Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK,...

37
[ ] Lower bound on the extragalactic magnetic field Michael Kachelrieß NTNU, Trondheim Dolag, MK, Ostapchenko, Tom` as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10

Transcript of Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK,...

Page 1: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

[]

Lower bound on the extragalactic magnetic field

Michael Kachelrieß

NTNU, Trondheim

Dolag, MK, Ostapchenko, Tomas ’10

Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10

Page 2: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Introduction

Mean free path of photons

10

12

14

16

18

20

22

Gpc100Mpc10MpcMpc100kpc10kpckpc

log1

0(E

/eV

)radio

photon horizon γγ → e+e− CMB

IR

Virgo ⇓

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 2 / 16

Page 3: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Introduction Electromagnetic cascades on EBL

Development of the elmag. cascade:

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 3 / 16

Page 4: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Introduction Electromagnetic cascades on EBL

Development of the elmag. cascade:

analytical estimate: [Berezinsky, Smirnov ’75 ]

Jγ(E) =

K(E/εX)−3/2 at E ≤ εX

K(E/εX)−2 at εX ≤ E ≤ εa

0 at E > εa

three regimes:◮ Thomson cooling:

Eγ =4

3

εbbE2e

m2e

≈ 100 MeV

(

Ee

1TeV

)2

◮ plateau region: ICS Eγ ∼ Ee

◮ above pair-creation threshold smin = 4Eγεbb = 4m2e:

flux exponentially suppressed

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 3 / 16

Page 5: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Upper limit

Gamma-rays and extragalactic magnetic fields (EGMF)

Origin of seed for EGMF is unknown

Seed required as input for EGMF simulations

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 4 / 16

Page 6: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Upper limit

Gamma-rays and extragalactic magnetic fields (EGMF)

Origin of seed for EGMF is unknown

Seed required as input for EGMF simulations

Observations only in clusters,◮ synchrotron halo: ⇒ B ∼ (0.1 − 1)µG◮ Faraday rotation: ⇒ B ∼ (1 − 10)µG

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 4 / 16

Page 7: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Upper limit

Gamma-rays and extragalactic magnetic fields (EGMF)

Origin of seed for EGMF is unknown

Seed required as input for EGMF simulations

Observations only in clusters,◮ synchrotron halo: ⇒ B ∼ (0.1 − 1)µG◮ Faraday rotation: ⇒ B ∼ (1 − 10)µG

Aharonian, Coppi, Volk ’94: Pair halos around AGNs

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 4 / 16

Page 8: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Upper limit

Gamma-rays and extragalactic magnetic fields (EGMF)

Origin of seed for EGMF is unknown

Seed required as input for EGMF simulations

Observations only in clusters,◮ synchrotron halo: ⇒ B ∼ (0.1 − 1)µG◮ Faraday rotation: ⇒ B ∼ (1 − 10)µG

Aharonian, Coppi, Volk ’94: Pair halos around AGNs

Plaga ’95: EGMFs deflect and delay cascade electrons

⇒ search for delayed “echoes” of multi-TeV AGN flares/GRBs

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 4 / 16

Page 9: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Upper limit

Influence of EGMF on flux from single source: deflections

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 5 / 16

Page 10: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Upper limit

“GeV jets”: B dependence

10.10.010.001

10−17 G 10−16 G 10−15 G 10−14 G

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 6 / 16

Page 11: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Upper limit

Lower limit on EGMF: [A. Neronov, I. Vovk ’10, F. Tavecchio et al. ’10 ]

choose blazar: large z, stationary, low GeV, high multi-TeV emission

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 7 / 16

Page 12: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Upper limit

Lower limit on EGMF: [A. Neronov, I. Vovk ’10, F. Tavecchio et al. ’10 ]

choose blazar: large z, stationary, low GeV, high multi-TeV emission

TeV photons cascade down:◮ small EGMF: fill up GeV range

◮ “large” EGMF: deflected outside, isotropized

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 7 / 16

Page 13: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Upper limit

Lower limit on EGMF: uniform field [Dolag et al. ’10 ]

10-16 G10-15 G

10-14 G

10-14 Gdirect

10-13 G

5×10-15 GEmax=100 TeV

HESS

Fermi

8 9 10 11 12 13 14-14

-13

-12

-11

log 10

(E

2 F/e

rg c

m-2

s-1

)

log10(E/eV)Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 8 / 16

Page 14: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Upper limit

Lower limit on EGMF: uniform field [Dolag et al. ’10 ]

10-16 G10-15 G

10-14 G

10-14 Gdirect

10-13 G

5×10-15 GEmax=100 TeV

HESS

Fermi

8 9 10 11 12 13 14-14

-13

-12

-11

log 10

(E

2 F/e

rg c

m-2

s-1

)

log10(E/eV)

for coherence lengths λ <∼ lint ∼ 50kpc:

⇒ bound improves as λ1/2

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 8 / 16

Page 15: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Upper limit

Lower limit on filling factor: [Dolag et al. ’10 ]

model filaments by a top-hat:

