ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0...

58
εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ» Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017 MEΡΟ VI ΔΚΒΟΛΖ ΠΟΛΤΜΔΡΧΝ (POLYMER EXTRUSION)

Transcript of ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0...

Page 1: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

MEΡΟ VI

ΔΚΒΟΛΖ ΠΟΛΤΜΔΡΧΝ (POLYMER EXTRUSION)

Page 2: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

ΣΗ ΔΗΝΑΗ Ζ ΔΚΒΟΛΖ?

• ΜΗΑ ΑΠΌ ΣΗ ΚΤΡΗΔ ΓΗΔΡΓΑΗΔ ΣΖΝ ΒΗΟΜΖΥΑΝΗΑ ΠΟΛΤΜΔΡΧΝ

• ΤΝΔΥΖ ΓΗΔΡΓΑΗΑ ΜΔ

ΜΔΓΑΛΖ ΔΤΔΛΗΞΗΑ ΟΟΝ ΑΦΟΡΑ ΣΟ ΣΔΛΗΚΟ ΠΡΟΗΟΝ

• ΤΥΝΑ ΔΊΝΑΗ ΣΟ ΠΡΧΣΟ ΣΑΓΗΟ Δ ΜΗΑ ΔΗΡΑ ΓΗΔΡΓΑΗΧΝ ΜΟΡΦΟΠΟΗΖΖ

Page 3: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

Δ ΠΟΗΑ ΠΟΛΤΜΔΡΖ ΔΦΑΡΜΟΕΔΣΑΗ

• Primary Uses are Thermoplastics:

– LDPE, LLDPE, HDPE, ABS, PC, PS, Nylon,

PVC, PP

– Melt Index and Density should be matched to

application

• Some uses for Elastomers and Thermosets

– Important to watch age of material and

processing conditions

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

Page 4: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

ΔΗΓΖ ΔΚΒΟΛΖ ΠΟΛΤΜΔΡΧΝ

• Compounding

– Pellets for future use

• Blown Film

– Bags, film ….

• Cast Film

– Plastic Food Packaging

• Sheet

– Foam Trays, packaging via

thermoforming

Page 5: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

ΔΗΓΖ ΔΚΒΟΛΖ ΠΟΛΤΜΔΡΧΝ

• Compounding

– Pellets for future use

• Blown Film

– Bags, film ….

• Cast Film

– Plastic Food Packaging

• Sheet

– Foam Trays, packaging via thermoforming

5/15/2017

Page 6: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

ΔΗΓΖ ΔΚΒΟΛΖ ΠΟΛΤΜΔΡΧΝ

• Pipe and Tubing

– PVC Pipe; Garden Hoses

• Extrusion Coating

– Paper Milk Cartons with Plastic Coating

– Wire and Cable Coating

– Underground Cables

• Monofilament

– Fishing Line, Ropes

Page 7: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

ΤΝ-ΔΚΒΟΛΖ

• Allows Opportunity for Several Layers with Different Properties

• All Extruders for Each Material Goes into Common Die

• Die Design Determines Division of Layers

Page 8: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

The history of extrusion goes back to Archimedes and before BUT modern developments based on understanding of the physical phenomena are less than 50 years old.

5/15/2017

Page 9: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

Ο ΒΑΗΚΟ ΜΟΝΟΚΟΥΛΗΟ

ΔΚΒΟΛΔΑ

5/15/2017

9

Page 10: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

• Advantages of Single Screw:

– Low Cost

– Straightforward Design

– Reliability

• Disadvantages of Single Screw:

– Mixing is not very good (for some applications)

5/15/2017

Page 11: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

ΘΔΡΜΑΝΖ ΚΑΗ ΦΤΞΖ

• Heating

– Bring to startup temperature

– Maintain desired temperatures

• Cooling

– Water or Air Cooled

– To shutdown an extruder quickly

– To cool down when the polymer overheats

– To keep from bridging in the feed throat

– To keep from melting in the grooved feed

Page 12: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

ΔΝΓΟ-ΚΟΥΛΗΑ ΘΔΡΜΑΝΖ ΚΑΗ ΦΤΞΖ

• Cartridge Heaters to heat from both sides

• Fluid Heating and Cooling

– to control melt temperature

– to prevent melting in the feed zone

– to increase pressure generation in feed

Page 13: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

ΔΠΗΠΛΔΟΝ ΔΞΟΠΛΗΜΟ

• ΤΣΖΜΑΣΑ ΣΡΟΦΟΓΟΗΑ

– Gravimetric versus RPM-based

– Type of hopper

• ΠΗΝΑΚΑ ΔΛΔΓΥΟΤ – ΠΑΡΑΚΟΛΟΤΘΖΖ ΛΔΗΣΟΤΡΓΗΑ

• ΑΝΣΛΗΔ (GEAR PUMPS)

