EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady...

175
EE101: Sinusoidal steady state analysis M. B. Patil [email protected] www.ee.iitb.ac.in/~sequel Department of Electrical Engineering Indian Institute of Technology Bombay M. B. Patil, IIT Bombay

Transcript of EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady...

Page 1: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

EE101: Sinusoidal steady state analysis

M. B. [email protected]

www.ee.iitb.ac.in/~sequel

Department of Electrical EngineeringIndian Institute of Technology Bombay

M. B. Patil, IIT Bombay

Page 2: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state

t=0

Vc

R

Vm cos ωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V(h)c (t) + V

(p)c (t) .

V(h)c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V(h)c (t) = A exp(−t/τ) , with τ = RC .

V(p)c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V(p)c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left

and right sides.

M. B. Patil, IIT Bombay

Page 3: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state

t=0

Vc

R

Vm cos ωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V(h)c (t) + V

(p)c (t) .

V(h)c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V(h)c (t) = A exp(−t/τ) , with τ = RC .

V(p)c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V(p)c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left

and right sides.

M. B. Patil, IIT Bombay

Page 4: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state

t=0

Vc

R

Vm cos ωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V(h)c (t) + V

(p)c (t) .

V(h)c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V(h)c (t) = A exp(−t/τ) , with τ = RC .

V(p)c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V(p)c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left

and right sides.

M. B. Patil, IIT Bombay

Page 5: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state

t=0

Vc

R

Vm cos ωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V(h)c (t) + V

(p)c (t) .

V(h)c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V(h)c (t) = A exp(−t/τ) , with τ = RC .

V(p)c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V(p)c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left

and right sides.

M. B. Patil, IIT Bombay

Page 6: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state

t=0

Vc

R

Vm cos ωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V(h)c (t) + V

(p)c (t) .

V(h)c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V(h)c (t) = A exp(−t/τ) , with τ = RC .

V(p)c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V(p)c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left

and right sides.

M. B. Patil, IIT Bombay

Page 7: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state

t=0

Vc

R

Vm cos ωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V(h)c (t) + V

(p)c (t) .

V(h)c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V(h)c (t) = A exp(−t/τ) , with τ = RC .

V(p)c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V(p)c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left

and right sides.

M. B. Patil, IIT Bombay

Page 8: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state

t=0

Vc

R

Vm cos ωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V(h)c (t) + V

(p)c (t) .

V(h)c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V(h)c (t) = A exp(−t/τ) , with τ = RC .

V(p)c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V(p)c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left

and right sides.

M. B. Patil, IIT Bombay

Page 9: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state

(SEQUEL file: ee101_rc5.sqproj)

−0.2

0.2

t=0

R

C 0

time (ms) 0 2 4 6 8 10

2 kΩ

0.5µFVm cos ωt

Vm = 1Vf = 1 kHz

Vc

Vc (V)

* The complete solution is Vc (t) = A exp(−t/τ) + C1 cos ωt + C2 sin ωt .

* As t →∞, the exponential term becomes zero, and we are left withVc (t) = C1 cos ωt + C2 sin ωt .

* This is known as the “sinusoidal steady state” response since all quantities(currents and voltages) in the circuit are sinusoidal in nature.

* Any circuit containing resistors, capacitors, inductors, sinusoidal voltage andcurrent sources (of the same frequency), dependent (linear) sources behaves in asimilar manner, viz., each current and voltage in the circuit becomes purelysinusoidal as t →∞.

M. B. Patil, IIT Bombay

Page 10: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state

(SEQUEL file: ee101_rc5.sqproj)

−0.2

0.2

t=0

R

C 0

time (ms) 0 2 4 6 8 10

2 kΩ

0.5µFVm cos ωt

Vm = 1Vf = 1 kHz

Vc

Vc (V)

* The complete solution is Vc (t) = A exp(−t/τ) + C1 cos ωt + C2 sin ωt .

* As t →∞, the exponential term becomes zero, and we are left withVc (t) = C1 cos ωt + C2 sin ωt .

* This is known as the “sinusoidal steady state” response since all quantities(currents and voltages) in the circuit are sinusoidal in nature.

* Any circuit containing resistors, capacitors, inductors, sinusoidal voltage andcurrent sources (of the same frequency), dependent (linear) sources behaves in asimilar manner, viz., each current and voltage in the circuit becomes purelysinusoidal as t →∞.

M. B. Patil, IIT Bombay

Page 11: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state

(SEQUEL file: ee101_rc5.sqproj)

−0.2

0.2

t=0

R

C 0

time (ms) 0 2 4 6 8 10

2 kΩ

0.5µFVm cos ωt

Vm = 1Vf = 1 kHz

Vc

Vc (V)

* The complete solution is Vc (t) = A exp(−t/τ) + C1 cos ωt + C2 sin ωt .

* As t →∞, the exponential term becomes zero, and we are left withVc (t) = C1 cos ωt + C2 sin ωt .

* This is known as the “sinusoidal steady state” response since all quantities(currents and voltages) in the circuit are sinusoidal in nature.

* Any circuit containing resistors, capacitors, inductors, sinusoidal voltage andcurrent sources (of the same frequency), dependent (linear) sources behaves in asimilar manner, viz., each current and voltage in the circuit becomes purelysinusoidal as t →∞.

M. B. Patil, IIT Bombay

Page 12: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state

(SEQUEL file: ee101_rc5.sqproj)

−0.2

0.2

t=0

R

C 0

time (ms) 0 2 4 6 8 10

2 kΩ

0.5µFVm cos ωt

Vm = 1Vf = 1 kHz

Vc

Vc (V)

* The complete solution is Vc (t) = A exp(−t/τ) + C1 cos ωt + C2 sin ωt .

* As t →∞, the exponential term becomes zero, and we are left withVc (t) = C1 cos ωt + C2 sin ωt .

* This is known as the “sinusoidal steady state” response since all quantities(currents and voltages) in the circuit are sinusoidal in nature.

* Any circuit containing resistors, capacitors, inductors, sinusoidal voltage andcurrent sources (of the same frequency), dependent (linear) sources behaves in asimilar manner, viz., each current and voltage in the circuit becomes purelysinusoidal as t →∞.

