MTJ Design Space

23
MTJ Design Space Design Space v3

description

MTJ Design Space. Design Space v3. MTJ Data (Zhongming). Data supports modeling MTJ variation as a nominal R P and TMR with some σ Rp and σ TMR. MTJ Scaling. Critical Switching Current: If we scale MTJ dimensions to keep Δ constant, then: - PowerPoint PPT Presentation

Transcript of MTJ Design Space

Click to edit Master title style

MTJ Design Space

Design Space v3

MTJ Data (Zhongming)

Data supports modeling MTJ variation as a nominal RP and TMR with some σRp and σTMR.

2

0 500 1000 1500 2000 25000

500

1000

1500

2000

2500

RP []

RA

P [

]

Wafer: 6.4.1, Chip: 1aR

Column 4: 150x45nm2

Column 7: 130x50nm2

Column 9: 170x50nm2

0 500 1000 1500 2000 25000

500

1000

1500

2000

2500

RP []

RA

P [

]

Wafer: 6.4.1, Chip: 1cR

Column 4: 150x45nm2

Column 9: 170x50nm2

Critical Switching Current:

If we scale MTJ dimensions to keep Δ constant, then:

(Note: scaling MTJ dimensions theoretically has no effect on TMR)

MTJ Scaling

3

0

0

ln1

CC II

VTk

M

lwdV

Tk

MH

Tk

E

B

S

B

SK

B

211

2

VMe

I SC2

0 h

4

Gilbert Damp. Constant Magnetization Saturation

Spin-polarization Factor Demagnetization Anisotropy

Free Layer Volume Boltzmann Constant

Dirac Constant Natural Time Constant (~ 1ns)

Elemental Charge Pulse Width0BkKHSM

V

eh

230 slwdIC 21 s

lwR

212 and , sdswlwld

Click to edit Master title style

RP vs. WN for Fixed IC Traces (Fengbo)

Upper bounds: Maximum resistance to support minimum desired write current– Empirically derived for RP & RAP for a given cell size

Bounds: RP & RAP (TMR)

5

IBM90nm: RP vs. WN [RP]

6

10

0

200

200

200

300

300

400

400

400

500

500

500

600

600

600

700

700

700

800

800

800

900

900

900

1000

1000

1000

RP [

k]

WN [m]

IBM90nm: Boosting

0 0.5 1 1.5 20

1

2

3

4

5

6

7

8

100

100

100

10

0

200

200

200

300

300

300

400

400

400

500

500

500

600

600

600

700

700700

800

800800

900

9009001000

10001000

RP [

k]

WN [m]

IBM90nm: No Boosting

0 0.5 1 1.5 20

1

2

3

4

5

6

7

8

IBM90nm: RP vs. WN [RAP]

7

200200

200

20

0

300

300

300

400400

400

500

500600

600

600

700

700

700

800

800

800

900

900

900

1000

1000

1000

RA

P [

k]

WN [m]

IBM90nm: Boosting

0 0.5 1 1.5 20

1

2

3

4

5

6

7

8

9

10

10

0

200

200

20

0

300

300

300

400

400

400

500

500 600600

600

700

700

700

800

800

800

900

900900

1000

10001000

RA

P [

k]

WN [m]

IBM90nm: No Boosting

0 0.5 1 1.5 20

1

2

3

4

5

6

7

8

9

10

IBM65nm: RP vs. WN [RP]

8

10

0

200

200

20

0

300

300

300

400

400

400

500500

500

600600

600

700700

700

800800

800

900900

900

10001000

1000R

P [

k]

WN [m]

IBM65nm: Boosting

0 0.5 1 1.5 20

1

2

3

4

5

6

7

8

100

100

100

200

200

200

300

300400

400

400

500500

500

600600

600

700700

700

800800

800

900900

900

10001000

1000

RP [

k]

WN [m]

IBM65nm: No Boosting

0 0.5 1 1.5 20

1

2

3

4

5

6

7

8

IBM65nm: RP vs. WN [RAP]

