MPS formulation of quasi-particle wave...

46
MPS formulation of quasi-particle wave functions GAQHE-Köln 2015-12-17 Eddy Ardonne Hans Hansson Jonas Kjäll Jérôme Dubail Maria Hermanns Nicolas Regnault

Transcript of MPS formulation of quasi-particle wave...

Page 1: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

MPS formulation ofquasi-particle

wave functions

GAQHE-Köln2015-12-17

Eddy ArdonneHans Hansson

Jonas Kjäll

Jérôme DubailMaria HermannsNicolas Regnault

Page 2: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Outline★ Short review of matrix product states

★ Quasi-particles in the quantum Hall effect

★ MPS for quantum Hall states

★ MPS for quasi-particles

★ Outlook

Page 3: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

ResultMPS description for quasi-particles in the Laughlin state.ν = 1/3, Lx = 16, Pmax = 8, Ne = 40, finite case:

Infinite case:

Page 4: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Matrix product states

A general state can represented as| i =

X

{pi}

X

a2,...,aN

M [p1]a1,a2

M [p2]a2,a3

· · ·M [pN ]aN ,aN+1

|p1, p2, . . . , pN i

MPS: tailor made to describe states with a finite amount of entanglement, such as symmetry protected topological phases.

Page 5: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Matrix product states

The matrices:physical

index

auxiliaryindexM [pi]

ai,ai+1

A general state can represented as| i =

X

{pi}

X

a2,...,aN

M [p1]a1,a2

M [p2]a2,a3

· · ·M [pN ]aN ,aN+1

|p1, p2, . . . , pN i

MPS: tailor made to describe states with a finite amount of entanglement, such as symmetry protected topological phases.

Page 6: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Matrix product states

The matrices:physical

index

auxiliaryindexM [pi]

ai,ai+1

A general state can represented as| i =

X

{pi}

X

a2,...,aN

M [p1]a1,a2

M [p2]a2,a3

· · ·M [pN ]aN ,aN+1

|p1, p2, . . . , pN i

MPS: tailor made to describe states with a finite amount of entanglement, such as symmetry protected topological phases.

A (coefficient of a) state:

Page 7: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Matrix product states

The matrices:physical

index

auxiliaryindexM [pi]

ai,ai+1

A general state can represented as| i =

X

{pi}

X

a2,...,aN

M [p1]a1,a2

M [p2]a2,a3

· · ·M [pN ]aN ,aN+1

|p1, p2, . . . , pN i

The auxiliary index takes the values: ai = 1, 2, . . . , d

For many interesting states, a low value of d suffices!

MPS: tailor made to describe states with a finite amount of entanglement, such as symmetry protected topological phases.

A (coefficient of a) state:

Page 8: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Matrix product statesMPS allow for efficient calculation of expectation values, without having to know the state (exponential # of coefficients) explicitly.

The norm of a state:

Page 9: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Matrix product statesMPS allow for efficient calculation of expectation values, without having to know the state (exponential # of coefficients) explicitly.

The norm of a state:

Contract the physical indices first!

Page 10: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Matrix product statesMPS allow for efficient calculation of expectation values, without having to know the state (exponential # of coefficients) explicitly.

The norm of a state:

Contract the physical indices first!

Correlation function/density:

Some operator

Page 11: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Matrix product statesPrototypical example:AKLT state, Haldane gap in the spin-1 Heisenberg anti-ferromagnet.

Spin-1 Heisenberg hamiltonian:

HAKLT =X

j

P(2)j,j+1 =

X

j

1

2~Sj · ~Sj+1 +

1

6

�~Sj · ~Sj+1

�2+

1

31j

The AKLT hamiltonian

In the ground state, no neighbouring two spin-1’s are in the spin-2 channel!

H =X

j

~Sj · ~Sj+1

Page 12: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Matrix product statesPrototypical example:AKLT state, Haldane gap in the spin-1 Heisenberg anti-ferromagnet.

Spin-1 Heisenberg hamiltonian:

HAKLT =X

j

P(2)j,j+1 =

X

j

1

2~Sj · ~Sj+1 +

1

6

�~Sj · ~Sj+1

�2+

1

31j

The AKLT hamiltonian

In the ground state, no neighbouring two spin-1’s are in the spin-2 channel!

‘Caricature’ of the ground state:

spin-1/2 projector ontospin-1

H =X

j

~Sj · ~Sj+1

Page 13: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Matrix product statesPrototypical example:AKLT state, Haldane gap in the spin-1 Heisenberg anti-ferromagnet.

Spin-1 Heisenberg hamiltonian:

HAKLT =X

j

P(2)j,j+1 =

X

j

1

2~Sj · ~Sj+1 +

1

6

�~Sj · ~Sj+1

�2+

1

31j

The AKLT hamiltonian

In the ground state, no neighbouring two spin-1’s are in the spin-2 channel!