M. B. Patil, IIT Bombay

Page 13: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state

(SEQUEL file: ee101_rc5.sqproj)

−0.2

0.2

t=0

R

C 0

time (ms) 0 2 4 6 8 10

2 kΩ

0.5µFVm cos ωt

Vm = 1Vf = 1 kHz

Vc

Vc (V)

* The complete solution is Vc (t) = A exp(−t/τ) + C1 cos ωt + C2 sin ωt .

* As t →∞, the exponential term becomes zero, and we are left withVc (t) = C1 cos ωt + C2 sin ωt .

* This is known as the “sinusoidal steady state” response since all quantities(currents and voltages) in the circuit are sinusoidal in nature.

* Any circuit containing resistors, capacitors, inductors, sinusoidal voltage andcurrent sources (of the same frequency), dependent (linear) sources behaves in asimilar manner, viz., each current and voltage in the circuit becomes purelysinusoidal as t →∞.

M. B. Patil, IIT Bombay

Page 14: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents andvoltages.

* A phasor is a complex number,

X = Xm 6 θ = Xm exp(jθ) ,

with the following interpretation in the time domain.

x(t) = ReˆX e jωt

˜= Re

ˆXm e jθ e jωt

˜= Re

ˆXm e j(ωt+θ)

˜= Xm cos (ωt + θ)

* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steadystate.

* Note that a phasor can be written in the polar form or rectangular form,X = Xm 6 θ = Xm exp(jθ) = Xm cos θ + j Xm sin θ .

The term ωt is always implicit.

θ

Xm

Re (X)

X

Im (X)

M. B. Patil, IIT Bombay

Page 15: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents andvoltages.

* A phasor is a complex number,

X = Xm 6 θ = Xm exp(jθ) ,

with the following interpretation in the time domain.

x(t) = ReˆX e jωt

˜= Re

ˆXm e jθ e jωt

˜= Re

ˆXm e j(ωt+θ)

˜= Xm cos (ωt + θ)

* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steadystate.

* Note that a phasor can be written in the polar form or rectangular form,X = Xm 6 θ = Xm exp(jθ) = Xm cos θ + j Xm sin θ .

The term ωt is always implicit.

θ

Xm

Re (X)

X

Im (X)

M. B. Patil, IIT Bombay

Page 16: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents andvoltages.

* A phasor is a complex number,

X = Xm 6 θ = Xm exp(jθ) ,

with the following interpretation in the time domain.

x(t) = ReˆX e jωt

˜

= ReˆXm e jθ e jωt

˜= Re

ˆXm e j(ωt+θ)

˜= Xm cos (ωt + θ)

* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steadystate.

* Note that a phasor can be written in the polar form or rectangular form,X = Xm 6 θ = Xm exp(jθ) = Xm cos θ + j Xm sin θ .

The term ωt is always implicit.

θ

Xm

Re (X)

X

Im (X)

M. B. Patil, IIT Bombay

Page 17: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents andvoltages.

* A phasor is a complex number,

X = Xm 6 θ = Xm exp(jθ) ,

with the following interpretation in the time domain.

x(t) = ReˆX e jωt

˜= Re

ˆXm e jθ e jωt

˜

= ReˆXm e j(ωt+θ)

˜= Xm cos (ωt + θ)

* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steadystate.

* Note that a phasor can be written in the polar form or rectangular form,X = Xm 6 θ = Xm exp(jθ) = Xm cos θ + j Xm sin θ .

The term ωt is always implicit.

θ

Xm

Re (X)

X

Im (X)

M. B. Patil, IIT Bombay

Page 18: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents andvoltages.

* A phasor is a complex number,

X = Xm 6 θ = Xm exp(jθ) ,

with the following interpretation in the time domain.

x(t) = ReˆX e jωt

˜= Re

ˆXm e jθ e jωt

˜= Re

ˆXm e j(ωt+θ)

˜

= Xm cos (ωt + θ)

* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steadystate.

* Note that a phasor can be written in the polar form or rectangular form,X = Xm 6 θ = Xm exp(jθ) = Xm cos θ + j Xm sin θ .

The term ωt is always implicit.

θ

Xm

Re (X)

X

Im (X)

M. B. Patil, IIT Bombay

Page 19: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents andvoltages.

* A phasor is a complex number,

X = Xm 6 θ = Xm exp(jθ) ,

with the following interpretation in the time domain.

x(t) = ReˆX e jωt

˜= Re

ˆXm e jθ e jωt

˜= Re

ˆXm e j(ωt+θ)

˜= Xm cos (ωt + θ)

* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steadystate.

* Note that a phasor can be written in the polar form or rectangular form,X = Xm 6 θ = Xm exp(jθ) = Xm cos θ + j Xm sin θ .

The term ωt is always implicit.

θ

Xm

Re (X)

X

Im (X)

M. B. Patil, IIT Bombay

Page 20: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents andvoltages.

* A phasor is a complex number,

X = Xm 6 θ = Xm exp(jθ) ,

with the following interpretation in the time domain.

x(t) = ReˆX e jωt

˜= Re

ˆXm e jθ e jωt

˜= Re

ˆXm e j(ωt+θ)

˜= Xm cos (ωt + θ)

* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steadystate.

* Note that a phasor can be written in the polar form or rectangular form,X = Xm 6 θ = Xm exp(jθ) = Xm cos θ + j Xm sin θ .

The term ωt is always implicit.

θ

Xm

Re (X)

X

Im (X)

M. B. Patil, IIT Bombay

Page 21: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents andvoltages.

* A phasor is a complex number,

X = Xm 6 θ = Xm exp(jθ) ,

with the following interpretation in the time domain.

x(t) = ReˆX e jωt

˜= Re

ˆXm e jθ e jωt

˜= Re

ˆXm e j(ωt+θ)

˜= Xm cos (ωt + θ)

* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steadystate.

* Note that a phasor can be written in the polar form or rectangular form,X = Xm 6 θ = Xm exp(jθ) = Xm cos θ + j Xm sin θ .

The term ωt is always implicit.

