Nanolasers - fu-berlin.de

30
[email protected], http://nanophotonics.asu.edu Cun-Zheng Ning [email protected], http://nanophotonics.asu.edu School of Electrical, Computer, and Energy Engineering Arizona State University Support: ARO, AFOSR, DARPA, NASA, SFAz Nanolasers: Current Status of Trailblazer of Synergetics

Transcript of Nanolasers - fu-berlin.de

Page 1: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Cun-Zheng Ning

[email protected], http://nanophotonics.asu.edu

School of Electrical, Computer, and Energy Engineer ing

Arizona State University

Support: ARO, AFOSR, DARPA, NASA, SFAz

Nanolasers: Current Status of Trailblazer of Synergetics

Page 2: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

First laser diode (GaAs) Lincoln Lab

0.5 mm

Miniaturization of Semiconductor Lasers

mm ~ cm scale(1962)

100 nm ~ µm scale(2012)

Page 3: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Engineering Photon -Semiconductor InteractionRadiative coupling between light and semiconductor

( )Eeρ•( )ωρ phcvr ∝

( ) gD

e EEm

E −

=

2

3

2

*

23 2

21

hπρ

( )n

De

EE

mE

−= 12 *

1

hπρ

( )2

*2

hπρ m

EDe =

)(20n

De EE −= δρ

Bulk

QW:

QWR:

QD:

Density of Electronic StatesDensity of Photonic States

( )( ) Q

VF

cD

ph

cavph

P

==

3

20

30

43 λπωρ

ωρPurcell Enhancement

Siz

e Q

uant

izat

ion

( )32

20

03

cD

ph πωωρ =

( ) ( ) 22

0

11

κωωκ

πωρ

+−=

c

cavph V

Decreasing Vc

Cav

ity S

ize

Red

uctio

nFree space:

3D cavity:

Page 4: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Siz

e Q

uant

izat

ion

Density of Electronic States

Engineering the Densities of States

More efficiently use of photons More efficiently use of electrons/holes

More efficiently coupling photons and semiconductor s

( )32

20

03

cD

ph πωωρ =

( )0ωρ cavph

Cav

ity S

ize

Red

uctio

n

Density of Photonic States

Page 5: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Why Nanolasers? From Application Point of View

• Optical and electronic integration, size compatibility with electronic devices

• On-chip light sources (e.g., micro and nano-fluidic)

• VLSI photonics: more functions in smaller volume

• General trends in nanotechnology development: the smaller the better

• Other new applications not envisioned yet, but will be enabled once smaller and smaller lasers are available

Page 6: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Moore’s Law in Photonics

M.K. Smit, Moore’s law in photonics

Page 7: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Moore’s Law in Photonics Technology Breakup

M.K. Smit, Moore’s law in photonics

Page 8: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Moore’s Law for Microelectronics

Page 9: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Challenges for Nanophotonics

• Size, Size, and Sizea) Passive devices (waveguides): , single mode fiber:

5 µµµµm; silicon wire or other semiconductor nanowire: 10 0-200 nmb) Active devices: (lasers): gain length required t o achieve threshold:

1-100 µµµµm, large footprint, difficult for integrate

• Complexity, diversity, and cost: diversity of devic es and materials, small market share of each device, expen sive manufacturing

• Compatibility with silicon for integration with ele ctronicslight emitting materials: non-silicon (III-V, II-VI ) such asGaAs, InP

• No silicon light source (external to CMOS)

• …

n2/λ>

Page 10: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Examples of Smallest Lasers…( before 2007)(what is in common: pure dielectric waveguide struc tures)

55 nm-think ZnO nanocrystal layer is dispersed on a SiO2 disk of 10 microns in diameter, Liu et al, APL (2004)

Erbium doped silica disk of 60 microns in diameter on a silicon stem (Kippenberg, PRA 2006) (optically pumped)

InAs/AlGaAs single layer of QD, 60 nW output (Painter group, Opt. Exp. 2006)

substra

tenanowire

Park et al. Science 305, 1444 (2004).(Optically pumped, RT-CW, smallest, PC laser,

Baba’s group, InGaAsP/InP, Opt. Exp.2007)

Page 11: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Questions• Can lasers be made even smaller?