‘Caricature’ of the ground state:

spin-1/2 projector ontospin-1

spin singlet

H =X

j

~Sj · ~Sj+1

Page 14: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Matrix product states

This is an MPS with bond dimension two.

Description of the singlets in the space of spin-1/2’s: A =1p2

✓0 1�1 0

| singletsi =X

{l,r}

Ar1,l2Ar2,l3 · · ·ArN�1,lN |l1, r1, l2, r2, . . . , lN , rN i

Page 15: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Matrix product states

This is an MPS with bond dimension two.

Description of the singlets in the space of spin-1/2’s: A =1p2

✓0 1�1 0

| singletsi =X

{l,r}

Ar1,l2Ar2,l3 · · ·ArN�1,lN |l1, r1, l2, r2, . . . , lN , rN i

Projectors onto spin-1: P+ =

✓1 00 0

◆P 0 =

1p2

✓0 11 0

◆P� =

✓0 00 1

Page 16: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Matrix product states

This is an MPS with bond dimension two.

Description of the singlets in the space of spin-1/2’s: A =1p2

✓0 1�1 0

| singletsi =X

{l,r}

Ar1,l2Ar2,l3 · · ·ArN�1,lN |l1, r1, l2, r2, . . . , lN , rN i

Projectors onto spin-1: P+ =

✓1 00 0

◆P 0 =

1p2

✓0 11 0

◆P� =

✓0 00 1

MPS formulation of the AKLT state: M [�] = P�A

| AKLTi =X

{�i=+,0,�}

M [�1]M [�2] · · ·M [�N ]|�1,�2, . . . ,�N i

Page 17: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Why MPS for qH quasi-particles?Model states, such as Laughlin & Moore-Read are ground states of model hamiltonians, and can be written as a single CFT correlator

Quasi-holes in these state can also be described in terms of a single CFT correlator.Conjecture: braiding phase given by the monodromy of the correlator.

Quasi-particles are harder to describe, and fewer analytic tools are available.

An MPS description would give access to large enough system sizes to numerically determine the braid factors.

The interesting braid factor: quasi-hole around a quasi-particle (opposite sign in comparison to two quasi-holes or two quasi-particles).

Page 18: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Quantum Hall wave functions The Laughlin state:

Dependence on the geometry is hidden in Gexp

Finding all the cλ is a hard problem, but can be formulated as an MPS

L

=Y

i<j

(zi � zj)mG

exp

Y

i<j

(zi � zj)m =

X

c�sl�({zi})

Page 19: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

qH wave functions as CFT correlatorsTo obtain an MSP description, one starts with CFT correlators:

In the presence of a quasi-hole:

Y

i<j

(zi � zj)m = hV (z1)V (z2) · · ·V (zN )Obgi

V (z) =: eipm�(z) : H(w) =: ei/

pm�(w) :

Y

i<j

(zi � zj)mY

k

(zk � w) = hH(w)V (z1)V (z2) · · ·V (zN )Obgi

Page 20: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

qH wave functions as CFT correlatorsTo obtain an MSP description, one starts with CFT correlators:

In the presence of a quasi-hole:

Y

i<j

(zi � zj)mY

k

(zk � ⌘)�1 = hH�1(⌘)V (z1)V (z2) · · ·V (zN )Obgi

The naive inverse quasi-hole does not give a physical quasi-particle because of the poles:

Y

i<j

(zi � zj)m = hV (z1)V (z2) · · ·V (zN )Obgi

V (z) =: eipm�(z) : H(w) =: ei/

pm�(w) :

Y

i<j

(zi � zj)mY

k

(zk � w) = hH(w)V (z1)V (z2) · · ·V (zN )Obgi

Page 21: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

electron z1

z2

z3

zi

The idea: qH quasi-particles Hansson et al.

Page 22: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

electron z1

z2

z3

η+ zi

The idea: qH quasi-particles Hansson et al.

Page 23: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

electron z1

z2

z3

η+ zi

The idea: qH quasi-particles Hansson et al.

Page 24: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

electron z1

z2

z3

η+ zi

The idea: qH quasi-particles Hansson et al.

