On the Dynamics of Periodically Perturbed Quantum Systemsย ยท On the dynamics of periodically...

23

Transcript of On the Dynamics of Periodically Perturbed Quantum Systemsย ยท On the dynamics of periodically...

On the dynamics of periodically perturbed quantum systems

Consider a system of n ODEs

๐‘‘

๐‘‘๐‘ก๐œ“ ๐‘ก = ๐ด ๐‘ก ๐œ“ ๐‘ก , ๐œ“:โ„ โŸถ ๐‘€๐‘›ร—1 โ„‚

where ๐ด:โ„ โŸถ ๐‘€๐‘›ร—๐‘› โ„‚ is a continuous, (๐‘› ร— ๐‘›) matrix-valued function of real

parameter t, periodic with period T,

โˆ€ ๐‘ก โˆˆ โ„ โˆ€ ๐‘˜ โˆˆ โ„ค โˆถ ๐ด ๐‘ก + ๐‘˜๐‘‡ = ๐ด ๐‘ก .

Let ฮฆ ๐‘ก to be the fundamental matrix of this system, satisfying the following:

๐‘‘

๐‘‘๐‘กฮฆ ๐‘ก = ๐ด ๐‘ก ฮฆ ๐‘ก , detฮฆ ๐‘ก โ‰  0, ๐œ“ ๐‘ก = ฮฆ ๐‘ก ๐‘

Wroล„skian

Any general solution

(c = ๐‘๐‘œ๐‘›๐‘ ๐‘ก.) of

system of ODEs

On the dynamics of periodically perturbed quantum systems

Proposition 1.

a) There exists some ๐‘ก0 โˆˆ โ„ such that ๐œ“ ๐‘ก = ๐ธ ๐‘ก, ๐‘ก0 ๐œ“ ๐‘ก0 where

๐ธ ๐‘ก, ๐‘ก0 โ‰” ฮฆ ๐‘ก ฮฆ ๐‘ก0โˆ’1 is called the resolvent matrix or state transition matrix.

b) Resolvent matrix is a fundamental matrix itself, i.e. it satisfies the same differential

equation

๐‘‘

๐‘‘๐‘ก๐ธ ๐‘ก, ๐‘ก0 = ๐ด ๐‘ก ๐ธ ๐‘ก, ๐‘ก0 .

Proposition 2. Resolvent matrix has some basic properties:

a) Divisibility: ๐ธ ๐‘ก, ๐‘ก0 = ๐‘˜=1๐‘› ๐ธ ๐‘ก๐‘˜+1, ๐‘ก๐‘˜ for any partition ๐‘ก๐‘˜ , ๐‘ก๐‘˜+1 of ๐‘ก0, ๐‘ก , iff ๐‘ก0, ๐‘ก =

๐‘˜=1๐‘› ๐‘ก๐‘˜ , ๐‘ก๐‘˜+1 , and ๐‘ก๐‘˜ , ๐‘ก๐‘˜+1 โˆฉ ๐‘ก๐‘˜โ€ฒ , ๐‘ก๐‘˜โ€ฒ+1 = โˆ… for ๐‘˜ โ‰  ๐‘˜โ€ฒ

b) ๐ธ ๐‘ก, ๐‘ก0โˆ’1 = ๐ธ ๐‘ก0, ๐‘ก

c) ๐ธ ๐‘ก0, ๐‘ก0 = ๐‘–๐‘‘๐‘€๐‘› โ„‚ .

On the dynamics of periodically perturbed quantum systems

Theorem 1 (Floquetโ€™s).

If ฮฆ ๐‘ก is a fundamental matrix of a system of n ODEs and ๐ด ๐‘ก is a T-periodic function of

codomain in the ๐‘€๐‘› โ„‚ linear space of n-by-n matrices, then a matrix ฮฆ ๐‘ก + ๐‘‡ is also a

fundamental matrix of this system.

