Universality of random matrix dynamics

21
Universality of random matrix dynamics joint work with Gernot Akemann and Mario Kieburg arxiv:1809.05905 Z.Burda Random Matrix Theory Application in the Information Era April 29th - May 3rd, Kraków

Transcript of Universality of random matrix dynamics

Page 1: Universality of random matrix dynamics

Universality of random matrix dynamics

joint work with Gernot Akemann and Mario Kieburg

arxiv:1809.05905

Z.Burda

Random Matrix TheoryApplication in the Information Era

April 29th - May 3rd, Kraków

Page 2: Universality of random matrix dynamics

Outline

• statics/dynamics of random matrix

• additive, multiplicative stochastic processes

• evolution of local statistics

• products of Ginibre matrices

• discrete time depth of the system

• WSR = width-to-spacing ratio

• phase transition between deep/shallow systems

• kernel (WSR)

• conjecture: universality(symmetry + WSR)

Page 3: Universality of random matrix dynamics

Complex Ginibre matrix

G = [Gij]i=1,…,N,j=1,…,N

Gij ∼ iid complex 𝒩(0,1)

Rescaled version

g = G/ N = [Gij / N]i=1,…,N,j=1,…,N

Page 4: Universality of random matrix dynamics

XM = σGM + XM−1

H =12 (XM + X†

M)

XM = σ(GM + GM−1 + … + G1) + X0

• Dyson Random Walk

• Eigenvalues of

λ1, λ2, …, λN

• Continuum limit

M, N → ∞ ; t = MΔt ; σ ∼ Δt ; Δt → 0

Page 5: Universality of random matrix dynamics

• Multiplicative stochastic process

XM = GMXM−1

XM = GMGM−1…G1X0 , X0 = 1

• Eigenvalues of Y = (GM…G1)†(GM…G1)

• Limit M, N → ∞

L =1

2Mlog Y , μj =

12M

log λj , j = 1,…, N

• Lyapunov exponents

|x⟩M = GMGM−1…G1 |x⟩0

Page 6: Universality of random matrix dynamics

N = 5M = 7

• Deep systems

Multilayered systems

• Shallow systems

• Critical systems

M ≫ N

M ∼ N

M ≪ N

|x⟩0|x⟩M

Page 7: Universality of random matrix dynamics

Limit N → ∞

M = M(N) increasing function

a = limN→∞

NM(N)

• Deep systems

• Shallow systems

• Critical systems

a = 0

0 < a < ∞

a = ∞

e.g.

e.g.

e.g.

M ∼ N2

M ∼ N1/2

M ∼ N

Page 8: Universality of random matrix dynamics

Macroscopic density / microscopic density

y = g†1 g1

λ

ρy(λ)

p = ∫λ

0ρy(x)dx

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

p

ρu(p)

1 2 3 4

0.2

0.4

0.6

0.8

Page 9: Universality of random matrix dynamics

Macroscopic density of y = (gM…g1)†(gM…g1)

x(ϕ) =1

sin(ϕ)(sin ((M + 1)ϕ))

M+1

(sin(Mϕ))M , ϕ ∈ (0,π

M + 1 )

ρy(ϕ) =1π

(sin(ϕ))2 (sin(Mϕ))M−1

(sin ((M + 1)ϕ))M

T. Neuschel 2014

x ∈ (0,x*)Support: where x* =(M + 1)(M+1)

MM

ρy(x) ∼ x−M/(M+1)

ρy(x) ∼ (x* − x)1/2Hard edgeSoft edge

for N → ∞

1 2 3 4

0.2

0.4

0.6

0.8

Page 10: Universality of random matrix dynamics

Limiting density for N → ∞, M → ∞

u = y1/M = ((gM…g1)†(gM…g1))1/M

Eigenvalues of u are uniformly distributed on (0,1)

y → u = y1/M ; y = uM or Y = (Nu)MUnfolding

Zooming in λ = (Np+ζ)M

Page 11: Universality of random matrix dynamics

RY,k(λ1, …, λk) = det [KY(λi, λj)]i,j=1,…,k

KY(x, y) =1x

N

∑j=1

( xy )

j

Gj(y),

Gj(y) = ∫+i∞

−i∞

dt2πi

sin(πt)πt

yt ( Γ( j − t)Γ( j) )

M+1 Γ(N − j + 1 + t)Γ(N − j + 1)

Exact result for finite M,N

G. Akemann, Z. Burda, 2012G. Akemann, M. Kieburg, L. Wei, 2013G. Akemann, Z. Burda, M. Kieburg, 2014D.-Z. Liu, D. Wang, and L. Zhang, 2014

