Nanostructured Thermoelectrics. The New Paradigm · 2012. 4. 13. · PbS-Bi 2S 3 phase diagram. The...

29
Nanostructures Thermoelectrics. The New paradigm Sponsored by the Mercouri Kanatzidis Department of Energy 2012 Thermoelectric Applications Workshop Baltimore, MD

Transcript of Nanostructured Thermoelectrics. The New Paradigm · 2012. 4. 13. · PbS-Bi 2S 3 phase diagram. The...

  • Nanostructures Thermoelectrics. The New

    paradigm

    Sponsored by the

    Mercouri Kanatzidis

    Department of Energy

    2012 Thermoelectric Applications Workshop Baltimore, MD

  • electronic band structure of PbTe

    a≈6.45 Å (300K)

    m*Σ (~2m0) >> m*L(~0.2m0)

    Valence band is multiple peaks

  • L Σ

    E (e

    V)

    ~0.26 eV

    T = 300 K

    VB

    CB

    Light hole band Heavy hole band

    EF

    L Σ

    E (e

    V)

    ~0.30 eV

    T = 500 K

    VB

    CB

    Light hole band Heavy hole band

    Thermal excitation of holes to Σ band

    Valence bands of PbTe….

    Rising temperature

  • 10/24/11

    Earth abundant materials: Recent exciting results: thermal conductivity reduction

  • thermal conductivity reduction below alloy limit

    PbSe-PbS x%

    Density of precipitates increases with increasing x.

  • PbSe-x%PbS : doped with 0.3% of In x = 0, 4, 8, and 16

    • 0% of PbS/0.3% of In : 3.04E19 cm-3 • 4% of PbS/0.3% of In : 3.68E19 cm-3 • 8% of PbS/0.3% of In : 5.58E19 cm-3 • 12% of PbS/0.3% of In : 4.67E19 cm-3 • 8% of PbS/0.3% of Pb* : 2.6E19 cm-3 • 8% of PbS/0.3% of PbCl2* : 2.8E19 cm-3 • 12% of PbS/0.3% of PbCl2* : 2.4E19 cm-3 • 16% of PbS/0.3% of PbCl2* : 2.2E19 cm-3 • 12% of PbS/0.3% of Bi* : 3.2E19 cm-3

    Androulakis, J. ; Todorov, I. ; He, J. ; Chung, D. ; Dravid, V. ; Kanatzidis, M. ; J. Am. Chem. Soc. 2011, 133, 10920

  • 10/24/11

    PbSe-PbS system: high ZT at 900K

    Dopant plays strong role in the resulting ZT.

    PbSe-PbS

  • Thermoelectric Properties of n-type PbS

  • Binary phase diagram of PbS-Bi2S3(Sb2S3) Garvin P. F., Neues Jahrb. Mineral., Abh., 118, 235(1973)

    PbS-Bi2S3 phase diagram

  • The solubility limit of PbCl2 in PbS ranges between 1.0 and 2.0 mol %

    n-type PbS

  • PbS with second phases without doping

    n-type PbS with second phases

    Second phases: Bi2S3, Sb2S3

  • ~ 0.80 @ 723 K

    300 400 500 600 7000

    500

    1000

    1500

    2000

    2500

    σ(Sc

    m-1)

    PbS PbS+1% PbCl2 PbS+1% Bi2S3+1% PbCl2 PbS+2% Bi2S3+1% PbCl2 PbS+3% Bi2S3+1% PbCl2 PbS+4% Bi2S3+1% PbCl2 PbS+5% Bi2S3+1% PbCl2

    Temperature (K)

    300 400 500 600 700-400

    -300

    -200

    -100

    0

    S(µV

    K-1 )

    Temperature (K)

    Seebeck independent on second phases

    300 400 500 600 7000

    3

    6

    9

    12

    15

    PF (µW

    cm-1K-

    2 )

    Temperature (K)

    Significantly reduce

    300 400 500 600 7000.0

    0.2

    0.4

    0.6

    0.8

    1.0 PbS PbS+1% PbCl2 PbS+1% Sb2S3+1% PbCl2 PbS+2% Sb2S3+1% PbCl2 PbS+3% Sb2S3+1% PbCl2 PbS+4% Sb2S3+1% PbCl2 PbS+5% Sb2S3+1% PbCl2

    Temperature (K)

    ZT

    PbS with Sb2S3~ 0.78 @ 723 K

    n-type PbS with second phases

  • PbS+1.0 at. % Bi2S3+1.0 at. % PbCl2 PbS + 1.0 at. % Sb2S3 + 1.0 at. % PbCl2

    TEM: nanostructured PbS

  • ZT ~ 1.1 @ 923 K ZT ~ 1.06 @ 923 K

    M: normal melting B: Bridgman S: SPS BN coating

    Good repeatability !

    Nanostructures n-type PbS, ZT=1.1

  • Atoms/molecular motifs

    Crystal lattice & point defects

    Interfaces

    Macro-, and device-scale Interfaces

    Precipitates & nanoscale defects

    Electronic Structure

    Crystal Structure

    Classical Microstructure

    Thin films/multilayers Interfaces Residual stresses

    Macroscale Device Architecture

    Angstrom and sub-nm scale

    Sub-nm to Nano-scale

    Micro-to macro-scale

    Hierarchical Length-scale

    Architecture:

    Implications for “Nanostructured”

    Thermoelectrics

    Interactions along varied length-scales

    Identification of individual microstructure elements in electronic and phonon transport

    Tailoring and design of “microstructure”

    Panoscopic view of thermoelectrics

  • Conclusions

    • Strain at interfaces increases phonon scattering • Small nanostructured (1-10 nm) are more likely to create

    strain • Superior properties in p-type PbTe-SrTe achieved through

    endotaxial placement of nanoprecipitates – Nanostructures do not reduce the power factor and function

    exclusively as phonon scatterers

    • Large power factor enhancements are need for continued ZT increases

    • PbSe-PbS is nanostructured! • PbSe-PbS n-type ZT ~1.3 at 900K. • High performance in PbS (ZT>1)

    Nanostructures Thermoelectrics. The New paradigmSlide Number 2CollaboratorsSlide Number 4Slide Number 5Introducing strain into PbTeSlide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Optimizing charge transportSlide Number 15CaTe in PbTeEarth abundant materials: Recent exciting results: thermal conductivity reduction�Slide Number 18PbSe-x%PbS : doped with 0.3% of In�x = 0, 4, 8, and 16Slide Number 20Thermoelectric Properties of n-type PbS� PbS-Bi2S3 phase diagramn-type PbSn-type PbS with second phasesn-type PbS with second phasesTEM: nanostructured PbSNanostructures n-type PbS, ZT=1.1Slide Number 28Conclusions