θ

Xm

Re (X)

X

Im (X)

M. B. Patil, IIT Bombay

Page 22: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Phasors: examples

Frequency domainTime domain

v1(t)=3.2 cos (ωt+30) V

V1 = 3.2 6 30 = 3.2 exp (jπ/6) V

i(t) = −1.5 cos (ωt + 60) A

= 1.5 cos (ωt− 2π/3)A

= 1.5 cos (ωt + π/3− π) A

I = 1.5 6 (−2π/3)A

v2(t) = −0.1 cos (ωt) V

= 0.1 cos (ωt + π) V

V2 = 0.1 6 π V

i2(t) = 0.18 sin (ωt) A

= 0.18 cos (ωt− π/2) A

I2 = 0.18 6 (−π/2) A

I3 = 1 + j 1 A

=√

2 6 45 A

i3(t) =√

2 cos (ωt + 45) A

M. B. Patil, IIT Bombay

Page 23: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Phasors: examples

Frequency domainTime domain

v1(t)=3.2 cos (ωt+30) V V1 = 3.2 6 30 = 3.2 exp (jπ/6) V

i(t) = −1.5 cos (ωt + 60) A

= 1.5 cos (ωt− 2π/3)A

= 1.5 cos (ωt + π/3− π) A

I = 1.5 6 (−2π/3)A

v2(t) = −0.1 cos (ωt) V

= 0.1 cos (ωt + π) V

V2 = 0.1 6 π V

i2(t) = 0.18 sin (ωt) A

= 0.18 cos (ωt− π/2) A

I2 = 0.18 6 (−π/2) A

I3 = 1 + j 1 A

=√

2 6 45 A

i3(t) =√

2 cos (ωt + 45) A

M. B. Patil, IIT Bombay

Page 24: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Phasors: examples

Frequency domainTime domain

v1(t)=3.2 cos (ωt+30) V V1 = 3.2 6 30 = 3.2 exp (jπ/6) V

i(t) = −1.5 cos (ωt + 60) A

= 1.5 cos (ωt− 2π/3)A

= 1.5 cos (ωt + π/3− π) A

I = 1.5 6 (−2π/3)A

v2(t) = −0.1 cos (ωt) V

= 0.1 cos (ωt + π) V

V2 = 0.1 6 π V

i2(t) = 0.18 sin (ωt) A

= 0.18 cos (ωt− π/2) A

I2 = 0.18 6 (−π/2) A

I3 = 1 + j 1 A

=√

2 6 45 A

i3(t) =√

2 cos (ωt + 45) A

M. B. Patil, IIT Bombay

Page 25: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Phasors: examples

Frequency domainTime domain

v1(t)=3.2 cos (ωt+30) V V1 = 3.2 6 30 = 3.2 exp (jπ/6) V

i(t) = −1.5 cos (ωt + 60) A

= 1.5 cos (ωt− 2π/3)A

= 1.5 cos (ωt + π/3− π) A

I = 1.5 6 (−2π/3)A

v2(t) = −0.1 cos (ωt) V

= 0.1 cos (ωt + π) V

V2 = 0.1 6 π V

i2(t) = 0.18 sin (ωt) A

= 0.18 cos (ωt− π/2) A

I2 = 0.18 6 (−π/2) A

I3 = 1 + j 1 A

=√

2 6 45 A

i3(t) =√

2 cos (ωt + 45) A

M. B. Patil, IIT Bombay

Page 26: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Phasors: examples

Frequency domainTime domain

v1(t)=3.2 cos (ωt+30) V V1 = 3.2 6 30 = 3.2 exp (jπ/6) V

i(t) = −1.5 cos (ωt + 60) A

= 1.5 cos (ωt− 2π/3)A

= 1.5 cos (ωt + π/3− π) A

I = 1.5 6 (−2π/3)A

v2(t) = −0.1 cos (ωt) V

= 0.1 cos (ωt + π) V

V2 = 0.1 6 π V

i2(t) = 0.18 sin (ωt) A

= 0.18 cos (ωt− π/2) A

I2 = 0.18 6 (−π/2) A

I3 = 1 + j 1 A

=√

2 6 45 A

i3(t) =√

2 cos (ωt + 45) A

M. B. Patil, IIT Bombay

Page 27: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Phasors: examples

Frequency domainTime domain

v1(t)=3.2 cos (ωt+30) V V1 = 3.2 6 30 = 3.2 exp (jπ/6) V

i(t) = −1.5 cos (ωt + 60) A

= 1.5 cos (ωt− 2π/3)A

= 1.5 cos (ωt + π/3− π) A

I = 1.5 6 (−2π/3)A

v2(t) = −0.1 cos (ωt) V

= 0.1 cos (ωt + π) V

V2 = 0.1 6 π V

i2(t) = 0.18 sin (ωt) A

= 0.18 cos (ωt− π/2) A

I2 = 0.18 6 (−π/2) A

I3 = 1 + j 1 A

=√

2 6 45 A

i3(t) =√

2 cos (ωt + 45) A

M. B. Patil, IIT Bombay

Page 28: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Phasors: examples

Frequency domainTime domain

v1(t)=3.2 cos (ωt+30) V V1 = 3.2 6 30 = 3.2 exp (jπ/6) V

i(t) = −1.5 cos (ωt + 60) A

= 1.5 cos (ωt− 2π/3)A

= 1.5 cos (ωt + π/3− π) A

I = 1.5 6 (−2π/3)A

v2(t) = −0.1 cos (ωt) V

= 0.1 cos (ωt + π) V

V2 = 0.1 6 π V

i2(t) = 0.18 sin (ωt) A

= 0.18 cos (ωt− π/2) A

I2 = 0.18 6 (−π/2) A

I3 = 1 + j 1 A

=√

2 6 45 A

i3(t) =√

2 cos (ωt + 45) A

M. B. Patil, IIT Bombay

Page 29: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Phasors: examples

Frequency domainTime domain

v1(t)=3.2 cos (ωt+30) V V1 = 3.2 6 30 = 3.2 exp (jπ/6) V

i(t) = −1.5 cos (ωt + 60) A

= 1.5 cos (ωt− 2π/3)A

= 1.5 cos (ωt + π/3− π) A

I = 1.5 6 (−2π/3)A

v2(t) = −0.1 cos (ωt) V

= 0.1 cos (ωt + π) V

V2 = 0.1 6 π V

i2(t) = 0.18 sin (ωt) A

= 0.18 cos (ωt− π/2) A

I2 = 0.18 6 (−π/2) A

I3 = 1 + j 1 A

=√

2 6 45 A

i3(t) =√

2 cos (ωt + 45) A

M. B. Patil, IIT Bombay

Page 30: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Phasors: examples

Frequency domainTime domain

v1(t)=3.2 cos (ωt+30) V V1 = 3.2 6 30 = 3.2 exp (jπ/6) V

i(t) = −1.5 cos (ωt + 60) A

= 1.5 cos (ωt− 2π/3)A

= 1.5 cos (ωt + π/3− π) A

I = 1.5 6 (−2π/3)A

v2(t) = −0.1 cos (ωt) V

= 0.1 cos (ωt + π) V

V2 = 0.1 6 π V