Remark: If ฮฆ ๐‘ก + ๐‘‡ is a fundamental matrix then there exist two constant matrices ๐ถ and ๐ตsuch that

ฮฆ ๐‘ก + ๐‘‡ = ฮฆ ๐‘ก ๐ถ, ๐ถ = ๐‘’๐ต๐‘‡ .

Assume a spectral decomposition ๐ต = ๐‘˜ ๐œ‡๐‘˜ ๐œ™๐‘˜ , .โ‹… ๐œ™๐‘˜:

๐‘’๐ต๐‘‡ =

๐‘˜

๐œ†๐‘˜ ๐œ™๐‘˜ , .โ‹… ๐œ™๐‘˜ , ๐œ†๐‘˜ = ๐‘’๐œ‡๐‘˜๐‘‡.

๐œ‡๐‘˜: โ€œFloquet

exponentsโ€

On the dynamics of periodically perturbed quantum systems

Let ๐œ“ ๐‘ก to be a solution of a system of ODEs, i.e. let it fulfill๐‘‘

๐‘‘๐‘ก๐œ“ ๐‘ก = ๐ด ๐‘ก ๐œ“ ๐‘ก .

Define ๐œ“๐‘˜ ๐‘ก โ‰” ฮฆ ๐‘ก ๐œ™๐‘˜ . Then it follows from Floquetโ€™s theorem that

ฮฆ ๐‘ก + ๐‘‡ ๐œ™๐‘˜ = ฮฆ ๐‘ก ๐‘’๐ต๐‘‡๐œ™๐‘˜ = ๐‘’๐œ‡๐‘˜๐‘‡๐œ“๐‘˜ ๐‘ก = ๐œ“๐‘˜ ๐‘ก + ๐‘‡

Putting ๐œ™๐‘˜ ๐‘ก = ๐œ“๐‘˜ ๐‘ก ๐‘’โˆ’๐œ‡๐‘˜๐‘ก one gets a set of โ€œbase solutionsโ€ of system of ODEs,

๐œ“๐‘˜ ๐‘ก = ๐‘’๐œ‡๐‘˜๐‘ก๐œ™๐‘˜ ๐‘ก , ๐œ™๐‘˜ ๐‘ก + ๐‘‡ = ๐œ™๐‘˜ ๐‘ก .

T-periodic

On the dynamics of periodically perturbed quantum systems

Considering ๐œ“๐‘˜ ๐‘ก0 + ๐‘‡ one obtains an eigenequation of ฮฆ ๐‘ก0 + ๐‘‡ ฮฆโˆ’1 ๐‘ก0 :

๐œ“๐‘˜ ๐‘ก0 + ๐‘‡ = ฮฆ ๐‘ก0 + ๐‘‡ ฮฆโˆ’1 ๐‘ก0 ๐œ™๐‘˜ ๐‘ก0 = ๐‘’๐œ‡๐‘˜๐‘‡๐œ™๐‘˜ ๐‘ก0

Floquetโ€™s operator

๐น ๐‘ก0 โ‰” ๐ธ ๐‘ก0 + ๐‘‡, ๐‘ก0

Floquetโ€™s basis

{๐œ™๐‘˜โ‰” ๐œ™๐‘˜ ๐‘ก0 }

๐ธ ๐‘ก0 + ๐‘‡, ๐‘ก0

On the dynamics of periodically perturbed quantum systems

โ€ข ๐ด ๐‘ก = ๐ป ๐‘ก โ€“ periodic, self-adjoint Hamiltonian of quantum-mechanical system

โ€ข ODEs describe an evolution of wavefunction (state) ๐œ“ ๐‘ก โ€“ Schrรถdinger equation:

๐‘‘

๐‘‘๐‘ก๐œ“ ๐‘ก = โˆ’

๐‘–

โ„๐ป ๐‘ก ๐œ“ ๐‘ก , ๐ป ๐‘ก + ๐‘‡ = ๐ป ๐‘ก .