• ΤΣΖΜΑΣΑ ΜΔΣΑΓΟΖ ΚΗΝΖΖ

Page 14: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

Extruder Heads and Adapters

Page 15: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

ΔΠΗΠΔΓΔ ΚΔΦΑΛΔ ΔΚΒΟΛΖ

(FLAT EXTRUSION DIES)

5/15/2017

Page 16: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

Schematic of a spider leg tuning die

Schematic of a cross-head tubing die used in film blowing

Schematic of a spiral die

Tubular Dies

Page 17: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

ΠΗΡΑΛ ΚΔΦΑΛΔ ΔΚΒΟΛΖ

(SPIRAL EXTRUSION DIES)

5/15/2017

Page 18: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

ΠΑΡΑΜΔΣΡΟΗ ΠΟΤ ΔΛΔΓΥΟΝΣΑΗ ΚΑΣΑ ΣΖΝ

ΛΔΗΣΟΤΡΓΗΑ

• Entered By Operator

– Set-Point temperatures along barrel and die

– Rotational speed of screw

• Output from Process

– Melt pressure before & after screenpack

– Temperature of the polymer melt at die

– Actual temperatures along barrel and die

Page 19: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

5/15/2017

ΓΔΧΜΔΣΡΗΚΑ ΥΑΡΑΚΣΖΡΗΣΗΚΑ ΚΟΥΛΗΑ

Page 20: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

The “standard” screw

• L ~20-30D

• Feed section ~ 4-8D

• Metering section ~6-10D

q =17.66o (E=1D)

• W =1D

• Hfeed ~0.15-0.2D

• Hf/Hm ~2-4

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

Page 21: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

ΛΔΗΣΟΤΡΓΗΚΑ ΥΑΡΑΚΣΖΡΗΣΗΚΑ ΣΟΤ

ΚΟΥΛΗΑ

Screw ofDiameter Outer

Length Flighted Ratio L/D

Depth Metering

Depth Feed Ratio nCompressio

Page 22: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

Diameter Effect

Typical Extruder Output Versus Diameter

0.1

1

10

100

1000

10000

0.1 1 10

Diameter, inches

Outp

ut,

pph

L/D Effect

Increasing L/D:

– More shear heat can be uniformly generated

without degradation

– Better mixing opportunities

– Greater Residence Times

Screw ofDiameter Outer

Length Flighted Ratio L/D

Page 23: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

ΓΗΔΡΓΑΗΔ ΚΑΣΑ ΜΖΚΟ ΣΟΤ

ΚΟΥΛΗΑ

Page 24: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

Feed Section

PURPOSE:

– Supply plastic at a uniform rate and pressure to

the other sections of the screw

– Compress the solids into solid bed (by

difference between barrel and screw friction)

– Allows air to be pressured back to hopper

– Be able to withstand high torque loadings

Problems in feeding will manifest themselves as air

entrapment in melt, melting inconsistencies and irregular

extrudate rate

Ζ ΕΧΝΖ ΜΔΣΑΦΟΡΑ ΣΔΡΔΧΝ (ΕΧΝΖ ΣΡΟΦΟΓΟΗΑ – Solids Conveying Zone)

Page 25: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

Η ΖΩΝΗ ΜΕΤΑΦΟΡΑΣ ΣΤΕΡΕΩΝ (ΖΩΝΗ ΤΡΟΦΟΔΟΣΙΑΣ – Solids Conveying Zone)

How the solid pellets convey????

Barrels: rough surface (sometimes intentionally grooved) Screws: smooth (polished) surface

5/15/2017

25 Rheology-Extrusion - Univ. Thessaly

2015

Page 26: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

– Solid region approximated by a rigid

plug in contact with all sides of

channel

– Channel depth is constant

– Neglect flight clearance

– Coefficient of friction (COF)

function of temperature but not of

pressure

– No gravity, no density differentials

in plug

ΑΝΑΛΤΗ ΕΧΝΖ ΣΡΟΦΟΓΟΗΑ

Fr=W*dz*P*fs

Page 27: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

sin

sins bM HWpv

q

q

1 22

1 2exp

1

so b s

af W H zP z P f f

W Ha

Darnell & Mol (1956):

Max (M) when fs is small and fb is large

1

2 2 2

2

1arcsin

1

s s

s

f k f k

fq

2ln 1s

b o b

fH P Hk

f z P f W

)tan( q

ΑΝΑΛΤΗ ΕΧΝΖ ΣΡΟΦΟΓΟΗΑ

sin

Lz

Page 28: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

Page 29: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.000 0.111 0.250 0.429 0.667

Ms[k

g/h

r]

fs/fb

Ο ρυθμός μεταφοράς των στερεών σε σχέση με το λόγο fs/fb.