i2(t) = 0.18 sin (ωt) A

= 0.18 cos (ωt− π/2) A

I2 = 0.18 6 (−π/2) A

I3 = 1 + j 1 A

=√

2 6 45 A

i3(t) =√

2 cos (ωt + 45) A

M. B. Patil, IIT Bombay

Page 31: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Phasors: examples

Frequency domainTime domain

v1(t)=3.2 cos (ωt+30) V V1 = 3.2 6 30 = 3.2 exp (jπ/6) V

i(t) = −1.5 cos (ωt + 60) A

= 1.5 cos (ωt− 2π/3)A

= 1.5 cos (ωt + π/3− π) A

I = 1.5 6 (−2π/3)A

v2(t) = −0.1 cos (ωt) V

= 0.1 cos (ωt + π) V

V2 = 0.1 6 π V

i2(t) = 0.18 sin (ωt) A

= 0.18 cos (ωt− π/2) A

I2 = 0.18 6 (−π/2) A

I3 = 1 + j 1 A

=√

2 6 45 A

i3(t) =√

2 cos (ωt + 45) A

M. B. Patil, IIT Bombay

Page 32: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Phasors: examples

Frequency domainTime domain

v1(t)=3.2 cos (ωt+30) V V1 = 3.2 6 30 = 3.2 exp (jπ/6) V

i(t) = −1.5 cos (ωt + 60) A

= 1.5 cos (ωt− 2π/3)A

= 1.5 cos (ωt + π/3− π) A

I = 1.5 6 (−2π/3)A

v2(t) = −0.1 cos (ωt) V

= 0.1 cos (ωt + π) V

V2 = 0.1 6 π V

i2(t) = 0.18 sin (ωt) A

= 0.18 cos (ωt− π/2) A

I2 = 0.18 6 (−π/2) A

I3 = 1 + j 1 A

=√

2 6 45 A

i3(t) =√

2 cos (ωt + 45) A

M. B. Patil, IIT Bombay

Page 33: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Phasors: examples

Frequency domainTime domain

v1(t)=3.2 cos (ωt+30) V V1 = 3.2 6 30 = 3.2 exp (jπ/6) V

i(t) = −1.5 cos (ωt + 60) A

= 1.5 cos (ωt− 2π/3)A

= 1.5 cos (ωt + π/3− π) A

I = 1.5 6 (−2π/3)A

v2(t) = −0.1 cos (ωt) V

= 0.1 cos (ωt + π) V

V2 = 0.1 6 π V

i2(t) = 0.18 sin (ωt) A

= 0.18 cos (ωt− π/2) A

I2 = 0.18 6 (−π/2) A

I3 = 1 + j 1 A

=√

2 6 45 A

i3(t) =√

2 cos (ωt + 45) A

M. B. Patil, IIT Bombay

Page 34: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Phasors: examples

Frequency domainTime domain

v1(t)=3.2 cos (ωt+30) V V1 = 3.2 6 30 = 3.2 exp (jπ/6) V

i(t) = −1.5 cos (ωt + 60) A

= 1.5 cos (ωt− 2π/3)A

= 1.5 cos (ωt + π/3− π) A

I = 1.5 6 (−2π/3)A

v2(t) = −0.1 cos (ωt) V

= 0.1 cos (ωt + π) V

V2 = 0.1 6 π V

i2(t) = 0.18 sin (ωt) A

= 0.18 cos (ωt− π/2) A

I2 = 0.18 6 (−π/2) A

I3 = 1 + j 1 A

=√

2 6 45 A

i3(t) =√

2 cos (ωt + 45) A

M. B. Patil, IIT Bombay

Page 35: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Phasors: examples

Frequency domainTime domain

v1(t)=3.2 cos (ωt+30) V V1 = 3.2 6 30 = 3.2 exp (jπ/6) V

i(t) = −1.5 cos (ωt + 60) A

= 1.5 cos (ωt− 2π/3)A

= 1.5 cos (ωt + π/3− π) A

I = 1.5 6 (−2π/3)A

v2(t) = −0.1 cos (ωt) V

= 0.1 cos (ωt + π) V

V2 = 0.1 6 π V

i2(t) = 0.18 sin (ωt) A

= 0.18 cos (ωt− π/2) A

I2 = 0.18 6 (−π/2) A

I3 = 1 + j 1 A

=√

2 6 45 A

i3(t) =√

2 cos (ωt + 45) A

M. B. Patil, IIT Bombay

Page 36: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Addition of phasors

Consider addition of two sinusoidal quantities:v(t) = v1(t) + v2(t)

= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

Now consider addition of the phasors corresponding to v1(t) and v2(t).

V = V1 + V2

= Vm1e jθ1 + Vm2e jθ2

In the time domain, V corresponds to v(t), with

v(t) = ReˆVe jωt

˜= Re

ˆ`Vm1e jθ1 + Vm2e jθ2

´e jωt

˜= Re

ˆVm1e j(ωt+θ1) + Vm2e(ωt+jθ2)

˜= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

which is the same as v(t).

M. B. Patil, IIT Bombay

Page 37: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Addition of phasors

Consider addition of two sinusoidal quantities:v(t) = v1(t) + v2(t)

= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

Now consider addition of the phasors corresponding to v1(t) and v2(t).

V = V1 + V2

= Vm1e jθ1 + Vm2e jθ2

In the time domain, V corresponds to v(t), with

v(t) = ReˆVe jωt

˜= Re

ˆ`Vm1e jθ1 + Vm2e jθ2

´e jωt

˜= Re

ˆVm1e j(ωt+θ1) + Vm2e(ωt+jθ2)

˜= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

which is the same as v(t).

M. B. Patil, IIT Bombay

Page 38: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Addition of phasors

Consider addition of two sinusoidal quantities:v(t) = v1(t) + v2(t)

= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

Now consider addition of the phasors corresponding to v1(t) and v2(t).

V = V1 + V2

= Vm1e jθ1 + Vm2e jθ2

In the time domain, V corresponds to v(t), with

v(t) = ReˆVe jωt

˜

= Reˆ`

Vm1e jθ1 + Vm2e jθ2´

e jωt˜

= ReˆVm1e j(ωt+θ1) + Vm2e(ωt+jθ2)

˜= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

which is the same as v(t).