โ€ข Resolvent matrix โ€“ unitary propagator ๐‘ผ ๐’•, ๐’•๐ŸŽ :

๐ธ ๐‘ก, ๐‘ก0 = ๐‘ˆ ๐‘ก, ๐‘ก0 = Texp โˆ’๐‘–

โ„

๐‘ก0

๐‘ก

๐ป ๐‘กโ€ฒ ๐‘‘๐‘กโ€ฒ ,๐‘‘๐‘ˆ ๐‘ก, ๐‘ก0

๐‘‘๐‘ก= โˆ’

๐‘–

โ„๐ป ๐‘ก ๐‘ˆ ๐‘ก, ๐‘ก0 .

โ€ข Floquetโ€™s operator ๐น ๐‘ก0 = ๐‘ˆ ๐‘ก0 + ๐‘‡, ๐‘ก0 = ๐‘’โˆ’๐‘–๐‘‡

โ„ ๐ป:

๐‘ญ ๐’•๐ŸŽ ๐“๐’Œ ๐’•๐ŸŽ = ๐’†โˆ’๐’Š๐‘ปโ„๐๐’Œ๐“๐’Œ ๐’•๐ŸŽ ,

๐œ™๐‘˜ โ‰” ๐œ™๐‘˜ ๐‘ก0 โ€“ Floquet basis, ๐œ–๐‘˜ โ€“ set of Bohr-Floquet quasienergies.

On the dynamics of periodically perturbed quantum systems

Floquet Hamiltonian:

๐ป๐น ๐‘Ÿ, ๐‘ก = ๐ป ๐‘Ÿ, ๐‘ก โˆ’ ๐‘–โ„๐‘‘

๐‘‘๐‘ก, ๐ป๐น๐œ“ ๐‘Ÿ, ๐‘ก = 0

Main analysis based on Schrรถdinger equation for states ๐œ™๐‘˜ ๐‘Ÿ, ๐‘ก = ๐œ™๐‘˜ ๐‘Ÿ, ๐‘ก + ๐‘‡ :

๐ป๐น๐œ™๐‘˜ ๐‘Ÿ, ๐‘ก = ๐œ–๐‘˜๐œ™๐‘˜ ๐‘Ÿ, ๐‘ก

Solutions are not unique:

They generate the same physical state ๐œ“๐‘˜ ๐‘Ÿ, ๐‘ก

๐œ™๐‘˜๐‘› ๐‘Ÿ, ๐‘ก โ‰” ๐œ™๐‘˜ ๐‘Ÿ, ๐‘ก ๐‘’๐‘–๐‘›ฮฉ๐‘ก ๐ป๐น๐œ™๐‘˜๐‘› ๐‘Ÿ, ๐‘ก = ๐œ–๐‘˜ + ๐‘›โ„ฮฉ ๐œ™๐‘˜ ๐‘Ÿ, ๐‘ก

๐œ–๐‘˜๐‘›Higher Floquet

modes

On the dynamics of periodically perturbed quantum systems

Extended Hilbert space โ„‹โŸถโ„‹โ€ฒ = โ„›โŠ—๐’ฏ (example: particle in free space)

๐’ฏ = โ„’2 ๐•‹๐‘‡1 , ๐‘‘๐‘ก = span ๐œ’๐‘› ๐‘ก โ‰” ๐‘’๐‘–๐‘›ฮฉ๐‘ก

Space of square-integrable functions

with period T = 2๐œ‹/ฮฉ, defined over a

circle ๐•‹1.

๐œ’๐‘›, ๐œ’๐‘›โ€ฒ =1

๐‘‡ ๐•‹1๐œ’๐‘› ๐‘ก ๐œ’๐‘›โ€ฒ ๐‘ก ๐‘‘๐‘ก = ๐›ฟ๐‘›๐‘›โ€ฒ

๐‘ž

๐œ’๐‘žโˆ— โ‹… ๐œ’๐‘ž = ๐‘–๐‘‘๐’ฏ

โ„› = โ„’2 โ„3, ๐‘‘๐‘‰ = span ๐‘“๐‘˜: โ„3 โ†’ โ„‚

Space of square-integrable functions

defined over โ„3.