• What is the ultimate size limit?

• How about electrical injection, rather than optical ?

• Can you make a laser that is smaller than vacuum wavelength in all three dimensions (DARPA NACHOS program)?

NACHOS (Nanoscale Architectures for Coherent Hyper- Optic Sources)

Goals: Electrical injection, room temperature, subw avelength in all 3-dimensions

Page 12: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

• Bergman and Stockman, PRL 2003

• Stockman and Bergman, Laser Phys, 2004

• Nezhad, Tedz, and Fainman, Opt. Exp. 2004

• Maier, Opt. Comm. 2006

• Miyazaki and Kurokawa, PRL 2006

How to Make Smaller Cavities?

• Pure dielectric cavities are not adequate• Metallic, especially plasmonic structures offer

potential hope

Plasmonics, Spasers, Before 2007….

Page 13: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Plasmon Photon Coupling

Plasma/Plasmon: Longitudinal excitation of electron motion (in metals or doped semiconductors)

Drude model:

Surface Plasmon or Surface Plasmon Polariton: Coupled EM wave and plasmon excitation at the interface of a dielectric layer and a metallic layer.

2

2( ) 1 p

i

ωε ω

ω γω= −

+

1/22

0p

Ne

ε

=

1 2

1 2zk

c

ε εωε ε

=+

ε1

ε2

Page 14: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Surface Plasmon Polariton (SPP)

Near SPP Resonance:

1) Huge wave compression (35 nm)2) Strong localization ( few nm)3) Huge loss (3.6 million 1/cm)

Silv

er

Silv

er

Sem

icon

duct

or

SPP wave along the interface

(eV)

zkikieII )(20

′′+′=zk ′′

zk ′

4.1535

5400 ==nm

nm

effλλ

zeff k ′

= πλ 2

~ nm

Page 15: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

BPP

SPP

Lasers, Spasers, and Photon -Plasmon Coupling

SPASERS: Bergman and Stockman, Phys. Rev. Lett. 90, 027402 (2003)

ω

k

2pω

nc

kω=

SP BPPlasmonicity

Page 16: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Light Coupling to SPP Mode: Dramatic Purcell Enhancement

InGaN QW-Silver (8nm) by GaN thickness:

(Neogi et al, PRB66, 153305(2002)

Neogi et al, PRB, 2002

Page 17: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Feasibility of a Semiconductor-Core Metal-Shell(Jan 2007 SPIE Paper)

Maslov-Ning , 2007

Page 18: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

First Experimental Demonstration of the Semiconductor-Metal Core-Shell Laser

M. Hill et al. Nat. Photonics, 1, (2007),589

Page 19: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Noginov/Shalaev, 2009)

250 nm

230

nm

(Wu Group, Berkeley)

(Lieber, Harvard, Park, Korea)Fainman UCSD)

A Zoo of Nanolaser Designs… after 2007(What is in Common? Everyone Likes Metals)

Hill , 2007 Chuang-Bimberg Group

Ti/Au

Ni/Au

Sapphire

Alumina

Aluminum

MQW

p-GaN

n-GaN

PMMA

Yang Group

Maslov-Ning , 2007

(Zhang Group, 2009

Hill -Ning 2009

Painter Group 2009

Page 20: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Summary of Short History and Status

• Design and theoretical study: Maslov and Ning, Proc . SPIE 6468, (2007)64680I

• 1st experimental demonstration: M. Hill et al. Nat. Pho tonics, 1, (2007),589

• Electrical injection sub-half-wavelength laser: Hil l et al, Opt. Exp., 2009

• Metal encased in a doped shell: Noginov et al., 200 9

• Wire on a metal surface: Oulton et al., 2009

• Metal-semiconductor disk laser, Parahia et al, APL, 95 (2009) 201114

• Optically pumped lasing at RT: Nezhad et al, Nat. Ph ontonics, 4, (2010),395

• Nano patch laser: Yu et al., Opt. Exp. , 18 (2010) 8790

• Nano pan laser: Kwon et al. (2010), Nano. Lett, 10, (2010),3679

• Metallic cavity VCSEL, RT operation, Lu et al, Appl . Phys. Lett, 96, 251101 (2010)