M. B. Patil, IIT Bombay

Page 39: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Addition of phasors

Consider addition of two sinusoidal quantities:v(t) = v1(t) + v2(t)

= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

Now consider addition of the phasors corresponding to v1(t) and v2(t).

V = V1 + V2

= Vm1e jθ1 + Vm2e jθ2

In the time domain, V corresponds to v(t), with

v(t) = ReˆVe jωt

˜= Re

ˆ`Vm1e jθ1 + Vm2e jθ2

´e jωt

˜

= ReˆVm1e j(ωt+θ1) + Vm2e(ωt+jθ2)

˜= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

which is the same as v(t).

M. B. Patil, IIT Bombay

Page 40: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Addition of phasors

Consider addition of two sinusoidal quantities:v(t) = v1(t) + v2(t)

= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

Now consider addition of the phasors corresponding to v1(t) and v2(t).

V = V1 + V2

= Vm1e jθ1 + Vm2e jθ2

In the time domain, V corresponds to v(t), with

v(t) = ReˆVe jωt

˜= Re

ˆ`Vm1e jθ1 + Vm2e jθ2

´e jωt

˜= Re

ˆVm1e j(ωt+θ1) + Vm2e(ωt+jθ2)

˜

= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

which is the same as v(t).

M. B. Patil, IIT Bombay

Page 41: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Addition of phasors

Consider addition of two sinusoidal quantities:v(t) = v1(t) + v2(t)

= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

Now consider addition of the phasors corresponding to v1(t) and v2(t).

V = V1 + V2

= Vm1e jθ1 + Vm2e jθ2

In the time domain, V corresponds to v(t), with

v(t) = ReˆVe jωt

˜= Re

ˆ`Vm1e jθ1 + Vm2e jθ2

´e jωt

˜= Re

ˆVm1e j(ωt+θ1) + Vm2e(ωt+jθ2)

˜= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

which is the same as v(t).

M. B. Patil, IIT Bombay

Page 42: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Addition of phasors

Consider addition of two sinusoidal quantities:v(t) = v1(t) + v2(t)

= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

Now consider addition of the phasors corresponding to v1(t) and v2(t).

V = V1 + V2

= Vm1e jθ1 + Vm2e jθ2

In the time domain, V corresponds to v(t), with

v(t) = ReˆVe jωt

˜= Re

ˆ`Vm1e jθ1 + Vm2e jθ2

´e jωt

˜= Re

ˆVm1e j(ωt+θ1) + Vm2e(ωt+jθ2)

˜= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

which is the same as v(t).

M. B. Patil, IIT Bombay

Page 43: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Addition of phasors

* Addition of sinusoidal quantities in the time domain can be replaced by additionof the corresponding phasors in the sinusoidal steady state.

* The KCL and KVL equations,Pik (t) = 0 at a node, andPvk (t) = 0 in a loop,

amount to addition of sinusoidal quantities and can therefore be replaced by thecorresponding phasor equations,P

Ik = 0 at a node, andPVk = 0 in a loop.

M. B. Patil, IIT Bombay

Page 44: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Addition of phasors

* Addition of sinusoidal quantities in the time domain can be replaced by additionof the corresponding phasors in the sinusoidal steady state.

* The KCL and KVL equations,Pik (t) = 0 at a node, andPvk (t) = 0 in a loop,

amount to addition of sinusoidal quantities and can therefore be replaced by thecorresponding phasor equations,P

Ik = 0 at a node, andPVk = 0 in a loop.

M. B. Patil, IIT Bombay

Page 45: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of a resistor

Ii(t)

Vv(t)

R Z

Let i(t) = Im cos (ωt + θ).

v(t) = R i(t)

= R Im cos (ωt + θ)

≡ Vm cos (ωt + θ).

The phasors corresponding to i(t) and v(t) are, respectively,

I = Im 6 θ, V = R × Im 6 θ.

We have therefore the following relationship between V and I: V = R × I.

Thus, the impedance of a resistor, defined as, Z = V/I, is

Z = R + j 0

M. B. Patil, IIT Bombay

Page 46: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of a resistor

Ii(t)

Vv(t)

R Z

Let i(t) = Im cos (ωt + θ).

v(t) = R i(t)

= R Im cos (ωt + θ)

≡ Vm cos (ωt + θ).

The phasors corresponding to i(t) and v(t) are, respectively,

I = Im 6 θ, V = R × Im 6 θ.

We have therefore the following relationship between V and I: V = R × I.

Thus, the impedance of a resistor, defined as, Z = V/I, is

Z = R + j 0

M. B. Patil, IIT Bombay

Page 47: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of a resistor

Ii(t)

Vv(t)

R Z

Let i(t) = Im cos (ωt + θ).

v(t) = R i(t)

= R Im cos (ωt + θ)

≡ Vm cos (ωt + θ).

The phasors corresponding to i(t) and v(t) are, respectively,

I = Im 6 θ, V = R × Im 6 θ.

We have therefore the following relationship between V and I: V = R × I.

Thus, the impedance of a resistor, defined as, Z = V/I, is

Z = R + j 0

M. B. Patil, IIT Bombay

Page 48: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of a resistor

Ii(t)

Vv(t)

R Z

Let i(t) = Im cos (ωt + θ).

v(t) = R i(t)

= R Im cos (ωt + θ)

≡ Vm cos (ωt + θ).

The phasors corresponding to i(t) and v(t) are, respectively,

I = Im 6 θ, V = R × Im 6 θ.

We have therefore the following relationship between V and I: V = R × I.

Thus, the impedance of a resistor, defined as, Z = V/I, is

Z = R + j 0

M. B. Patil, IIT Bombay

Page 49: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of a resistor

Ii(t)

Vv(t)

R Z

Let i(t) = Im cos (ωt + θ).

v(t) = R i(t)

= R Im cos (ωt + θ)

≡ Vm cos (ωt + θ).

The phasors corresponding to i(t) and v(t) are, respectively,

I = Im 6 θ, V = R × Im 6 θ.

We have therefore the following relationship between V and I: V = R × I.

Thus, the impedance of a resistor, defined as, Z = V/I, is

Z = R + j 0

M. B. Patil, IIT Bombay

Page 50: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of a resistor

Ii(t)

Vv(t)

R Z

Let i(t) = Im cos (ωt + θ).

v(t) = R i(t)

= R Im cos (ωt + θ)

≡ Vm cos (ωt + θ).

