MarkovianStateandActionAbstractionsfor … · Non-Markovianess...

28
Markovian State and Action Abstractions for MDPs via Hierarchical MCTS Aijun Bai , Siddharth Srivastava , Stuart Russell July 12, 2016 UC Berkeley | UTRC 1

Transcript of MarkovianStateandActionAbstractionsfor … · Non-Markovianess...

Page 1: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Markovian State and Action Abstractions forMDPs via Hierarchical MCTS

Aijun Bai†, Siddharth Srivastava‡, Stuart Russell†

July 12, 2016

UC Berkeley† | UTRC‡

1

Page 2: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Background

Page 3: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

State Abstraction

State abstraction groups a set of statesinto a unit:• Ground MDP: M = 〈S,A, T ,R,γ〉• Abstract states: X = x1, x2, · · ·

– A partition on state space S

• Abstraction function: ϕ : S→ X

– ϕ(s) ∈ X is the abstractstate corresponding toground state s ∈ S Figure 1: Rooms domain

A. Bai, S. Srivastava and S. Russell, IJCAI 2016, New York, NY. 3

Page 4: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Non-Markovianess

State abstraction results into a reduced high-level abstract statespace. A well-known difficulty for state abstraction:

• Non-Markovianess: Pr(x ′ | x,a)

• Aggregation probability: Pr(s | x)

– Depending on past actions and abstract states

– Depending on the policy being executed/computed

A. Bai, S. Srivastava and S. Russell, IJCAI 2016, New York, NY. 4

Page 5: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Safe State Abstraction

Safe state abstraction avoids the non-Markovian problem:

• Ignore only irrelevant state variables (Dietterich, 1999; Andre& Russell, 2002; Jong & Stone, 2005)

• Exploit particular model structure (e.g. bisimulation orhomomorphism) (Dearden & Boutilier, 1997; Givan et al.,2003; Jiang et al., 2014; Anand et al., 2015)

However, safe state abstraction is lossless:

• Not always possible

• Computationally difficult to find

A. Bai, S. Srivastava and S. Russell, IJCAI 2016, New York, NY. 5

Page 6: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

The Weighting Function Approach

The weighting function approach approximates Pr(s | x) using afixed weighting function w(s, x) (Bertsekas et al., 1995; Singhet al., 1995; Li et al., 2006):

• Superficially, the state-abstracted model can be written in aMarkovian way:

– Tϕ(x′ | x,a) =

∑s′∈ϕ−1(x′)

∑s∈ϕ−1(x) T(s

′ | s,a)w(s, x)

– Rϕ(x,a) =∑s∈ϕ−1(x) R(s,a)w(s, x)

• Abstract MDP: 〈X,A, Tϕ,Rϕ,γ〉However, a fixed weighting function can not capture the truedynamics of the abstract system!

A. Bai, S. Srivastava and S. Russell, IJCAI 2016, New York, NY. 6

Page 7: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Our Approach

Page 8: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

State Abstraction from a POMDP Perspective

Doing state abstraction ϕ on a ground MDP M = 〈S,A,R, T ,γ〉actually creates a POMDP:

• Abstract states X as observations

• Observation function: Ω(x | s) = 1[x = ϕ(s)]

• POMDP(M,ϕ) = 〈S,A,X, T ,R,Ω,γ〉

– Underlying MDP: M

• The belief state b(s) in POMDP(M,ϕ) replaces the ad-hocweighting function

A. Bai, S. Srivastava and S. Russell, IJCAI 2016, New York, NY. 8

Page 9: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Solving POMDP(M,ϕ) via Monte Carlo Tree Search

Exactly solving POMDP(M,ϕ) via dynamic programming isintractable. From a tree-based online planning perspective,branching factors:

• M: up to |S|× |A|

• POMDP(M,ϕ): up to |X|× |A|

We consider solving it online via MCTS:

• POMCP(M,ϕ): POMCP running on POMDP(M,ϕ)

– Build a search tree in the history space via sampling

– Provided with a simulator for the ground MDP

A. Bai, S. Srivastava and S. Russell, IJCAI 2016, New York, NY. 9

Page 10: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Action Abstraction on POMDP(M,ϕ)

A given state abstraction naturally induces an action abstraction:

• Extend the theory of options to a POMDP

• Obtain an SMDP with options O in history space H

• Options connect histories in a one high-level step

– E.g., option ox→y connects histories ending with x ∈ Xto histories ending with y ∈ X

