Magnetic inductance Solenoids - Universitetet i...

21
Magnetic inductance & Solenoids P.Ravindran, PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

Transcript of Magnetic inductance Solenoids - Universitetet i...

Page 1: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Magnetic  inductance & Solenoidsg

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

Page 2: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Maxwell’s Equations

Gauss's law electricoS

qdε

E A

0 Gauss's law in magnetismS

S

d B A

Faraday's law

S

Bdddt

E s y

Ampere-Maxwell lawI E

dtdd μ ε μ

B s Ampere Maxwell lawIo o od μ ε μdt

B s

•The two Gauss’s laws are symmetrical, apart from the absence of the term for l ’ l fmagnetic monopoles in Gauss’s law for magnetism

•Faraday’s law and the Ampere‐Maxwell law are symmetrical in that the line integrals of E and B around a closed path are related to the rate of change of the 

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

respective fluxes

Page 3: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

• Gauss’s law (electrical):• The total electric flux through any closed 

surface equals the net charge inside thatqd E Asurface equals the net charge inside that 

surface divided by o• This relates an electric field to the charge 

distribution that creates it

oS

E A

• Gauss’s law (magnetism): • The total magnetic flux through any closedThe total magnetic flux through any closed 

surface is zero• This says the number of field lines that enter 

a closed volume must equal the number that  0d B Aqleave that volume

• This implies the magnetic field lines cannot begin or end at any point

S

• Isolated magnetic monopoles have not been observed in nature

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

Page 4: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

• Faraday’s law of Induction:• This describes the creation of an electric 

field by a changing magnetic fluxfield by a changing magnetic flux• The law states that the emf, which is the 

line integral of the electric field around any closed path, equals the rate ofany closed path, equals the rate of change of the magnetic flux through any surface bounded by that path

• One consequence is the current induced Bdd

dt

E sin a conducting loop placed in a time‐varying B

dt

• The Ampere‐Maxwell law is a generalization of Ampere’s law

d• It describes the creation of a magnetic field by an electric field and electric currents

• The line integral of the magnetic field

I Eo o o

dd μ ε μdt

B s• The line integral of the magnetic field 

around any closed path is the given sum

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

Page 5: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Maxwell’s Equation’s in integral form

A V

Q 1E dA dV

Gauss’s Law

o o

B dA 0

G ’ L f M iA

B dA 0 Gauss’s Law for Magnetism

BC A

d dE d B dAdt dt

Faraday’s Law

C Adt dt Ed dEB d I J dA

E

o encl o o o oC AB d I J dA

dt dt

A ’ LP.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

Ampere’s Law

Page 6: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Maxwell’s Equation’s in free space (no charge or current)( g )

E dA 0

Gauss’s LawA

E dA 0 Gauss s Law

AB dA 0

Gauss’s Law for Magnetism

Bd dE d B dA Faraday’s Law

C AE d B dA

dt dt Faraday s Law

Eo o o oC A

d dB d E dAdt dt

Ampere’s Law

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

Page 7: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Maxwell’s Equation’s In Differential Form

o

E

Gauss’s Law

B 0

Gauss’s Law for Magnetism

BE

F d ’ LEt

Faraday’s Law

o o oEB Jt

Ampere’s Law

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

o o o t

Page 8: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Reading Question

Electromagnetic induction was discovered byElectromagnetic induction was discovered by

1. Faraday.2 Henry2. Henry.3. Maxwell.4. Both Faraday and Henry.5 All h5. All three.

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

Page 9: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Reading QuestionReading QuestionElectromagnetic induction was discovered byElectromagnetic induction was discovered by

1. Faraday.2. Henry.3. Maxwell.4 Both Faraday and Henry4. Both Faraday and Henry.5. All three.

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

Page 10: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Reading QuestionReading QuestionThe direction that an induced current flowsThe direction that an induced current flows in a circuit is given by

1. Faraday’s law.. a aday s aw.2. Lenz’s law.3. Henry’s law.4. Hertz’s law.5. Maxwell’s law.

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

Page 11: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Reading QuestionReading QuestionThe direction that an induced current flowsThe direction that an induced current flows in a circuit is given by

1. Faraday’s law.. a aday s aw.2. Lenz’s law.3. Henry’s law.4. Hertz’s law.5. Maxwell’s law.

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

Page 12: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Reading QuestionReading Question

C rrents circ late in a piece of metal that isCurrents circulate in a piece of metal that is pulled through a magnetic field. What are these currents called?currents called?

