

sity

(C

/cm

)

t = 10 nmoxN = 10 cma17 -3

Vg

2

Qi

2ψB

2

Qi

MOS Capacitances

Csi Ci

Cox

Gate

p-typesubstrate

(low freq.)

(inversion)

n+channel

Cd

Cox

Gate

p-typesubstrate

Vg Vg

−Qs −Qs

Qs Qd Qi

Cd Q

dVs

g=

−( )

Cd Q

dsis

s=

−( )ψ

)(11

s

s

ox Qdd

CC −+=

ψ

siox CC11

+=

Capacitance-Voltage Characteristics

In accumulation, Qs∝exp(-qψs/2kT), so Csi=-dQs/dψs=(q/2kT)Qs=(q/2kT)Cox|Vg-ψs|.

1 1

12

C CkT q

Vox g s

= +−

Capacitance-Voltage Characteristics

At flatband voltage, qψs/kT<<1, therefore, Qs=−(εsiq2Na/kT)1/2ψs. si

D

oxasioxfb

LCNq

kTCC εε

+=+=111 2

Capacitance-Voltage Characteristics

In depletion,

where

Note that

Cd Q

dqN

Wdd

s

si a

s

si

d=

−= =

( )ψ

εψ

ε2

VqN W

CqN

Cga d

oxs

si a s

oxs= + = +ψ

ε ψψ

2

dox CCC111 +=

Capacitance-Voltage CharacteristicsInversion, high freq.:

Inversion charge cannot respond,

Inversion, low freq., or connected to a reservoir:

where

is the inv. layer cap.

1 1 4

2C CkT N n

q Nox

a i

si amin

ln( / )= +

ε

1 1 1C C C Cox d i

= ++

Cd Q

dQ

kT qii

s

i=−

=( )

/ψ 2

1 1

12

C CkT q

Vox g s

= +−

Like accumulation,

Split C-V Measurement

Effect of Gate Work Function V V V V Q

Ct fb B ox fb Bd

ox

= + + = + +2 2ψ ψ

Vacuum level

Vacuum level

Ec

Ec

Ev

Ev

= 4.10 eV

0.95 eV

8-9 eV

= 4.05 eVqχq mφq sφ

Metal(aluminum)

Silicondioxide

Silicon(p-type)

1.12 eV

Eg =q Bψ Ei

Ef

Ef

ox

oxsmfb C

QV −−= )( φφ

φ χ ψsg

B

Eq

= + +2

poly) (n += χφm

poly) (p ++=q

Egm χφ

(midgap) 2qEg

m += χφ

Effect of Gate Work Function

oxide

p-type siliconn+ poly

q msφ

Vg V fb ms= =φ

n+ poly

oxide

p-type silicon

Vg = 0

Ec

Ev

Ei

Ec

Ev

Ei

ψB

Ef

Ef

Ef Ef

Example: n+ polysilicon gate on p-type silicon

φ ψmsg

Ba

i

Eq

kTq

Nn

= − − = − −

2

0 56. ln

Poly-Si Gate Depletion Effect

Ec

Ei

Ev

Vox

Ec

Ei

Ev

Vg

p-type siliconOxiden+ poly

ψp

ψs

Ef

Ef

V VQCg fb s p

s

ox= + + −ψ ψ

1 1 1 1C C C Cox si p

= + +

Gate eq. becomes:

and,

-2 -1 0 1 20

0.2

0.4

0.6

0.8

1

Cinv

Typically, tinv is 0.8-1.0 nm thicker than tox.

Gated-Diode: MOS + p-n JunctionZero-bias on the p-n junction (equilibrium):

The electron quasi-Fermi level in the MOS is the same as the Fermi level of the p-type Si.⇒ Inversion occurs when ψs = 2ψB.

Gated-Diode: Reverse Biased (Nonequilibrium)

Spatial Variations of φn and φp

cE

E v

E f(a) -qφn

-qφp

n-typep-type

qV <0app

(b)

-qφn

-qφp

cE

E v

E f qV >0app

cE

E v

E f

x n

x n

-xp

-xp

cE

E v

E f

Vapp = φp − φn at junction boundaries.

pn = ni2exp[q(φp − φn)/kT]

Vapp > 0 for forward bias,Vapp < 0 for reverse bias.

(1) np(x = −xp) ≈ np0(x = −xp) exp(qVapp/kT ) (2) pn(x = xn) ≈ pn0(x = xn) exp(qVapp/kT )

(1) and (2) are the most important boundary conditions governing a p-n diode.

MOS under Nonequilibrium

For a p-n junction reverse-biased at a voltage VR, the electron concentration on the p-side of the junction is

If a gate voltage is applied to bend the p-type bands by ψs, the electron concentration at the surface is

For surface inversion to occur, i.e., n = Na,Need

nnN

ei

a

qV kTR= −2

/

n nN

e ei

a

q kT qV kTs R= −2

ψ / /

ψ ψs R Binv V( ) = + 2

MOS under Nonequilibrium

W VqNdm

si R B

a

=+2 2ε ψ( )Maximum depletion width at inversion is