Page 25: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

electron z1

z2

z3

η+ zi

The idea: qH quasi-particles Hansson et al.

e�|⌘�zi|

2

4m`2 P (zi)

Page 26: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Delocalized ‘holes’ and ‘particles’Expanding the quasi-hole wave function gives a set of delocalized, angular momentum ‘quasi-hole’ states : l

qhY

i<j

(zi � zj)mY

k

(zk � w) =

wNe l=0qh + wNe�1 l=1

qh + · · ·+ w1 l=Ne�1qh + w0 l=Ne

qh

Page 27: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Delocalized ‘holes’ and ‘particles’Expanding the quasi-hole wave function gives a set of delocalized, angular momentum ‘quasi-hole’ states : l

qhY

i<j

(zi � zj)mY

k

(zk � w) =

wNe l=0qh + wNe�1 l=1

qh + · · ·+ w1 l=Ne�1qh + w0 l=Ne

qh

The modified electron operator gives a set of delocalized, angular momentum ‘quasi-particle’ states (equal to Jain’s quasi-particle): l

qp

lqp =

X

i

(�1)izli

(i)Y

j<k

(zj � zk)m@i

(i)Y

l

(zl � zi)m�1 =

=X

i

(�1)izlihV (z1) · · ·V (zi�1)P (zi)V (zi+1) · · ·V (zNe)Obgi

P (z) = @ : ei(pm�1/

pm)�(z) :

Page 28: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Localized quasi-particle statesLocalizing a quasi-particle on the disk: the localizing exponential factor is the projector onto the lowest Landau level

PLLL =X

j

⇤j (⌘) j(z) / e

� 14ml2

b|z�⌘|2

Page 29: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Localized quasi-particle statesLocalizing a quasi-particle on the disk: the localizing exponential factor is the projector onto the lowest Landau level

PLLL =X

j

⇤j (⌘) j(z) / e

� 14ml2

b|z�⌘|2

Works similar on the cylinder (after Poisson resummation):

z = x+ i⌧

x

Lx: circumference

Page 30: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Localized quasi-particle statesLocalizing a quasi-particle on the disk: the localizing exponential factor is the projector onto the lowest Landau level

PLLL =X

j

⇤j (⌘) j(z) / e

� 14ml2

b|z�⌘|2

Works similar on the cylinder (after Poisson resummation):

z = x+ i⌧

x

Lx: circumference

k

(x, ⌧) =1p

L

x

l

b

p⇡

e

� 1l2b

�ix⌧k+(⌧�⌧k)

2/2�

k

=2⇡l2

b

k

L

x

PLLL =X

k

⇤k(x⌘, ⌧⌘) k(x, ⌧) /

X

n

e

� 14ml

2b

|z⌘

�z+Lx

n|2

Page 31: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

MPS for the quantum Hall effectDubail et al., Zaletel & Mong, Princeton/Paris group

From the CFT correlation function, we obtain an MPS expression:X

c�sl�({zi}) = hV (z1)V (z2) · · ·V (zN )Obgi

=

X

↵i

hout|V (z1)|↵1ih↵1|V (z2)|↵2i · · · h↵Ne�1|V (zN )|ini

Page 32: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

MPS for the quantum Hall effectDubail et al., Zaletel & Mong, Princeton/Paris group

From the CFT correlation function, we obtain an MPS expression:X

c�sl�({zi}) = hV (z1)V (z2) · · ·V (zN )Obgi

=

X

↵i

hout|V (z1)|↵1ih↵1|V (z2)|↵2i · · · h↵Ne�1|V (zN )|ini

cλ: obtained by using the mode expansion of the vertex operators:

V (z) =X

n

znV�n�h V�n�h =1

2⇡i

Idz

zz�nV (z)

Page 33: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

MPS for the quantum Hall effectDubail et al., Zaletel & Mong, Princeton/Paris group

From the CFT correlation function, we obtain an MPS expression:X

c�sl�({zi}) = hV (z1)V (z2) · · ·V (zN )Obgi

=

X

↵i

hout|V (z1)|↵1ih↵1|V (z2)|↵2i · · · h↵Ne�1|V (zN )|ini

The pj = 0,1 indicates if the jth orbital is empty or occupied:c� = hout|M

[pN�]

N�· · ·M [p1]

1 M [p0]0 |ini

cλ: obtained by using the mode expansion of the vertex operators:

V (z) =X

n

znV�n�h V�n�h =1

2⇡i

Idz

zz�nV (z)

Page 34: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

MPS for the quantum Hall effectDubail et al., Zaletel & Mong, Princeton/Paris group

From the CFT correlation function, we obtain an MPS expression:X

c�sl�({zi}) = hV (z1)V (z2) · · ·V (zN )Obgi

=

X

↵i

hout|V (z1)|↵1ih↵1|V (z2)|↵2i · · · h↵Ne�1|V (zN )|ini

The pj = 0,1 indicates if the jth orbital is empty or occupied:c� = hout|M

[pN�]

N�· · ·M [p1]

1 M [p0]0 |ini

cλ: obtained by using the mode expansion of the vertex operators:

V (z) =X

n

znV�n�h V�n�h =1

2⇡i

Idz

zz�nV (z)

To obtain M[0] and M[1]: use the commutators of the free boson CFT, f.i.