1 Induced currents1. Induced currents2. Displacement currents3 Faraday’s currents3. Faraday s currents4. Eddy currents

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

Page 13: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Reading QuestionReading QuestionCurrents circulate in a piece of metal that is pulled through aCurrents circulate in a piece of metal that is pulled through a magnetic field. What are these currents called?

1. Induced currents2. Displacement currents3. Faraday’s currents4 Eddy currents4. Eddy currents5. This topic is not covered in Chapter 33.

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

Page 14: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Electromagnetic Induction

Consider a charge qprojected at velocity v into the magnetic field B shown •

•• • •• • •• • Bghere: •

•• • •• • •• •

•• • •• • •• •

Since the force is always di l t th

••

•• • •• • •• •

•• • •• • •• •perpendicular to the velocity, the charge will move in uniform circular motion:

•• • •• • •• •

•• • •• • •• •

••

motion:

F = mac

•• • •• • •• •

•• • •• • •• • ••

qvB = mv2

F = qvB sin

qvB = r

r = mvqB Particle in a 

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

qMagnetic Field 

Page 15: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Constant uniform Magnetic fieldConstant uniform Magnetic field

• B does not change the speed• It changes direction of motion• Thus particle should move in a circle if• Thus particle should move in a circle, if moves in a plane perpendicular to B.

vB2

||mvr

rmBvq || Bq

r||

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

Page 16: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Electromagnetic InductionInduced Electromagnetic Force (emf)

In fact, this very property is used in an instrument ll d thcalled the mass 

spectrometer.

An unknown element is ionized, and accelerated by an applied voltage in the chamber S.

It is then projected into a known perpen‐dicular magnetic fieldmagnetic field.The radius is detected, and the mass calculated:

r = mvqB

m = rqBv

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

Page 17: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Angular frequencyg q y

Bqv x x x xx

x x x x xx

x x x x xx

x x x x xx

x

mBq

rv

x x x xxx x x x xxx

qBmr

x x x xxx

FBx x x xxxFB

mqBf

22

x x x xx

x x x x x

x

x

x x x xx

x x x x x

x

xm 22 x xx x

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

Page 18: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Application I‐Mass spectrometerpp p

To separate the ionized atomsR m

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

Page 19: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Application II - Cyclotron

mRBqmvK

221 222

2

E. O. Lawerence(1930)

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related

Page 20: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Example 1Example 1

The semicircular conductor shown carries a current I. The closed circuit is exposed to a uniform magnetic field              0yBB. Determine (a) the magnetic force F1 on the straight section of the wire and (b) the force F2 on the curved section.

Page 21: Magnetic inductance Solenoids - Universitetet i oslofolk.uio.no/ravi/cutn/elec_mag/16_maxwell_difform.pdfBdA 0 G’L f Mi A BdA 0 Gauss’s aw or Magnetism B CA dd Ed BdA dt dt Faraday’s

Solution to Example 1

• a) Using I BF a)

ˆ2ˆ

, Usingr

Im

xBF

N2ˆˆ2ˆ 001 IrBBIr zyxF

0ˆByB

N 22 001 IrBBIr zyxF

• b)   :direction ˆ- in the is d ofproduct the zBl

N 2ˆsinˆ 00

00

2 IrBdrBIdI zzBlF

P.Ravindran,  PHY041: Electricity & Magnetism 1 March 2013: Maxwell equation related