A. Bai, S. Srivastava and S. Russell, IJCAI 2016, New York, NY. 10

Page 11: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Value Function Decomposition for Options

Hierarchical policy for POMDP(M,ϕ) — Π = µ,πo1 ,πo2 , · · · :• µ : H→ O is the overall option-selection policy

• πo is the inner policy for option o ∈ O

• MAXQ-like value function decomposition in history space:

– Qµ(h,o) = Vπo(h) +∑h′∈H γ

|h′|−|h| Pr(h ′ | h,o)Vµ(h ′)

– Qπo(h,a) = R(h,a) + γ∑x∈X Pr(x | h,a)Vπo(hax)

A. Bai, S. Srivastava and S. Russell, IJCAI 2016, New York, NY. 11

Page 12: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Exploit Action Abstraction via Hierarchical MCTS

The resulting hierarchical MCTS algorithm — POMCP(M,ϕ,O):

• Learn µ by running high-level POMCP over options

• Learn πo by running low-level POMCP over primitive actions

• Invoke a nested MCTS when evaluating an option

• Update option/action values according to the value functiondecomposition

A. Bai, S. Srivastava and S. Russell, IJCAI 2016, New York, NY. 12

Page 13: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Theoretical Results

Page 14: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Theorems

• POMCP(M,ϕ) finds the optimal policy for a ground MDPM consistent with input state abstraction ϕ

• The performance loss of POMCP(M,ϕ) is bounded by aconstant multiple of an aggregation error introduced bygrouping states with different optimal actions

• POMCP(M,ϕ,O) converges to a recursively optimalhierarchical policy for POMDP(M,ϕ) over the hierarchydefined by input state and action abstractions

A. Bai, S. Srivastava and S. Russell, IJCAI 2016, New York, NY. 14

Page 15: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Experimental Evaluation

Page 16: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

The Rooms Domain

The ROOMS[m,n,k] problem:

• A robot navigates in a m× n grid map containing k rooms

• Primitive actions: E, S, W and N

• Probability 0.2 of executing a random action

The input state and action abstractions:

• Abstract states: rooms

• Options: transitions between rooms

A. Bai, S. Srivastava and S. Russell, IJCAI 2016, New York, NY. 16

Page 17: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Experimental Results: The Rooms Domain

−55−50−45−40−35−30−25−20−15−10

1 10 100 1000 10000 100000 1e+06

Dis

coun

tedR

etur

n

Simulations

UCTUCTϕ

POMCP(M,ϕ)POMCP(M,ϕ,O)

(a) ROOMS[17, 17, 4]

−60−55−50−45−40−35−30−25−20−15

1 10 100 1000 10000 100000 1e+06

Dis

coun

tedR

etur

nSimulations

UCTUCTϕ

POMCP(M,ϕ)POMCP(M,ϕ,O)

(b) ROOMS[25, 13, 18]

A. Bai, S. Srivastava and S. Russell, IJCAI 2016, New York, NY. 17

Page 18: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Conclusions

Page 19: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Conclusions

• Propose state- and action-abstracted MDPs can be viewedas POMDPs

• Bound the performance loss induced by the abstraction

• Describe a hierarchical MCTS algorithm for approximatelysolving the abstract POMDP

– Converge to a recursively optimal hierarchical policy

– Improve ground MCTS by orders of magnitudeempirically

A. Bai, S. Srivastava and S. Russell, IJCAI 2016, New York, NY. 19

Page 20: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Questions?

A. Bai, S. Srivastava and S. Russell, IJCAI 2016, New York, NY. 20

Page 21: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

References I

References

Anand, A., Grover, A., Mausam, M., & Singla, P. (2015). ASAP-UCT: abstraction of state-action pairs in UCT. InProceedings of the 24th International Conference on Artificial Intelligence, (pp. 1509–1515). AAAI Press.

Andre, D., & Russell, S. J. (2002). State abstraction for programmable reinforcement learning agents. InAAAI/IAAI, (pp. 119–125).

Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P., & Bertsekas, D. P. (1995). Dynamic programming andoptimal control , vol. 1. Athena Scientific Belmont, MA.

Dearden, R., & Boutilier, C. (1997). Abstraction and approximate decision-theoretic planning. ArtificialIntelligence, 89(1), 219–283.