9

200200

200

20

0

300300

300

400400

400

500500

600600 700

700

700

800800

800

900900

900

1000

1000

1000

RA

P [

k]

WN [m]

IBM65nm: Boosting

0 0.5 1 1.5 20

1

2

3

4

5

6

7

8

9

10100

10

0

200200

200

20

0

300300

300

400400

400

500500 600

600

600

700700

700

800800

800

900900

900

1000

1000

1000

RA

P [

k]

WN [m]

IBM65nm: No Boosting

0 0.5 1 1.5 20

1

2

3

4

5

6

7

8

9

10

IBM45nm: RP vs. WN [RP]

10

200

200

300

300

400

400

500500

500

600600

600

700700

700

800800

800

900900

900

10001000

1000R

P [

k]

WN [m]

IBM45nm: Boosting

0 0.5 1 1.5 20

1

2

3

4

5

6

7

8

100

100

100

200

200

200

300

300

400400

400

500500

500

600600

600

700700

700

800800

800

900900

900

10001000

1000

RP [

k]

WN [m]

IBM45nm: No Boosting

0 0.5 1 1.5 20

1

2

3

4

5

6

7

8

IBM45nm: RP vs. WN [RAP]

11

200200

200

300300

30

0

400400

400

500500

500

600600

700700

700

800800

800

900900

900

10001000

1000

RA

P [

k]

WN [m]

IBM45nm: Boosting

0 0.5 1 1.5 20

1

2

3

4

5

6

7

8

9

10

200200

300300

30

0

400400

400

500500

600600 700700

700

800800

800

900900

900

10001000

1000

RA

P [

k]

WN [m]

IBM45nm: No Boosting

0 0.5 1 1.5 20

1

2

3

4

5

6

7

8

9

10

Click to edit Master title style

65nm Design Space Examples

65nm Design Space Example [FLASH]

Target Performance:– Write Time: 100µs-10ms– Read Time: < 10µs

Cell Size: 6F2 ~ WN = 0.10µm

MTJ Device Characteristics (Sample Distribution):– RA = 5Ωµm2

– TMR = 110%– Δ = 50– For 1ns switching with L = 170nm &W = 50nm

● IP→AP ≥ 375μA● IAP→P ≥ 550μA

CELL SIZE TOO SMALL → BETTER MTJs NEEDED13

65nm Design Space Example [eDRAM]

Target Performance:– Write Time: 5-10ns– Read Time: <10ns

Cell Size: 30F2 ~ WN = 0.50µm

MTJ Device Characteristics (Sample Distribution):– RA = 5Ωµm2

– TMR = 110%– Δ = 50– For 1ns switching with L = 170nm &W = 50nm

● IP→AP ≥ 375μA● IAP→P ≥ 550μA

14

65nm: Nominal [eDRAM]

No Boosting

Wn = 0.50μm (30F2)

Write Time: 10ns

MTJ (Nominal):– IP→AP ≥ 358μA– IAP→P ≥ 525μA– RP = 749Ω

● RA = 5 [Ωμm2]● L = 170 [nm]● W = 50 [nm]

– TMR = 110%

15

0 500 1000 15000

50

100

150

200

250

300

350

400

450

500

RP []

RA

P [

]

RP,MIN

RP,MAX

RAP,MIN

RAP,MAX

3 (MTJ)4 (MTJ)5 (MTJ)

65nm: MTJ Scaling [eDRAM]

No Boosting

Wn = 0.50μm (30F2)

Write Time: 10ns

MTJ (S = 0.75):– IP→AP ≥ 232μA– IAP→P ≥ 341μA– RP = 1332Ω

● RA = 5 [Ωμm2]● L = 128 [nm]● W = 38 [nm]

– TMR = 110%

16

0 500 1000 1500 2000 25000

500

1000

1500

2000

2500

RP []

RA

P [

]

RP,MIN

RP,MAX

RAP,MIN

RAP,MAX

3 (MTJ)4 (MTJ)5 (MTJ)

65nm: MTJ & RA Scaling [eDRAM]

No Boosting

Wn = 0.50μm (30F2)