๐‘“๐‘˜ , ๐‘“๐‘˜โ€ฒ =

โ„3

๐‘“๐‘˜ ๐‘Ÿ ๐‘“๐‘˜โ€ฒ ๐‘Ÿ ๐‘‘๐‘‰ ๐‘Ÿ = ๐›ฟ๐‘˜๐‘˜โ€ฒ

๐‘›

๐‘“๐‘˜โˆ— โ‹… ๐‘“๐‘˜ = ๐‘–๐‘‘โ„›

โ„›โŠ—๐’ฏ = span ๐‘’๐‘˜๐‘› โ‰” ๐‘“๐‘˜ โŠ—๐œ’๐‘› , ๐‘’๐‘˜๐‘› ๐‘Ÿ, ๐‘ก = ๐‘“๐‘˜ ๐‘Ÿ ๐‘’๐‘–๐‘›ฮฉ๐‘ก

๐‘˜๐‘›

๐‘’๐‘˜๐‘›โˆ— โ‹… ๐‘’๐‘˜๐‘› = ๐‘–๐‘‘โ„›โŠ—๐’ฏ , ๐‘’๐‘˜๐‘›

โˆ— ๐‘’๐‘˜โ€ฒ๐‘›โ€ฒ = ๐›ฟ๐‘˜๐‘˜โ€ฒ๐›ฟ๐‘›๐‘›โ€ฒ , ๐‘’๐‘˜๐‘›โˆ— โˆˆ โ„› โŠ—๐’ฏ โˆ—

On the dynamics of periodically perturbed quantum systems

Structure of Hamiltonian: ๐ป ๐‘Ÿ, ๐‘ก = ๐ป0 ๐‘Ÿ + ๐‘‰ ๐‘Ÿ, ๐‘ก , ๐‘‰ ๐‘Ÿ, ๐‘ก + ๐‘‡ = ๐‘‰ ๐‘Ÿ, ๐‘ก .

Idea: We are applying a transformation of variables:

๐œƒ = ฮฉ๐‘ก, ๐œƒ = ฮฉ

๐ป ๐‘Ÿ, ๐œƒ, ๐œƒ = ๐ป0 ๐‘Ÿ + ๐‘‰ ๐‘Ÿ, ๐œƒ + ๐œƒ๐‘๐œƒ

Canonical

quantization:

๐œƒ โ†’ ๐œƒ,

๐‘๐œƒ โ†’ โˆ’๐‘–โ„๐œ•

๐œ•๐œƒ,

๐œƒ, ๐‘๐œƒ = ๐‘–โ„

๐ป ๐‘Ÿ, ๐œƒ, ๐œƒ = ๐ป0 ๐‘Ÿ + ๐‘‰ ๐‘Ÿ, ๐œƒ โˆ’ ๐‘–โ„ฮฉ๐œ•

๐œ•๐œƒ, ๐ป ๐‘Ÿ, ๐œƒ, ๐œƒ ๐œ™๐‘˜๐‘› ๐‘Ÿ, ๐œƒ = ๐œ–๐‘˜๐‘›๐œ™๐‘˜๐‘› ๐‘Ÿ, ๐œƒ

On the dynamics of periodically perturbed quantum systems

๐ป ๐‘Ÿ, ๐œƒ, ๐œƒ ๐œ™๐‘˜๐‘› ๐‘Ÿ, ๐œƒ = ๐œ–๐‘˜๐‘›๐œ™๐‘˜๐‘› ๐‘Ÿ, ๐œƒ , ๐œ–๐‘˜๐‘› = ๐œ–๐‘˜ + ๐‘›โ„ฮฉ

๐œ™๐‘˜๐‘› โˆˆ โ„› โŠ—๐’ฏ, ๐’ฏ = โ„’2 ๐•‹2๐œ‹1 ,

1

ฮฉ๐‘‘๐œƒ

Square-integrable functions of period

2๐œ‹ over a unit circle ๐•‹1 = ๐œƒ = ๐›บ๐‘ก

How to include multi-mode setting?