The phasors corresponding to i(t) and v(t) are, respectively,

I = Im 6 θ, V = R × Im 6 θ.

We have therefore the following relationship between V and I: V = R × I.

Thus, the impedance of a resistor, defined as, Z = V/I, is

Z = R + j 0

M. B. Patil, IIT Bombay

Page 51: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of a resistor

Ii(t)

Vv(t)

R Z

Let i(t) = Im cos (ωt + θ).

v(t) = R i(t)

= R Im cos (ωt + θ)

≡ Vm cos (ωt + θ).

The phasors corresponding to i(t) and v(t) are, respectively,

I = Im 6 θ, V = R × Im 6 θ.

We have therefore the following relationship between V and I: V = R × I.

Thus, the impedance of a resistor, defined as, Z = V/I, is

Z = R + j 0

M. B. Patil, IIT Bombay

Page 52: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of a resistor

Ii(t)

Vv(t)

R Z

Let i(t) = Im cos (ωt + θ).

v(t) = R i(t)

= R Im cos (ωt + θ)

≡ Vm cos (ωt + θ).

The phasors corresponding to i(t) and v(t) are, respectively,

I = Im 6 θ, V = R × Im 6 θ.

We have therefore the following relationship between V and I: V = R × I.

Thus, the impedance of a resistor, defined as, Z = V/I, is

Z = R + j 0

M. B. Patil, IIT Bombay

Page 53: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of a capacitor

C

v(t)

i(t) I

V

Z

Let v(t) = Vm cos (ωt + θ).

i(t) = Cdv

dt= −C ω Vm sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

i(t) = C ω Vm cos (ωt + θ + π/2).

In terms of phasors, V = Vm 6 θ, I = ωCVm 6 (θ+π/2).

I can be rewritten as,

I = ωCVm e j(θ+π/2) = ωCVm e jθ e jπ/2 = jωC`Vm e jθ

´= jωC V

Thus, the impedance of a capacitor, Z = V/I, is Z = 1/(jωC) ,

and the admittance of a capacitor, Y = I/V, is Y = jωC .

M. B. Patil, IIT Bombay

Page 54: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of a capacitor

C

v(t)

i(t) I

V

Z

Let v(t) = Vm cos (ωt + θ).

i(t) = Cdv

dt= −C ω Vm sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

i(t) = C ω Vm cos (ωt + θ + π/2).

In terms of phasors, V = Vm 6 θ, I = ωCVm 6 (θ+π/2).

I can be rewritten as,

I = ωCVm e j(θ+π/2) = ωCVm e jθ e jπ/2 = jωC`Vm e jθ

´= jωC V

Thus, the impedance of a capacitor, Z = V/I, is Z = 1/(jωC) ,

and the admittance of a capacitor, Y = I/V, is Y = jωC .

M. B. Patil, IIT Bombay

Page 55: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of a capacitor

C

v(t)

i(t) I

V

Z

Let v(t) = Vm cos (ωt + θ).

i(t) = Cdv

dt= −C ω Vm sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

i(t) = C ω Vm cos (ωt + θ + π/2).

In terms of phasors, V = Vm 6 θ, I = ωCVm 6 (θ+π/2).

I can be rewritten as,

I = ωCVm e j(θ+π/2) = ωCVm e jθ e jπ/2 = jωC`Vm e jθ

´= jωC V

Thus, the impedance of a capacitor, Z = V/I, is Z = 1/(jωC) ,

and the admittance of a capacitor, Y = I/V, is Y = jωC .

M. B. Patil, IIT Bombay

Page 56: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of a capacitor

C

v(t)

i(t) I

V

Z

Let v(t) = Vm cos (ωt + θ).

i(t) = Cdv

dt= −C ω Vm sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

i(t) = C ω Vm cos (ωt + θ + π/2).

In terms of phasors, V = Vm 6 θ, I = ωCVm 6 (θ+π/2).

I can be rewritten as,

I = ωCVm e j(θ+π/2) = ωCVm e jθ e jπ/2 = jωC`Vm e jθ

´= jωC V

Thus, the impedance of a capacitor, Z = V/I, is Z = 1/(jωC) ,

and the admittance of a capacitor, Y = I/V, is Y = jωC .

M. B. Patil, IIT Bombay

Page 57: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of a capacitor

C

v(t)

i(t) I

V

Z

Let v(t) = Vm cos (ωt + θ).

i(t) = Cdv

dt= −C ω Vm sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

i(t) = C ω Vm cos (ωt + θ + π/2).

In terms of phasors, V = Vm 6 θ, I = ωCVm 6 (θ+π/2).

I can be rewritten as,

I = ωCVm e j(θ+π/2) = ωCVm e jθ e jπ/2 = jωC`Vm e jθ

´= jωC V

Thus, the impedance of a capacitor, Z = V/I, is Z = 1/(jωC) ,

and the admittance of a capacitor, Y = I/V, is Y = jωC .

M. B. Patil, IIT Bombay

Page 58: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of a capacitor

C

v(t)

i(t) I

V

Z

Let v(t) = Vm cos (ωt + θ).

i(t) = Cdv

dt= −C ω Vm sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

i(t) = C ω Vm cos (ωt + θ + π/2).

In terms of phasors, V = Vm 6 θ, I = ωCVm 6 (θ+π/2).

I can be rewritten as,

I = ωCVm e j(θ+π/2) = ωCVm e jθ e jπ/2 = jωC`Vm e jθ

´= jωC V

Thus, the impedance of a capacitor, Z = V/I, is Z = 1/(jωC) ,

and the admittance of a capacitor, Y = I/V, is Y = jωC .

M. B. Patil, IIT Bombay

Page 59: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of a capacitor

C

v(t)

i(t) I

V

Z

Let v(t) = Vm cos (ωt + θ).

i(t) = Cdv

dt= −C ω Vm sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

i(t) = C ω Vm cos (ωt + θ + π/2).

In terms of phasors, V = Vm 6 θ, I = ωCVm 6 (θ+π/2).

I can be rewritten as,

I = ωCVm e j(θ+π/2) = ωCVm e jθ e jπ/2 = jωC`Vm e jθ

´= jωC V

Thus, the impedance of a capacitor, Z = V/I, is Z = 1/(jωC) ,

and the admittance of a capacitor, Y = I/V, is Y = jωC .