Write Time: 10ns

MTJ (S = 0.75):– IP→AP ≥ 232μA– IAP→P ≥ 341μA– RP = 799Ω

● RA = 3 [Ωμm2]● L = 128 [nm]● W = 38 [nm]

– TMR = 110%

17

0 500 1000 1500 2000 25000

500

1000

1500

2000

2500

RP []

RA

P [

]

RP,MIN

RP,MAX

RAP,MIN

RAP,MAX

3 (MTJ)4 (MTJ)5 (MTJ)

65nm: Boosting [eDRAM]

Boosting

Wn = 0.50μm (30F2)

Write Time: 10ns

MTJ (Nominal):– IP→AP ≥ 358μA– IAP→P ≥ 525μA– RP = 749Ω

● RA = 5 [Ωμm2]● L = 170 [nm]● W = 50 [nm]

– TMR = 110%

18

0 500 1000 1500 2000 2500 30000

500

1000

1500

RP []

RA

P [

]

RP,MIN

RP,MAX

RAP,MIN

RAP,MAX

3 (MTJ)4 (MTJ)5 (MTJ)

65nm: Boosting & MTJ Scaling [eDRAM]

Boosting

Wn = 0.50μm (30F2)

Write Time: 10ns

MTJ (S = 0.90):– IP→AP ≥ 306μA– IAP→P ≥ 448μA– RP = 925Ω

● RA = 5 [Ωμm2]● L = 153 [nm]● W = 45 [nm]

– TMR = 110%

19

0 500 1000 1500 2000 2500 3000 35000

500

1000

1500

2000

2500

3000

RP []

RA

P [

]

RP,MIN

RP,MAX

RAP,MIN

RAP,MAX

3 (MTJ)4 (MTJ)5 (MTJ)

65nm Design Space Example [SRAM]

Target Performance:– Write Time: ~1ns– Read Time: <5ns

Cell Size: 120F2 ~ WN = 2.00µm

MTJ Device Characteristics (Sample Distribution):– RA = 5Ωµm2

– TMR = 110%– Δ = 50– For 1ns switching with L = 170nm &W = 50nm

● IP→AP ≥ 375μA● IAP→P ≥ 550μA

20

65nm: Nominal [SRAM]

No Boosting

Wn = 2.00μm (120F2)

Write Time: 1ns

MTJ (Nominal):– IP→AP ≥ 375μA– IAP→P ≥ 550μA– RP = 749Ω

● RA = 5 [Ωμm2]● L = 170 [nm]● W = 50 [nm]

– TMR = 110%

21

0 500 1000 1500 20000

200

400

600

800

1000

1200

1400

1600

1800

2000

RP []

RA

P [

]

RP,MIN

RP,MAX

RAP,MIN

RAP,MAX

3 (MTJ)4 (MTJ)5 (MTJ)

65nm: MTJ Scaling [SRAM]

No Boosting

Wn = 2.00μm (120F2)

Write Time: 1ns

MTJ (S = 1.30):– IP→AP ≥ 556μA– IAP→P ≥ 815μA– RP = 443Ω

● RA = 5 [Ωμm2]● L = 221 [nm]● W = 65 [nm]

– TMR = 110%

22

0 500 1000 15000

500

1000

1500

RP []

RA

P [

]

RP,MIN

RP,MAX

RAP,MIN

RAP,MAX

3 (MTJ)4 (MTJ)5 (MTJ)

65nm: Boosting [SRAM]

Boosting

Wn = 2.00μm (120F2)

Write Time: 1ns

MTJ (Nominal):– IP→AP ≥ 375μA– IAP→P ≥ 550μA– RP = 749Ω

● RA = 5 [Ωμm2]● L = 170 [nm]● W = 50 [nm]

– TMR = 110%

23

0 500 1000 1500 2000 2500 3000 35000

500

1000

1500

2000

2500

3000

RP []

RA

P [

]

RP,MIN

RP,MAX

RAP,MIN

RAP,MAX

3 (MTJ)4 (MTJ)5 (MTJ)