Ansatz: add a sufficient number of new ๐œƒ๐‘– variables, such that

๐ป ๐‘Ÿ, ๐œƒ, ๐œƒ = ๐ป0 ๐‘Ÿ + ๐‘‰ ๐‘Ÿ, ๐œƒ1, โ€ฆ , ๐œƒ๐‘ โˆ’ ๐‘–โ„

๐‘—=1

๐‘

ฮฉ๐‘—๐œ•

๐œ•๐œƒ๐‘—, ฮฉ๐‘– =

2๐œ‹

๐‘‡๐‘–

On the dynamics of periodically perturbed quantum systems

New Schrรถdinger equation:

๐ป ๐‘Ÿ, ๐œƒ1, ๐œƒ2, โ€ฆ , ๐œƒ๐‘ ๐œ™๐‘˜๐‘›1๐‘›2โ€ฆ๐‘›๐‘ ๐‘Ÿ, ๐œƒ1, ๐œƒ2, โ€ฆ , ๐œƒ๐‘ = ๐œ–๐‘˜๐‘›1๐‘›2โ€ฆ๐‘›๐‘๐œ™๐‘˜๐‘›1๐‘›2โ€ฆ๐‘›๐‘ ๐‘Ÿ, ๐œƒ1, ๐œƒ2, โ€ฆ , ๐œƒ๐‘

Periodicity of ๐œ™ functions:

๐œ™๐‘˜๐‘›1๐‘›2โ€ฆ๐‘›๐‘ ๐‘Ÿ, ๐œƒ1 + 2๐œ‹, ๐œƒ2 + 2๐œ‹,โ€ฆ , ๐œƒ๐‘ + 2๐œ‹ = ๐œ™๐‘˜๐‘›1๐‘›2โ€ฆ๐‘›๐‘ ๐‘Ÿ, ๐œƒ1, ๐œƒ2, โ€ฆ , ๐œƒ๐‘

Extension of Hilbert space of ๐œ™ functions:

๐œ™๐‘˜๐‘›1๐‘›2โ€ฆ๐‘›๐‘ โˆˆ โ„› โŠ—๐’ฏ1โŠ—๐’ฏ2โŠ—โ‹ฏโŠ—๐’ฏ๐‘, ๐’ฏ๐‘— = โ„’2๐œ‹2 ๐•‹1,

1

๐›บ๐‘—๐‘‘๐œƒ๐‘—

๐‘—=1

๐‘

โ„’2๐œ‹2 ๐•‹1,

1

๐›บ๐‘—๐‘‘๐œƒ๐‘— โ‰ก โ„’2 ๐•‹1 ร— ๐•‹1 ร—โ‹ฏร— ๐•‹1, ๐‘‘๐œ = โ„’2 ๐•‹๐‘, ๐‘‘๐œ , ๐‘‘๐œ =

๐‘—=1

๐‘๐‘‘๐œƒ๐‘—

๐›บ๐‘—

Product measure

On the dynamics of periodically perturbed quantum systems

Qpen problem:

How to incorporate the multi-mode Floquet theory into Open Quantum Systems

realm?

Possible answer for ๐‘ = 2 (2-dimensional torus)

(H. R. Jauslin and J. L. Lebowitz, Chaos 1, 114 (1991))

Generalized Floquet operator ๐น ๐œƒ1 : โ„› โŠ— ๐’ฏ1 โŸถโ„›โŠ—๐’ฏ1,

๐น ๐œƒ1 = ๐‘‹ โˆ’๐‘‡2 ๐‘ˆ ๐‘‡2, 0 , ๐‘‹ โˆ’๐‘‡2 ๐œ™ ๐œƒ1 0 = ๐œ™ ๐œƒ1 0 โˆ’ ๐‘‡2 .

