Local tests of spatial variation of m e /m p S. A. Levshakov Department of Theoretical Astrophysics...

18
Local tests of spatial variation of m e /m p S. A. Levshakov Department of Theoretical Astrophysics Physical-Technical Institute, St. Petersburg Department of Theoretical Astrophysic JINR, Dec 1-5, 2014

Transcript of Local tests of spatial variation of m e /m p S. A. Levshakov Department of Theoretical Astrophysics...

Local tests of spatial variation of me/m

p

S. A. Levshakov

Department of Theoretical Astrophysics

Physical-Technical Institute, St. Petersburg

Department of Theoretical Astrophysics

Physical-Technical Institute, St. Petersburg

, 201

JINR, Dec 1-5, 2014

Einstein equivalence principle

local Lorentz invariance (LLI)

changing α can be associated with a violation of LLI (Kostelecky et al. 2003)

LPI : the outcome of any local non-gravitational experiment is independent of where and when it is performed, i.e., that the fundamental physical laws are space-time invariant

Low energies

local position invariance (LPI)

μ = me /m

p

ΔV= ΔV +ΔV+ΔV

Δμ/μ = (Vrot

– Vinv

)/(ΔQ c) = ΔV/(ΔQ c)

ΔV = 0

ΔV=ΔV + ΔV

μ n

n

μ

(= signal + Doppler noise + systematics)s

s

comparison of inversion (|Q| > 1) androtational (Q=1) transitions

Measurements

Effelsberg 100-m telescope

Effelsberg 100-m telescope

~ 0.001 km/s

0.15 km/s~ 0.005 km/s

Line position uncertainty

Line width 0.2 km/s

Medicina 32-m telescope

Time series

instability of δV ~ 10 m/s detected

XFFTS (eXtended

FFTS)

EffelsbergNew spectrometer:

PSW150 sec/point

30 min/scan (ON+OFF)

Exposure time:

Systematics

~ 1/4th Δch

Effelsberg observations

NH3

HC3N

HC5N HC

7N

ΔV=V – V rot inv

Δμ/μ < 2 10-8

<ΔV>=3±6 m/s

recent estimate

Levshakov et al. 2013

formal weighted mean:

(3σ C.L.)

(1σ C.L.)

precision of lab frequencies:

N2H+ (1-0) 93.2 GHz ε = 14 m/s

HC3N (2-1) 18.2 GHz ε = 2.8 m/s

NH3 (1,1) 23.7 GHz ε = 0.6 m/s

uncertainty in VLSR

of 1 m/s

limit on Δμ/μ ~ 10-9

ammonia method (ΔQ=3.5)

rotational transitions

inversion transition

NH3 (11 - 2

1) 1215.2 GHz ε = 0.3 m/s rotational transition

(if based on NH3 only !)

JK

=11- 2

1644.4 GHz, i.e. in B9 ALMA band1215.2

GHz

How to improve current Δμ/μ estimates ?

rotational transition of para-NH3

z = 0.89

para- vs ortho-NH3

!

Persson et al. 2010

Different absorption patterns !

Herschel/HIFI observations of para- and ortho-NH3 rotational transitions

star-forming region G10.6-0.4 (W31C) V

LSR

robust approach – to use para-NH3 only

Estimate of Δμ/μ for local sources (MW):

Δμ/μ = σV/(ΔQ c)

if linewidth ΔV ~ 0.2 km/s (like in L1498),

σ

V ~ 0.001 km/s, S/N ~ 30

then σV

= 0.69(S/N)-1(ΔVΔch

) 1/2

gives Δch

~ 0.01 km/s

and Δμ/μ ~ 10-9

Δch

~ 1 kHz at 23.7 GHz Δch

~ 40 kHz at 1215 GHz

but requires space observations at 1215 GHz

Mangum et al. 2013

z = 0.0028 z = 0.0038z = 0.0013z = 0.013z = 0.018

LINER-type AGNSeyfert possible QSO

Seyfert, ULIRG

HFLS3

Extragalactic NH3 absorption was observed:

NGC 660NGC 3079IC 860

IR 15107+0724Arp 220

if z > 1 then ground-based telescopes can be used

for σV ~ 0.1 km/s, S/N ~ 30, and ΔV ~ 20 km/s (like in PKS1830-211)

Δμ/μ ~ 10-7 (based on NH3 only)

z = 6.34 Dusty star-forming galaxy, DSFG

Riechers et al. 2013

Hydronium H3O+

frequencies are in GHz

11-2

1 307 GHz

32-2

2 364 GHz

30-2

0 396 GHz o-H

3O+

p-H3O+

p-H3O+

Q

-3.0

-3.5

+6.4

Kozlov & Levshakov 2011Kozlov, Porsev, Reimers 2011

p-H3O+ : ΔQ = Q

307 – Q

364 = 9.9

three times ΔQammonia

H3O+ observations (star-forming regions, MW)

CSO 10.4-m telescope (Phillips et al. 1992)

also detected towards

Orion-KL, W51M, W3 IRS5

linewidth ΔV = 3.5 km/s

G34.3+0.15

H3O+ observations (star-forming regions, MW)

Orion-KL

APEX 12-m telescope May, 2011 Molaro et al. (unpublished)

307 GHz

H3O+ observations (star-forming regions, MW)

Infrared Space Observatory (ISO)

Sagittarius B2 (~ 120 pc from the Galactic Center)

364 GHz

1632 GHz

1655 GHz

p-H3O+

p-H3O+

p-H3O+

Palehampton et al. 2007

line position uncertainties ~ 5 km/s

ΔQ = Q1632

– Q364

= 2.0+3.5=5.5

Δμ/μ < 3 10-6

JCMT 15-m telescope

H3O+ observations (extragalactic)

364 GHz transition

M82

Arp 220 van der Tak et al. 1992

if 364, 307 GHz line position uncertainties ~ 1 km/s

then Δμ/μ ~ 3 10-7

local starburst

Lab frequencies:

ε ~ 1 m/s 307.192406 GHz

ε ~ 1 m/s 364.797438 GHz

ε ~ 10 m/s (unresolved hfs components)

with ε ~ 10 m/s

limit on Δμ/μ ~ 3 10-9

(para-hydronium only)

p-H3O+

p-H3O+

Conclusion

High precision line position measurements

Δμ/μ ~ 3 10-9 (p-H3O+)

~ 0.01 km/s (Galactic molecular clouds)

~ 1 km/s (extragalactic molecular clouds)

provide with ALMA facilities

~ 10-8 (p-NH3 )Galactic

Δμ/μ ~ 3 10-7 (p-H3O+)

~ 10-6 (p-NH3 )extragalactic

Atacama Large Millimeter Array (ALMA)0.3-9.6 mm