M [1]j =

1

2⇡i

Idz

zz�jh↵|V (z)|↵0i = h↵|V�j�h|↵0i

Page 35: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Remarks about some detailsThe auxiliary space is the space of states in the free boson CFT:

�(z) = �0 + ia0 ln(z) + iX

n 6=0

1

nanz

�n

|Q;m1,m2, . . .iThe charge Q and occupation numbers of the neutral modes, mi are the relevant labels:

[an, am] = n�n+m,0 [�0, a0] = i a†n = a�n

Page 36: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Remarks about some detailsThe auxiliary space is the space of states in the free boson CFT:

�(z) = �0 + ia0 ln(z) + iX

n 6=0

1

nanz

�n

|Q;m1,m2, . . .iThe charge Q and occupation numbers of the neutral modes, mi are the relevant labels:

The auxiliary space is truncated by a finite momentum: P =

X

j

jmj Pmax

[an, am] = n�n+m,0 [�0, a0] = i a†n = a�n

Page 37: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Remarks about some detailsThe auxiliary space is the space of states in the free boson CFT:

�(z) = �0 + ia0 ln(z) + iX

n 6=0

1

nanz

�n

|Q;m1,m2, . . .iThe charge Q and occupation numbers of the neutral modes, mi are the relevant labels:

The auxiliary space is truncated by a finite momentum: P =

X

j

jmj Pmax

[an, am] = n�n+m,0 [�0, a0] = i a†n = a�n

The background charge is taken care of by insertion of charge 1/m on every orbital, via . The M[1] become site independent! e�i�0/

pm

V�n�h = ein/pm�0V�he

�in/pm�0

Page 38: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Remarks about some detailsThe auxiliary space is the space of states in the free boson CFT:

The correct cylinder normalization is obtained from the free time evolution along the cylinder (other geometries: normalize by hand).

�(z) = �0 + ia0 ln(z) + iX

n 6=0

1

nanz

�n

|Q;m1,m2, . . .iThe charge Q and occupation numbers of the neutral modes, mi are the relevant labels:

The auxiliary space is truncated by a finite momentum: P =

X

j

jmj Pmax

[an, am] = n�n+m,0 [�0, a0] = i a†n = a�n

The background charge is taken care of by insertion of charge 1/m on every orbital, via . The M[1] become site independent! e�i�0/

pm

V�n�h = ein/pm�0V�he

�in/pm�0

Page 39: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

MPS for quasi-hole statesFollowing Zaletel & Mong, we can write the Laughlin state with quasi-holes as follows:

Insertion of a quasi-holematrix between two orbitals

pi = 0,1

M[0] or M[1]

This gives the coefficients cλ, which are checked by expanding the wave functions for a small number of particles explicitly.

The resulting state does not depend on where we insert the the quasi-hole matrix (for large enough Pmax).

Page 40: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

MPS for quasi-hole statesDensity of 1/3 state, with Pmax = 8, Lx = 16, for 40 electrons:

Page 41: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

MPS for naive quasi-particle stateIf we use the naive (wrong!) quasi-particle, we do not get a nicely localized charge.

The density strongly depends on where we insert the quasi-particle operator!

Page 42: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

MPS for delocalized ‘quasi-particle’To obtain a good quasi-particle, we first construct the delocalized quasi-particle states (angular momentum states).

This is done by constructing the matrix corresponding to the modified electron operator.

lqp =

X

i

(�1)izlihV (z1) · · ·V (zi�1)P (zi)V (zi+1) · · ·V (zNe)Obgi

Page 43: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

MPS for a localized quasi-particleBy summing over the delocalized quasi-particle states, using PLLL, we obtain a localized quasi-particle!

Page 44: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

MPS for a localized quasi-particleThe localized quasi-particle has cylinder symmetry, and it’s charge integrates to -0.33344

Comparing the density of a quasi-hole and a quasi-particle:

Both are quite large, with a radius of about 7 lb!

Page 45: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Outlook★ We successfully constructed quasi-particles states using MPS

★ Next steps:

✴ construct quasi-particle -- quasi-hole pair (not completely trivial!)

✴ Calculate braiding phases between particles and holes

✴ MPS for non-model quantum Hall states

✴ ...

Page 46: MPS formulation of quasi-particle wave functionsstaff.fysik.su.se/~ardonne/files/talks/2015-12-koln... · 2020. 1. 13. · Why MPS for qH quasi-particles?Model states, such as Laughlin

Outlook★ We successfully constructed quasi-particles states using MPS

★ Next steps:

✴ construct quasi-particle -- quasi-hole pair (not completely trivial!)

✴ Calculate braiding phases between particles and holes

✴ MPS for non-model quantum Hall states

✴ ...Thank

you for

your at

tention!