On the dynamics of periodically perturbed quantum systems

Theorem 2.

If ๐œ™ โˆˆ โ„›โŠ—๐’ฏ1 is an eigenfunction of Floquet operator, ๐น๐œ™ = ๐‘’โˆ’๐‘–๐œ†๐‘‡2๐œ™, then the

function ๐œ“ โˆˆ โ„›โŠ—๐’ฏ1โŠ—๐’ฏ2 defined

๐œ“ ๐œƒ1, ๐œƒ2 = ๐‘’๐‘–๐œƒ2๐œ†๐‘ˆ 0,โˆ’๐œƒ2 ๐œ™ ๐œƒ1 โˆ’ ๐œƒ2

is an eigenfunction of ๐ป ๐‘Ÿ, ๐œƒ1, ๐œƒ2, ๐œƒ1, ๐œƒ2 with eigenvalue (quasienergy) ๐œ†.

Proof in: H. R. Jauslin and J. L. Lebowitz, Chaos 1, 114 (1991)

Problem:

Spectrum of ๐ป may become very complex (p.p., a.c. or s.c.), even in finite

dimensional case.

On the dynamics of periodically perturbed quantum systems

๐‘†, โ„‹๐‘†

๐‘…1, โ„‹๐‘…1

๐‘…2, โ„‹๐‘…2

๐‘…3, โ„‹๐‘…3๐‘…4, โ„‹๐‘…4

๐‘…๐‘,

โ„‹๐‘…๐‘

โ„‹ = โ„‹๐‘† โŠ—โ„‹๐‘…1 โŠ—โ‹ฏโŠ—โ„‹๐‘…๐‘

๐ป = ๐ป๐‘† +

๐‘—=1

๐‘

๐ป๐‘…๐‘— +

๐‘—=1

๐‘

๐‘‰๐‘—

๐ป๐‘† โ‰ก ๐ป๐‘† โŠ— ๐ผ๐‘…1 โŠ—โ‹ฏโŠ— ๐ผ๐‘…๐‘

๐ป๐‘…๐‘— โ‰ก ๐ผ๐‘† โŠ—โ‹ฏโŠ—๐ป๐‘…๐‘— โŠ—โ‹ฏโŠ— ๐ผ๐‘…๐‘

๐‘‰๐‘— = ๐œ†๐‘—

๐›ผ

๐‘†๐‘—,๐›ผ โŠ—๐‘…๐‘—,๐›ผ

๐‘†๐‘—,๐›ผ:โ„‹๐‘† โŸถโ„‹๐‘†, ๐‘…๐‘—,๐›ผ:โ„‹๐‘…๐‘— โŸถโ„‹๐‘…๐‘—

๐‘‰1

๐‘‰2

๐‘‰3

๐‘‰4

๐‘‰๐‘

โ„’๐œŒ ๐‘ก =๐‘‘๐œŒ ๐‘ก

๐‘‘๐‘ก=

๐‘—,๐‘˜

๐œ”

๐‘žโˆˆโ„ค

๐บ๐‘˜๐‘—๐œ” + ๐‘žฮฉ ๐‘†๐‘—,๐‘˜ ๐‘ž, ๐œ” ๐œŒ ๐‘ก ๐‘†๐‘—,๐‘˜

โˆ— ๐‘ž, ๐œ” โˆ’1

2๐‘†๐‘—,๐‘˜โˆ— ๐‘ž, ๐œ” ๐‘†๐‘—,๐‘˜ ๐‘ž, ๐œ” , ๐œŒ ๐‘ก ,

๐บ๐‘˜๐‘—๐œ” =

โˆ’โˆž

โˆž

๐‘’๐‘–๐œ”๐‘ก ๐‘…๐‘—,๐‘˜ ๐‘ก ๐‘…๐‘—,๐‘˜ ๐‘‘๐‘ก , ๐บ โˆ’๐œ” = ๐‘’โˆ’โ„๐œ”๐‘˜๐ต๐‘‡๐บ ๐œ”