Goals: Sub-wavelength, CW RT operation, electrical injection

Page 21: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Semiconductor-Metal Core-Shell Nanolaser

InP Subs.

p-InP

InGaAs

Ag

Si3N4

n-InP

Ti/Pt/Au p-cntct

polyamide

n-contact

500

300

500

nm

� Circular pillars: diameters ~280nm to 500nm� Rectangular pillars: 6 and 3 micron long; core widt h

~80nm +/- 20nm to ~340nmHill, Marell, Leong, Smalbrugge, Zhu, Sun, Veldhoven, Geluk, Karouta, Oei, Nötzel, Ning, Smit, Opt. Exp.,17, 11107 (2009)

Page 22: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

The thinnest electrical injection laser ever demonstrated !

1250 1300 1350 1400 1450 1500 15500

1

2

3

4

5

6

7x 10

4

Wavelength (nm)

Inte

nsity

(co

unts

)

Run6 row 1 dev #17, 10K, 130uA

0 50 100 150 200 2500

1

2

3

4

5

6x 10

5 Total light output vs currentRun 6 row 1 dev #18 10K

current (microamps)In

tens

ity (

coun

ts)

Lasing in a Silver-Coated 90+40 nm -Thick Pillar:(thickness below half-wavelength limit)

90nm

1300 1350 1400 1450 15000

50

100

150

200

250

300

350

400

450

wavelength (nm)

Inte

nsity

(co

unts

)

Run6 row 1 dev #17, 10K

40 microamps60 microamps80 microamps100 microamps

Optical thickness = 3.1X90 + 2X20X2 + 2X10X2 = 400 nm < DL nm6702/ == λ

Hill, Marell, Leong, Smalbrugge, Zhu, Sun, Veldhoven, Geluk, Karouta, Oei, Nötzel, Ning, Smit, Opt. Exp.,17, 11107 (2009)

(Semicond.) (Dielectric) (Metal)

Page 23: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

More Recent Progress on Nanolasers with

2009, pulse, LT

V < λλλλ3

2012, CW, RTfinal goal!

0.0 0.5 1.0 1.5 2.00

2

4

6

8

10

Current (mA)

Inte

grat

ed in

tens

ity (

a.u.

)

0

1

2

3

4

5

6

7

line

wid

th (

nm)

A

2011, CW 260K 2012, CW, RTwide linewidth

Page 24: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Page 25: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Page 26: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Disappearance of Threshold in Nanolasers

0.0000 0.0004 0.0008 0.00120.00E+000

5.00E+014

1.00E+015

phot

on d

ensi

ty

current (uA)

1e-4 1e-3 1e-2 0.1 0.2 0.4 0.6 0.8 1.0

IL ∝

IL ∝

18IL ∝

1E-7 1E-6 1E-5 1E-41E9

1E10

1E11

1E12

1E13

1E14

1E15

Inte

nsity

Current (A)

1e-3 1e-2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

β =

Thresholdless ? Yes.But approaching zero (lasers)? or infinity (LED)?

V∝β1 Similar to disappearance of phase transitions in

finite or lower dimensional systems, threshold becomes increasingly soft and disappears eventually in nanolasers as size decreases

ββββ====

Page 27: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Photon Statistics Near Threshold

Gies et al, PRA ,75, 013803,2007

2)2(

)(

)()()(

tI

tItIg

ττ

+=

thermal light

2)0()2( =g

laser light

1)0()2( =g

Thresholdinfinity?

There seems to be a more fundamental limitation (beyond gain requirement and cavity mode etc) to how small laser can be made: When size becomes too small, we cannot make a laser with the coherent state emission

Page 28: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Further on Nanolasers…

Page 29: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Summary

• Nanolsaer research is driven both by the engineering of photonic and electronic densities of states and by future applications in nanophotonic integrated systems

• Plasmonic structures provide an interesting means for the cavity miniaturization to reach nanoscale

• There seems to be a fundamental limit in terms of how small a laser cavity can be: when the cavity is so small that spontaneous emission coupling to the lasing mode is approaching 100%, the threshold becomes increasingly high!

Page 30: Nanolasers - fu-berlin.de

[email protected], http://nanophotonics.asu.edu

Thank You!