M. B. Patil, IIT Bombay

Page 60: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of an inductor

v(t)

Li(t)

V

I Z

Let i(t) = Im cos (ωt + θ).

v(t) = Ldi

dt= −Lω Im sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

v(t) = Lω Im cos (ωt + θ + π/2).

In terms of phasors, I = Im 6 θ, V = ωLIm 6 (θ+π/2).

V can be rewritten as,

V = ωLIm e j(θ+π/2) = ωLIm e jθ e jπ/2 = jωL`Im e jθ

´= jωL I

Thus, the impedance of an indcutor, Z = V/I, is Z = jωL ,

and the admittance of an inductor, Y = I/V, is Y = 1/(jωL) .

M. B. Patil, IIT Bombay

Page 61: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of an inductor

v(t)

Li(t)

V

I Z

Let i(t) = Im cos (ωt + θ).

v(t) = Ldi

dt= −Lω Im sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

v(t) = Lω Im cos (ωt + θ + π/2).

In terms of phasors, I = Im 6 θ, V = ωLIm 6 (θ+π/2).

V can be rewritten as,

V = ωLIm e j(θ+π/2) = ωLIm e jθ e jπ/2 = jωL`Im e jθ

´= jωL I

Thus, the impedance of an indcutor, Z = V/I, is Z = jωL ,

and the admittance of an inductor, Y = I/V, is Y = 1/(jωL) .

M. B. Patil, IIT Bombay

Page 62: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of an inductor

v(t)

Li(t)

V

I Z

Let i(t) = Im cos (ωt + θ).

v(t) = Ldi

dt= −Lω Im sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

v(t) = Lω Im cos (ωt + θ + π/2).

In terms of phasors, I = Im 6 θ, V = ωLIm 6 (θ+π/2).

V can be rewritten as,

V = ωLIm e j(θ+π/2) = ωLIm e jθ e jπ/2 = jωL`Im e jθ

´= jωL I

Thus, the impedance of an indcutor, Z = V/I, is Z = jωL ,

and the admittance of an inductor, Y = I/V, is Y = 1/(jωL) .

M. B. Patil, IIT Bombay

Page 63: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of an inductor

v(t)

Li(t)

V

I Z

Let i(t) = Im cos (ωt + θ).

v(t) = Ldi

dt= −Lω Im sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

v(t) = Lω Im cos (ωt + θ + π/2).

In terms of phasors, I = Im 6 θ, V = ωLIm 6 (θ+π/2).

V can be rewritten as,

V = ωLIm e j(θ+π/2) = ωLIm e jθ e jπ/2 = jωL`Im e jθ

´= jωL I

Thus, the impedance of an indcutor, Z = V/I, is Z = jωL ,

and the admittance of an inductor, Y = I/V, is Y = 1/(jωL) .

M. B. Patil, IIT Bombay

Page 64: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of an inductor

v(t)

Li(t)

V

I Z

Let i(t) = Im cos (ωt + θ).

v(t) = Ldi

dt= −Lω Im sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

v(t) = Lω Im cos (ωt + θ + π/2).

In terms of phasors, I = Im 6 θ, V = ωLIm 6 (θ+π/2).

V can be rewritten as,

V = ωLIm e j(θ+π/2) = ωLIm e jθ e jπ/2 = jωL`Im e jθ

´= jωL I

Thus, the impedance of an indcutor, Z = V/I, is Z = jωL ,

and the admittance of an inductor, Y = I/V, is Y = 1/(jωL) .

M. B. Patil, IIT Bombay

Page 65: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of an inductor

v(t)

Li(t)

V

I Z

Let i(t) = Im cos (ωt + θ).

v(t) = Ldi

dt= −Lω Im sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

v(t) = Lω Im cos (ωt + θ + π/2).

In terms of phasors, I = Im 6 θ, V = ωLIm 6 (θ+π/2).

V can be rewritten as,

V = ωLIm e j(θ+π/2) = ωLIm e jθ e jπ/2 = jωL`Im e jθ

´= jωL I

Thus, the impedance of an indcutor, Z = V/I, is Z = jωL ,

and the admittance of an inductor, Y = I/V, is Y = 1/(jωL) .

M. B. Patil, IIT Bombay

Page 66: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance of an inductor

v(t)

Li(t)

V

I Z

Let i(t) = Im cos (ωt + θ).

v(t) = Ldi

dt= −Lω Im sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

v(t) = Lω Im cos (ωt + θ + π/2).

In terms of phasors, I = Im 6 θ, V = ωLIm 6 (θ+π/2).

V can be rewritten as,

V = ωLIm e j(θ+π/2) = ωLIm e jθ e jπ/2 = jωL`Im e jθ

´= jωL I

Thus, the impedance of an indcutor, Z = V/I, is Z = jωL ,

and the admittance of an inductor, Y = I/V, is Y = 1/(jωL) .

M. B. Patil, IIT Bombay

Page 67: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sources

Vsvs(t)Isis(t)

* An independent sinusoidal current source, is (t) = Im cos (ωt + θ), can berepresented by the phasor Im 6 θ (i.e., a constant complex number).

* An independent sinusoidal voltage source, vs (t) = Vm cos (ωt + θ), can berepresented by the phasor Vm 6 θ (i.e., a constant complex number).

* Dependent (linear) sources can be treated in the sinusoidal steady state in thesame manner as a resistor, i.e., by the corresponding phasor relationship.For example, for a CCVS, we have,v(t) = r ic (t) in the time domain.V = r Ic in the frequency domain.

M. B. Patil, IIT Bombay

Page 68: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sources

Vsvs(t)Isis(t)

* An independent sinusoidal current source, is (t) = Im cos (ωt + θ), can berepresented by the phasor Im 6 θ (i.e., a constant complex number).

* An independent sinusoidal voltage source, vs (t) = Vm cos (ωt + θ), can berepresented by the phasor Vm 6 θ (i.e., a constant complex number).

* Dependent (linear) sources can be treated in the sinusoidal steady state in thesame manner as a resistor, i.e., by the corresponding phasor relationship.For example, for a CCVS, we have,v(t) = r ic (t) in the time domain.V = r Ic in the frequency domain.

M. B. Patil, IIT Bombay

Page 69: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sources

Vsvs(t)Isis(t)

* An independent sinusoidal current source, is (t) = Im cos (ωt + θ), can berepresented by the phasor Im 6 θ (i.e., a constant complex number).