On the dynamics of periodically perturbed quantum systems

KMS condition

(in equilibrium)

Floquet Theorem โ„ฑ๐œ™๐‘˜ = ๐‘’โˆ’๐‘–โ„๐œ–๐‘˜๐‘‡๐œ™๐‘˜

๐œ–๐‘˜ quasienergies

๐œ™๐‘˜ Floquet basis

Fourier transform of

๐‘†๐‘—,๐‘˜ ๐‘ก

Bohr frequencies

๐œ” =1

โ„๐œ–๐‘˜ โˆ’ ๐œ–๐‘™

๐œ” + ๐‘žฮฉ , ๐‘ž โˆˆ โ„ค

Bohr โ€“ Floquet

quasifrequencies

๐‘‰๐‘— ๐‘ก = ๐‘ˆโˆ— ๐‘ก ๐‘‰๐‘—๐‘ˆ ๐‘ก = ๐œ†๐‘—

๐‘˜

๐‘†๐‘—,๐‘˜ ๐‘ก โŠ— ๐‘…๐‘—,๐‘˜ ๐‘ก , ๐‘ˆ ๐‘ก = ฮค exp โˆ’๐‘–

โ„

0

๐‘ก

๐ป๐‘† ๐‘กโ€ฒ ๐‘‘๐‘กโ€ฒ

On the dynamics of periodically perturbed quantum systems

ฮ›๐‘ก,๐‘ก0 = ฮคexp

๐‘ก0

๐‘ก

โ„’ ๐‘กโ€ฒ ๐‘‘๐‘กโ€ฒ โ‰ก ๐’ฐ ๐‘ก, ๐‘ก0 ๐‘’๐‘กโˆ’๐‘ก0 โ„’

Dynamical map reconstructed from its interaction picture:

๐’ฐ ๐‘ก, ๐‘ก0 โ€“ one-parameter unitary map defined on C*-algebra of operators ๐”„,

๐’ฐ:๐”„ ร— 0,โˆž โŸถ ๐”„ defined as ๐’ฐ ๐‘ก ๐ด = ๐‘ˆ ๐‘ก ๐ด๐‘ˆโˆ— ๐‘ก .

๐œŒ ๐‘ก = ฮ›๐‘ก ๐œŒ0 = ๐‘ˆ ๐‘ก ๐‘’๐‘กโ„’๐œŒ0 ๐‘ˆโˆ— ๐‘ก

๐œŒ ๐‘ก in interaction

picture

๐œŒ ๐‘ก in Schrรถdinger

picture

On the dynamics of periodically perturbed quantum systems

9 Floquet quasifrequencies: 0,ยฑฮฉ๐‘… , ยฑฮฉ,ยฑ ฮฉ โˆ’ ฮฉ๐‘… , ยฑ ฮฉ + ฮฉ๐‘…

Interaction with molecular gas Interaction with

electromagnetic field

๐‘…๐‘’๐‘š,

โ„‹๐‘’๐‘š

๐‘…๐‘”, โ„‹๐‘”

Two-level system

โ„‹๐‘† โ‰ก โ„‚2

Bosonic heat bath

(EM field)

โ„ฑ+ โ„‹๐‘โ„Ž =

๐‘=0

โˆž1

๐‘!โ„‹๐‘โ„Ž

โŠ—๐‘

+

๐‘‰๐‘’

laser, ฮฉ๐œ”0

Dephasing bath

(molecular gas),

โ„‹๐‘” โ‰ก โ„’2 โ„3, ๐‘‘๐‘‰ ๐‘Ÿ

๐‘‰๐‘”

๐‘‰๐‘” = ๐œŽ3โŠ—๐น๐‘”

๐น๐‘”:โ„‹๐‘” โŸถโ„‹๐‘”