Mass Flow Rate of the solid bed as a function of the ratio fs/fb:

Max (M) when fs is small and fb is large 5/15/2017

29 Rheology-Extrusion - Univ. Thessaly

2015

Page 30: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

Solids Conveying: COF

Barrel COF Effect on Conveying

Soilds Conveying Rate versus

Coefficient of Friction on the Barrel for Soarnol EVOH

0

50

100

150

200

250

300

350

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Coefficient of Friction

So

lid

s C

on

ve

yin

g R

ate

,

pp

h a

t 1

00 R

PM

Dependency of COF

COF Depends On:

– Temperature

– Pressure

– Velocity (Screw Speed)

COF Measurement

– SPR-18 Term Model

– Place plastic in between metal for barrel and

metal for screw and measure COF (via torque).

Page 31: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

0,000

100,000

200,000

300,000

400,000

500,000

600,000

0 0,001 0,002 0,003 0,004 0,005 0,006 0,007 0,008

H [m]

Ms

[k

g/h

r]

Ο ρυθμός μεταφοράς των στερεών σε σχέση με το βάθος του

καναλιού.

Page 32: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

Feed Section - Screw Length

Length of feed section can be negligible to 1/2

the length of screw

– Industry Standard = 5 Diameters

INCREASING LENGTH:

– Increase output of the screw

– Decrease available mixing time downstream

Feed Section - Channel Depth

Solids Conveying Rate versus Channel Depth for

Various Back Pressures

0

2

4

6

8

10

12

14

16

18

20

0.4 0.5 0.6 0.7 0.8 0.9 1

Channel Depth, inches

Solid

s C

onveyin

g R

ate

, in

3/s

P1/P0 = 1

P1/P0 = 100

P1/P0 = 200

P1/P0 = 500

Page 33: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

Solids Conveying - Feed properties:

Bulk Density

Bulk Density and

Compressibility

BULK DENSITY

– Density of the plastic including the air voids

between the particles

– Typically 20 - 40 lb/ft3

– < 10 lb/ft3, then extrusion on conventional

extruder is no longer possible

Screw Design For Bulk Density

Bulk Density Design Rules

– Bulk Density > 1/2 Solid Density

• Feed Channel = 0.1 - 0.2 D

– 1/3 Solid < Bulk Density< 1/2 Solid Density

• Deeper feed Channel Required

– Bulk Density< 1/3 Solid Density

• Crammer Feeder Needed

Page 34: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

Solids Conveying - Feed properties:

Compressibility

Bulk Density and

Compressibility

COMPRESSIBILITY

– Difference in percent between bulk density of

loose particles and bulk density of packed

particles

– > 20%, polymer is considered “non-free-

flowing”

– Measure by “Hand Clump” Test

Bulk Density and

Compressibility

Free flowing:

•No clump in hand squeeze

test

•Angle of Repose < 45°

Non-free flowing:

•Compressibility > 20%

•Easily broken clump in hand

squeeze test

•Angle of Repose > 45°

Bridge in Hopper:

•Compressibility > 40%

•Hard clump in hand squeeze test

Difficult to feed a compressible powder

Page 35: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

Feed Section Design

Feed Section - Channel Depth

SUMMARY OF COVNEYING SPEED

VERSUS CHANNEL DEPTH:

– Parabolic Shape to curve - therefore, optimum

depth can be chosen

– Pressure is a key variable - Increased pressure

generation comes from a shallower depth

Feed Section - Helix Angle

Page 36: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

Feed Section Design

Feed Section - # of Flights

E ffe ct o f F ee d C h an n el D ep th o n S o lid s C o n ve yin g

R a te

0

5

10

15

20

25

30

0 .1 0 .15 0 .2 0 .25 0 .3 0 .35

C h ann e l D ep th , in ch es

So

lid

s C

on

ve

yin

g R

ate

, c

c/s

S in g le F l ig h t

D o u b le F lig h t

*Increasing # of Flights, decreases Solids

Conveying

Torsion Factor

• Feed Section produces the most pressure, and

greatest possibility of breaking screw

• TORSION Measurement:

3

1

zul

motormax

N

P

5500

3D5.0H

Where:

Hmax = maximum feed depth, inches

D = Diameter, inches

Pmotor = Power rating of the motor, horsepower

N = screw speed, rpm

zul = allowable shear stress of metal, psi

4140 Tensile 237,500 psi Yield 182,000 psi

Page 37: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

Screw channel cross section

Ζ ΕΧΝΖ ΣΖΞΔΧ (Melting Zone)

Solids bed in an unwrapped screw channel

Predicted (Tadmor Model) and experimental solids bed profile

Page 38: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

5/15/2017

Page 39: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

“Barrier” Screw

Page 40: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

“Basic” Extruder Analysis

• 1D Isothermal Newtonian flow between

parallel plates

– One plate moving (screw surface)

– Other plate stationary (barrel inner surface)

DP caused by constriction near the die

Conclusion: The flowrate is the sum of the drag flow and

of the pressure-driven flow

Page 41: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

Now, let’s (conceptually) unwind the channel, and turn it into….A CHANNEL between two flat plates (assume the screw is stationary and THE BARREL ROTATES):

The barrel moves with Vb=πDN where N rotational speed of screw (e.g. RPM) and z the downchannel direction.