Dietterich, T. G. (1999). State abstraction in MAXQ hierarchical reinforcement learning. arXiv preprintcs/9905015 .

Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and model minimization in Markov decisionprocesses. Artificial Intelligence, 147(1), 163–223.

Jiang, N., Singh, S., & Lewis, R. (2014). Improving UCT planning via approximate homomorphisms. InProceedings of the 2014 international conference on Autonomous agents and multi-agent systems, (pp.1289–1296). International Foundation for Autonomous Agents and Multiagent Systems.

Jong, N. K., & Stone, P. (2005). State abstraction discovery from irrelevant state variables. Citeseer.Li, L., Walsh, T. J., & Littman, M. L. (2006). Towards a unified theory of state abstraction for MDPs. In ISAIM.Singh, S. P., Jaakkola, T., & Jordan, M. I. (1995). Reinforcement learning with soft state aggregation. Advances in

neural information processing systems, (pp. 361–368).

Page 22: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

MDPs and POMDPs

Markov decision processes (MDPs) provide a rich framework forplaning and learning under uncertainty in fully observableenvironments:

• An MDP is a tuple 〈S,A, T ,R,γ〉Partially observable Markov decision processes (POMDPs) extendMDPs to partially observable environments:

• A POMDP is a tuple 〈S,A,Z, T ,R,Ω,γ〉

– Underlying MDP: 〈S,A, T ,R,γ〉

Page 23: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

The Pseudo Code

Figure 3: The overall POMCP(M,ϕ,O) algorithm

Page 24: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Aggregation Error

DefinitionThe aggregation error of state abstraction 〈X,ϕ〉 for a groundMDP M = 〈S,A, T ,R,γ〉 is e, if ∃ a ∈ A, such that for all x ∈ X,ϕ(s) = x and d ∈ [0,H], |Vd(s) −Qd(s, a)| 6 e, where Vd andQd are the optimal value and action-value functions at depth d inthe search tree of M, and H is the maximal planning horizon.

Page 25: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Optimality Results for State Abstraction

TheoremFor state abstraction 〈X,ϕ〉 for a ground MDP M = 〈S,A, T ,R,γ〉with aggregation error e, let s0 be the current state in the groundMDP M and let h0 with P(h0) = s0 be the corresponding historyin POMDP(M,ϕ). Let Q∗(s, ·) and Q∗(h, ·) be the optimalaction values of M and POMDP(M,ϕ) respectively. Leta∗ = argmaxa∈AQ∗(h0,a) be the optimal primitive action foundin POMDP(M,ϕ) at history h0, and define an action-value erroras E(a∗) = |maxa∈AQ∗(s0,a) −Q∗(s0,a∗)|. Suppose themaximal planning horizon is H, then E(a∗) is bounded byE(a∗) 6 2He if γ = 1, else E(a∗) 6 2γ1−γH

1−γ e.

Page 26: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Convergence Results with Action Abstraction

TheoremWith probability 1, POMCP(M,ϕ,O) converges to a recursivelyoptimal hierarchical policy for POMDP(M,ϕ) over the hierarchydefined by the input state and action abstractions.

Page 27: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

The Continuous Rooms Domain

The C-ROOMS[m,n,k] problem:

• Each cell has a size of 1 (m2)

• The position of the agent is represented as (x,y) coordinates

• An action moves the agent by a distance of 1 (m) expectedly

• Gaussian noise is added to each movement

The input state and action abstractions remain the same as in therooms domain.

Page 28: MarkovianStateandActionAbstractionsfor … · Non-Markovianess Stateabstractionresultsintoareducedhigh-levelabstractstate space. Awell-knowndifficultyforstateabstraction: Non-Markovianess:

Experimental Results: The Continuous Rooms Domain

−55−50−45−40−35−30−25−20−15−10

1 10 100 1000 10000 100000 1e+06

Dis

coun

tedR

etur

n

Simulations

UCTUCTϕ

POMCP(M,ϕ)POMCP(M,ϕ,O)

(a) C-ROOMS[17, 17, 4]

−60−55−50−45−40−35−30−25−20−15

1 10 100 1000 10000 100000 1e+06

Dis

coun

tedR

etur

nSimulations

UCTUCTϕ

POMCP(M,ϕ)POMCP(M,ϕ,O)

(b) C-ROOMS[25, 13, 18]