๐‘‰๐‘’ = ๐œŽ1โŠ— ๐‘Žโˆ— ๐‘“ + ๐‘Ž ๐‘“

On the dynamics of periodically perturbed quantum systems

Markovian master equation

in interaction picture:

๐‘‘

๐‘‘๐‘ก๐œŒ ๐‘ก = โ„’๐‘๐‘œ๐‘ ๐‘œ๐‘›๐‘–๐‘ + โ„’๐‘‘๐‘’๐‘โ„Ž๐‘Ž๐‘ ๐‘–๐‘›๐‘” ๐œŒ ๐‘ก

๐‘‘๐œŒ11 ๐‘ก

๐‘‘๐‘ก= โˆ’ ๐›ผ + ๐‘’

โˆ’ฮฉโˆ’ฮฉ๐‘…๐‘‡๐‘’ ๐›ฟโˆ’ + ๐›ฟ+ ๐œŒ11 ๐‘ก + ๐‘’

โˆ’ฮฉ๐‘…๐‘‡๐‘‘๐›ผ + ๐›ฟโˆ’ + ๐‘’

โˆ’ฮฉ+ฮฉ๐‘…๐‘‡๐‘’ ๐›ฟ+ ๐œŒ22 ๐‘ก

๐›พ =1

2๐›ผ0 + ๐›ผ 1 + ๐‘’

โˆ’ฮฉ๐‘…๐‘‡๐‘‘ + ๐›ฟ0 1 + ๐‘’

โˆ’ฮฉ๐‘‡๐‘’ + ๐›ฟโˆ’ 1 + ๐‘’

โˆ’ฮฉโˆ’ฮฉ๐‘…๐‘‡๐‘’ + ๐›ฟ+ 1 + ๐‘’

โˆ’ฮฉ+ฮฉ๐‘…๐‘‡๐‘’

๐‘‘๐œŒ22 ๐‘ก

๐‘‘๐‘ก= โˆ’

๐‘‘๐œŒ11 ๐‘ก

๐‘‘๐‘ก,

๐‘‘๐œŒ21 ๐‘ก

๐‘‘๐‘ก= โˆ’๐›พ๐œŒ21 ๐‘ก ,

๐‘‘๐œŒ12 ๐‘ก

๐‘‘๐‘ก= โˆ’๐›พ๐œŒ12 ๐‘ก .

๐›ฟยฑ =ฮฉ๐‘… ยฑ ฮ”

2ฮฉ๐‘…

2

๐บ๐‘’ ฮฉ ยฑ ฮฉ๐‘… , ๐›ผ0 =2ฮ”

ฮฉ๐‘…

2

๐บ๐‘” 0 , ๐›ผ =2๐‘”

ฮฉ๐‘…

2

๐บ๐‘” ฮฉ๐‘… ,

On the dynamics of periodically perturbed quantum systems

1. U. Vogl, M. Weitz: โ€œLaser cooling by collisional redistribution of radiationโ€,

Nature 461, 70-73 (3 Sep. 2009).

2. R. Alicki, K. Lendi: โ€œQuantum Dynamical Semigroups and Applicationsโ€,

Lecture Notes in Physics; Springer 2006.

3. R. Alicki, D. Gelbwaser-Klimovsky, G. Kurizki: โ€œPeriodically driven quantum

open systems: Tutorialโ€, arXiv:1205.4552v1.

4. K. Szczygielski, D. Gelbwaser-Klimovsky, R. Alicki: โ€œMarkovian master

equation and thermodynamics of a two-level system in a strong laser

fieldโ€, Phys. Rev. E 87, 012120 (2013)

5. D. Gelbwaser-Klimovsky, K. Szczygielski, R. Alicki: โ€œLaser cooling by

collisional redistribution of radiation: Theoretical modelโ€ (in preparation)

6. R. Alicki, D. A. Lidar, P. Zanardi: โ€œInternal consistency of fault-tolerant

quantum error correction in light of rigorous derivations of the quantum

Markovian limitโ€ Phys. Rev. A 73, 052311 (2006)