Page 12: Universality of random matrix dynamics

WSRj =σj

sj

Width-to-Spacing Ratio

-6 -4 -2 0 2 4 6

σj

2sj = xj+1 − xj−1

WSRj ≪ 1

WSRj > 1

discrete spectrum contiuous spectrum

Page 13: Universality of random matrix dynamics

For the product of M Ginibre matrices of dimension N x N

WSRj ≈j

Mfor j = 1,…, N

WSRN ≈NM

for the rightmost peak

In the limit N → ∞ , N/M → a

WSRj=pN ≈ ap

a = 0 0 < a < ∞ a = ∞

Page 14: Universality of random matrix dynamics

Kbulk(ξ, ζ) =1

2πapRe

+∞

∑ν=−∞

exp ( ν(ξ − ζ)ap ) erfi (

π 2ap2

+ iζ − ν

2ap )

Erfi kernel

Kbulk(ξ, ζ) =sin(π(ξ − ζ))

π(ξ − ζ)

Kbulk(ξ, ζ) =+∞

∑ν=−∞

δ(ξ − ν)Deep systems

Shallow systems

(a = 0)

(a = ∞)

D.-Z. Liu, D. Wang, Y. Wang, arxiv:1810.00433G. Akemann, Z. Burda, M. Kieburg, arxiv:1809.05905

Page 15: Universality of random matrix dynamics

WSR jÆ0WSR j=0.25WSR j=1WSR j=4WSR jÆ•

-2 -1 0 1 2

1

2

3

x

r bulkHxL

Local level statistics in the bulk

ρbulk(ξ) =1

2πapRe

+∞

∑ν=−∞

erfi (π 2ap

2+ i

ζ − ν2ap )

ρbulk(ξ) = 1

ρbulk(ξ) =+∞

∑ν=−∞

δ(ξ − ν)Deep systems

Shallow systems

(a = 0)

(a = ∞)

Page 16: Universality of random matrix dynamics

Soft edge

Explicit integral representation of the kernel (a)

Airy statisticsDirac delta statistics(a = 0) (a = ∞)

Hard edge

Dirac delta statistics (a = 0)

ρLE(μ) = ∑j=1

δ (μ −ψ( j)

2 )

Page 17: Universality of random matrix dynamics

Transitional statistics

WSRj ≈j

Mj ∼ O(N)

j ∼ O(M)j ∼ O(1)

Page 18: Universality of random matrix dynamics

Dysonian random walk

ρ(x, t = 0) =+∞

∑j=−∞

δ(x − αj) ρ(x, t = ∞) = 1

Kbulk(ξ, ζ) =1π

Re+∞

∑k=−∞

exp (−2π2apk(k − 1))exp (iπ(ζ + (2k − 1)ξ))

2πapk + i(ζ − ξ)

K. Johansson, arXiv:math/0404133

GUEPicket fences

M. Duits, J. Verbaarshot

Page 19: Universality of random matrix dynamics

Local statistics depends on symmetry class and WSR

‡ i.i.d. Bernouli

Ú coupled Ginibre

Ê i.i.d. Ginibre

M=250, N=30

ÊÊ

Ê

Ê

Ê

ÊÊ

Ê

Ê

ÊÊÊ

Ê

Ê

Ê

ÊÊ

Ê

Ê

ÊÊÊÊ

Ê

ÊÊ

Ê

Ê

Ê

Ê

ÊÊÊ

Ê

Ê

ÊÊ

Ê

Ê

Ê

ÊÊÊ

Ê

ÊÊ

Ê

Ê

Ê

ÊÊÊ

Ê

Ê

Ê

Ê

ÊÊ

Ê

Ê

Ê

Ê

Ê

Ê

Ê

ÊÊÊÊ

Ê

ÊÊ

ÚÚ

Ú

Ú

Ú

Ú

Ú

Ú

Ú

ÚÚÚ

Ú

ÚÚ

ÚÚ

Ú

Ú

ÚÚÚ

Ú

Ú

Ú

Ú

Ú

Ú

Ú

ÚÚÚ

Ú

ÚÚ

Ú

Ú

Ú

ÚÚ

ÚÚ

Ú

Ú

Ú

ÚÚ

Ú

Ú

Ú

ÚÚ

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

ÚÚ

Ú

Ú

Ú

ÚÚ

ÚÚ

Ú

ÚÚ

‡‡

‡‡

‡‡

‡‡

‡‡‡

‡‡

‡‡

‡‡‡

‡‡‡

‡‡‡

‡‡

‡‡

‡‡

‡‡

‡‡‡

-2 -1 0 1 2

1

2

x

r bul

kHxL

Universality conjecture

Page 20: Universality of random matrix dynamics

Summary

deep critical shallowM ≫ N M ∼ N M ≪ N

• local statistics depends on WSR (width-to-spacing ratio)

• bulk, soft edge, hard edge, transitional region

• local statistics identical for DRW and product of Ginibre matrices

• universality conjecture: symmetry class + WSR

N, M → ∞ , N/M → aY = (GM…G1)†(GM…G1)

Page 21: Universality of random matrix dynamics

Thank you!