The down channel velocity component is: Vbz=Vbcosθ=πDNcosθ and: L=z·cosθ

Recall the FLAT PLATE EQUATIONS for drag flow with an opposing pressure flow:

dz

dPHVHWQ

122

3

5/15/2017

41

Page 42: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

Use the helical geometry of the channel:

N = revs per second (rpm/60) of screw

L

Psin

DHcossinHNDQ

Dq

qq 2

322

122

1

5/15/2017

42

Page 43: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

If we take into account the leakage flow rate from the small clearance (δ) between the barrel and the screw:

L

Ptan

e

DQL

Dq

12

322

L

Ptan

e

D

L

Psin

DHcossinHNDQ

Dq

Dq

qq

12122

1 3222

322

in our analysis we neglect this term ~ 0

NOTE: 1. If there is no pressure build-up (e.g. no constriction of flow at the end of the extruder), the output would be maximum, i.e. drag flow only:

2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

qq cossinHNDQmax

22

2

1

q

Dq

qq

tan

DLNmaxP

L

Psin

DHcossinHND

2

23

22 6

122

1

Since μ is large for polymer melts, extremely large (AND VERY DANGEROUS!!!) pressures can develop.

5/15/2017

μέγιςτη παροχή

μέγιςτη πτώςη πίεςησ

Page 44: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

y

x

z

r

n

F

)n(

W

Q

nLmHP

2

1112D 2H

n

C

)n( Q

nLmRP

D

132 13

qq cossinHNDQmax

22

2

1

q

tan

DLNPmax 2

6

For the extruder:

Careful..!! L is the length of the METERING ZONE ONLY!

L

For the DIE (κεφαλή) the pressure drop vs flow rate can be obtained by the usual equations:

5/15/2017

Page 45: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

2D Isothermal Analysis of Screw Extruders

• Parallel plate representation

(ι)=άμoλαο ηνπ θνριία, ζρεκαηίδεη

γωλία (ζ) κε ηνλ άμoλα (ρ)

(z)=helical axis

Γηα ζεηηθή ξνή, uι>0

V=πDN

ul=ux*cos(q)+uz*sin(q)

Page 46: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

Melt Conveying

simplified flow model - Uz

(z) (y)

Flow in the y-z plane useful for

flowrate predictions

uz(H)=Vz

Page 47: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

Melt Conveying – simplified flow

model on x-y plane

(x)

(y)

Vx=Vsin(q)

Page 48: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

Melt conveying – simple flow theory

The Ul column shows the velocity perpendicular to the

q-plane (shaded) – in the direction of the screw axis

ux uz

ul=ux*cos(q)+uz*sin(q)

ul

Page 49: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

Melt conveying: fluid motion

Pure drag flow No net flow

(circulation only)

Page 50: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

Melt conveying – power calculations

?????

Page 51: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

Melt Conveying:

geometrical corrections

Effect of finite width of

flow channel Shape factors

Page 52: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

Melt Conveying: Effect of clearance ()

Fpn=Fp(1+fL)

And of course (H) is replaced by H- in the FD formula

Pressure gradient in the presence of leackage flow

Page 53: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

• Parallel plate vs. annular flow

vs.

(ι)=άμoλαο ηνπ θνριία, ζρεκαηίδεη

γωλία (ζ) κε ηνλ άμoλα (ρ)

(z)=helical axis V=πDN

Page 54: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011

• Error introduced due

to flat-plate

assumption

Page 55: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

Melt conveying: non-Newtonian

fluids

Page 56: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

ρεδηαζκόο θαη ιεηηνπξγία εθβνιέα θνριία

Screw and die characteristics for a grooved

feed 45 mm diameter extruder with LDPE

The concept of combining die and screw

characteristic curves to obtain operating points

Page 57: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

Dimensionless screw characteristic curves for

conventional and grooved feed extruders

Page 58: ME VI ü úextruder), the output would be maximum, i.e. drag flow only: 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE:

εκεηώζεηο Μαζήκαηνο «Ρενινγία & Μνξθνπνίεζε Πνιπκεξώλ Τιηθώλ»

Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017

ΑΛΛΔ ΓΗΟΡΘΧΔΗ

• Effect of channel non-

uniformity in z-

direction

– The operating curve

becomes steeper

• Non-isothermal

operation