10 Mpc

B = 0

B = 10−10 G

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 9 / 16

Page 16: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Upper limit

Lower limit on filling factor: [Dolag et al. ’10 ]

f=0.10f=0.50f=0.70f=0.80f=0.90f=0.60,Emax=100 TeV

HESS

Fermi

8 9 10 11 12 13 14-14

-13

-12

-11

log 10

(E

2 F/e

rg c

m-2

s-1

)

log10(E/eV)Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 10 / 16

Page 17: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Upper limit

Lower limit on filling factor: [Dolag et al. ’10 ]

f=0.10f=0.50f=0.70f=0.80f=0.90f=0.60,Emax=100 TeV

HESS

Fermi

8 9 10 11 12 13 14-14

-13

-12

-11

log 10

(E

2 F/e

rg c

m-2

s-1

)

log10(E/eV)

Linear filling factor >∼ 50%

mainly 3-step cascade: γ → e± → γ

photon mean free path Dγ(E) ∼ 1000–50 Mpc

electron mean free path De(E) ∼ few kpc

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 10 / 16

Page 18: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Upper limit

Lower limit on filling factor: [Dolag et al. ’10 ]

f=0.10f=0.50f=0.70f=0.80f=0.90f=0.60,Emax=100 TeV

HESS

Fermi

8 9 10 11 12 13 14-14

-13

-12

-11

log 10

(E

2 F/e

rg c

m-2

s-1

)

log10(E/eV)

Linear filling factor >∼ 50%

mainly 3-step cascade: γ → e± → γ

photon mean free path Dγ(E) ∼ 1000–50 Mpc

electron mean free path De(E) ∼ few kpc

⇒ electrons are created “everywhere” and feel B only close tointeraction point

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 10 / 16

Page 19: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Primordial fields

How to create EGMFs in voids?

primordial fields:◮ inflation

◮ phase transitions (QCD, electroweak)

◮ reionization

astrophysical (require seed fields):

+ outflows from AGNs, dwarf galaxies

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 11 / 16

Page 20: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Primordial fields

How to create EGMFs in voids?

primordial fields:◮ inflation

◮ phase transitions (QCD, electroweak)

◮ reionization too weak

astrophysical (require seed fields):

+ outflows from AGNs, dwarf galaxies

– outflows colliminated

– B > 0 and B = 0 plasma does not mix

– contamination with heavy elements

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 11 / 16

Page 21: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Primordial fields

Expectation for “causally” generated fields: [Caprini, Durer,... ]

1 Mpc

15 kpc

compression

dynamo

EW non�hel

QCD helical

QCD non�hel

EW helical

0.001 0.01 0.1 1 10 100 100010�26

10�20

10�14

10�8

0.01

104

Λ�Mpc

B�nanoGauss

Phase transitions, n!2

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 12 / 16

Page 22: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Primordial fields

Primordial magnetic fields:for a Gaussian field

〈Bi(k)B∗

j (k′)〉 = δ(k − k′)[ (

δij − kikj

)

S(k) + iεijlklH(k)

]

energy density ρ = 4π∫

0k2S(k)

helicity density h = 4π∫

0kH(k)

characterized by Bλ and coherence length Lc

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 13 / 16

Page 23: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Primordial fields

Primordial magnetic fields:

for a Gaussian field

〈Bi(k)B∗

j (k′)〉 = δ(k − k′)[ (

δij − kikj

)

S(k) + iεijlklH(k)

]

characterized by Bλ and coherence length Lc

inflation: “acausal”, Lc ≫ H−10 possible

phase transitions:

◮ require 1./2.order transition

◮ “causal”, Lc(t∗) <∼ H(t∗)−1

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 13 / 16

Page 24: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Primordial fields

Primordial magnetic fields:

for a Gaussian field

〈Bi(k)B∗

j (k′)〉 = δ(k − k′)[ (

δij − kikj

)

S(k) + iεijlklH(k)

]

characterized by Bλ and coherence length Lc

inflation: “acausal”, Lc ≫ H−10 possible

phase transitions:

◮ require 1./2.order transition

◮ “causal”, Lc(t∗) <∼ H(t∗)−1

⇒ 〈Bi(x)Bj(y)〉 has compact support ⇒ [· · · ] is analytic function

◮ analyticity & finite ρ ⇒ Bλ ∼ B0(Lc/λ)5/2

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 13 / 16

Page 25: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Primordial fields

Primordial magnetic fields:

for a Gaussian field

〈Bi(k)B∗

j (k′)〉 = δ(k − k′)[ (

δij − kikj

)

S(k) + iεijlklH(k)

]

characterized by Bλ and coherence length Lc

inflation: “acausal”, Lc ≫ H−10 possible

phase transitions:

◮ require 1./2.order transition

◮ “causal”, Lc(t∗) <∼ H(t∗)−1

⇒ 〈Bi(x)Bj(y)〉 has compact support ⇒ [· · · ] is analytic function

◮ analyticity & finite ρ ⇒ Bλ ∼ B0(Lc/λ)5/2

how are fields evolving after creation?

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 13 / 16

Page 26: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Primordial fields

Evolution of primordial magnetic fields:

non-helical fields: damped above kD, below B ∝ 1/a2

0.1 1 10 100 100010

�5

10�4

0.001

0.01

0.1

K

EB

0.01 0.1 1 10 100 100010

5

104

0.001

0.01

0.1

K

B

)fifififin DDDD fifififin

180 MeV 22 MeV

kD(η)

2π/L(η)

= const

n+3= const

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 14 / 16

Page 27: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Primordial fields

Evolution of primordial magnetic fields:

helical fields: fluctuations are transferred to larger scales 1/k

magnetic energy is transferred to larger scales

0.01 0.1 1 10 100 100010

�5

10�4

0.001

0.01

0.1

K

EB

)fifififin DDDD fifififin

180 MeV 22 MeV

kD(η)

= const

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 15 / 16

Page 28: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Gamma-rays and the EGMF Primordial fields

Evolution of primordial magnetic fields:

helical fields: fluctuations are transferred to larger scales 1/k

magnetic energy is transferred to larger scales

0.01 0.1 1 10 100 100010

�5

10�4

0.001

0.01

0.1

K

EB

)fifififin DDDD fifififin

180 MeV 22 MeV

kD(η)

= const

Picture assumes “static” large scale tail Bλ ∝ λ−5/2:

◮ interaction with turbulent fluid generates Bλ ∝ λ−3/2

⇒ fields from phase transitions could be strong enough

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 15 / 16

Page 29: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Summary

Summary

Fermi non-observation of TeV blazars requires EGMF

⇒ quantitative conclusions:

◮ sure: large filling factor f >∼ 0.5

◮ bound on EGMF: depends on assumed ∆t, B >∼ 10−17 G

can be improved by more/longer simultanous observations

limit ⇒ detection: CTA?

suggests primordial origin: phase transition or inflation?

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 16 / 16

Page 30: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Summary

Time dependence for flaring source: B >∼ 10−17 G

t < 10 yrt < 102 yrt < 103 yrt < 104 yrt < 105 yrt < 106 yr

HESS

Fermi

7 8 9 10 11 12 13 14-14

-13

-12

-11

log 10

(E

2 F/e

rg c

m-2

s-1

)

log10(E/eV)Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 17 / 16

Page 31: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Summary

EGMF in voids already observed? [Ando, Kusenko ’10 ]

stack 170 brightest AGN

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 18 / 16

Page 32: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Summary

EGMF in voids already observed? [Ando, Kusenko ’10 ]

stack 170 brightest AGNsearch for excess over PSF

359.500.5

-0.5

0

0.5

Rel. RA (deg)

Rel. DEC (deg)

Counts Map (3-10 GeV)

10 20 30 40 50 60

(counts)

359.500.5

-0.5

0

0.5

Rel RA (deg)

Rel DEC (deg)

Model Map (3-10 GeV)

10 20 30 40 50

(counts)

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 18 / 16

Page 33: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Summary

EGMF in voids already observed? [Ando, Kusenko ’10 ]

stack 170 brightest AGNsearch for excess over PSF

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 18 / 16

Page 34: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Summary

EGMF in voids already observed? [Ando, Kusenko ’10 ]

stack 170 brightest AGNsearch for excess over PSF

359.500.5

-0.5

0

0.5

Rel. RA (deg)

Rel. DEC (deg)

Counts Map (3-10 GeV)

10 20 30 40 50 60

(counts)

359.500.5

-0.5

0

0.5

Rel RA (deg)

Rel DEC (deg)

Model Map (3-10 GeV)

10 20 30 40 50

(counts)

⇒ explained by

B ∼ 10−15 G (λB/1 kpc)−1/2 and λB < 10 − 100 kpc

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 18 / 16

Page 35: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Summary

EGMF in voids already observed? [Ando, Kusenko ’10 ]

stack 170 brightest AGNsearch for excess over PSF

359.500.5

-0.5

0

0.5

Rel. RA (deg)

Rel. DEC (deg)

Counts Map (3-10 GeV)

10 20 30 40 50 60

(counts)

359.500.5

-0.5

0

0.5

Rel RA (deg)

Rel DEC (deg)

Model Map (3-10 GeV)

10 20 30 40 50

(counts)

lower limit B >∼ 5 × 10−15 G requires λB <∼ 0.1 kpc

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 18 / 16

Page 36: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Summary

EGMF already observed? Probably not. . . [Neronov et al. ’10 ]

point source Crab shows the same “halo” as stacked AGN:

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 19 / 16

Page 37: Michael Kachelrieß NTNU, Trondheim · Dolag, MK, Ostapchenko, Tom`as ’10 Neronov, Semikoz, MK, Ostapchenko, Elyiv ’10. Introduction Mean free path of photons 10 12 14 16 18 20

Summary

EGMF already observed? Probably not. . . [Neronov et al. ’10 ]

point source Crab shows the same “halo” as stacked AGN:

tail of PSF wrong (?), difference between “front” and “back” photons

Michael Kachelrieß (NTNU, Trondheim) Lower bound on the EGMF Moriond EW, 17.3.2011 19 / 16