* An independent sinusoidal voltage source, vs (t) = Vm cos (ωt + θ), can berepresented by the phasor Vm 6 θ (i.e., a constant complex number).

* Dependent (linear) sources can be treated in the sinusoidal steady state in thesame manner as a resistor, i.e., by the corresponding phasor relationship.For example, for a CCVS, we have,v(t) = r ic (t) in the time domain.V = r Ic in the frequency domain.

M. B. Patil, IIT Bombay

Page 70: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sources

Vsvs(t)Isis(t)

* An independent sinusoidal current source, is (t) = Im cos (ωt + θ), can berepresented by the phasor Im 6 θ (i.e., a constant complex number).

* An independent sinusoidal voltage source, vs (t) = Vm cos (ωt + θ), can berepresented by the phasor Vm 6 θ (i.e., a constant complex number).

* Dependent (linear) sources can be treated in the sinusoidal steady state in thesame manner as a resistor, i.e., by the corresponding phasor relationship.For example, for a CCVS, we have,v(t) = r ic (t) in the time domain.V = r Ic in the frequency domain.

M. B. Patil, IIT Bombay

Page 71: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Use of phasors in circuit analysis

* The time-domain KCL and KVL equationsP

ik (t) = 0 andP

vk (t) = 0 can bewritten as

PIk = 0 and

PVk = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z I in the frequencydomain, which is similar to V = R I in DC conditions (except that we aredealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DCsource, e.g., Vs = constant (a complex number).

* For dependent sources, a time-domain relationship such as i(t) = β ic (t)translates to I = β Ic in the frequency domain.

* Circuit analysis in the sinusoidal steady state using phasors is therefore verysimilar to DC circuits with independent and dependent sources, and resistors.

* Series/parallel formulas for resistors, nodal analysis, mesh analysis, Thevenin’sand Norton’s theorems can be directly applied to circuits in the sinusoidal steadystate.

M. B. Patil, IIT Bombay

Page 72: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Use of phasors in circuit analysis

* The time-domain KCL and KVL equationsP

ik (t) = 0 andP

vk (t) = 0 can bewritten as

PIk = 0 and

PVk = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z I in the frequencydomain, which is similar to V = R I in DC conditions (except that we aredealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DCsource, e.g., Vs = constant (a complex number).

* For dependent sources, a time-domain relationship such as i(t) = β ic (t)translates to I = β Ic in the frequency domain.

* Circuit analysis in the sinusoidal steady state using phasors is therefore verysimilar to DC circuits with independent and dependent sources, and resistors.

* Series/parallel formulas for resistors, nodal analysis, mesh analysis, Thevenin’sand Norton’s theorems can be directly applied to circuits in the sinusoidal steadystate.

M. B. Patil, IIT Bombay

Page 73: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Use of phasors in circuit analysis

* The time-domain KCL and KVL equationsP

ik (t) = 0 andP

vk (t) = 0 can bewritten as

PIk = 0 and

PVk = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z I in the frequencydomain, which is similar to V = R I in DC conditions (except that we aredealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DCsource, e.g., Vs = constant (a complex number).

* For dependent sources, a time-domain relationship such as i(t) = β ic (t)translates to I = β Ic in the frequency domain.

* Circuit analysis in the sinusoidal steady state using phasors is therefore verysimilar to DC circuits with independent and dependent sources, and resistors.

* Series/parallel formulas for resistors, nodal analysis, mesh analysis, Thevenin’sand Norton’s theorems can be directly applied to circuits in the sinusoidal steadystate.

M. B. Patil, IIT Bombay

Page 74: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Use of phasors in circuit analysis

* The time-domain KCL and KVL equationsP

ik (t) = 0 andP

vk (t) = 0 can bewritten as

PIk = 0 and

PVk = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z I in the frequencydomain, which is similar to V = R I in DC conditions (except that we aredealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DCsource, e.g., Vs = constant (a complex number).

* For dependent sources, a time-domain relationship such as i(t) = β ic (t)translates to I = β Ic in the frequency domain.

* Circuit analysis in the sinusoidal steady state using phasors is therefore verysimilar to DC circuits with independent and dependent sources, and resistors.

* Series/parallel formulas for resistors, nodal analysis, mesh analysis, Thevenin’sand Norton’s theorems can be directly applied to circuits in the sinusoidal steadystate.

M. B. Patil, IIT Bombay

Page 75: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Use of phasors in circuit analysis

* The time-domain KCL and KVL equationsP

ik (t) = 0 andP

vk (t) = 0 can bewritten as

PIk = 0 and

PVk = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z I in the frequencydomain, which is similar to V = R I in DC conditions (except that we aredealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DCsource, e.g., Vs = constant (a complex number).

* For dependent sources, a time-domain relationship such as i(t) = β ic (t)translates to I = β Ic in the frequency domain.

* Circuit analysis in the sinusoidal steady state using phasors is therefore verysimilar to DC circuits with independent and dependent sources, and resistors.

* Series/parallel formulas for resistors, nodal analysis, mesh analysis, Thevenin’sand Norton’s theorems can be directly applied to circuits in the sinusoidal steadystate.

M. B. Patil, IIT Bombay

Page 76: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Use of phasors in circuit analysis

* The time-domain KCL and KVL equationsP

ik (t) = 0 andP

vk (t) = 0 can bewritten as

PIk = 0 and

PVk = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z I in the frequencydomain, which is similar to V = R I in DC conditions (except that we aredealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DCsource, e.g., Vs = constant (a complex number).

* For dependent sources, a time-domain relationship such as i(t) = β ic (t)translates to I = β Ic in the frequency domain.

* Circuit analysis in the sinusoidal steady state using phasors is therefore verysimilar to DC circuits with independent and dependent sources, and resistors.

* Series/parallel formulas for resistors, nodal analysis, mesh analysis, Thevenin’sand Norton’s theorems can be directly applied to circuits in the sinusoidal steadystate.

M. B. Patil, IIT Bombay

Page 77: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Use of phasors in circuit analysis

* The time-domain KCL and KVL equationsP

ik (t) = 0 andP

vk (t) = 0 can bewritten as

PIk = 0 and

PVk = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z I in the frequencydomain, which is similar to V = R I in DC conditions (except that we aredealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DCsource, e.g., Vs = constant (a complex number).

* For dependent sources, a time-domain relationship such as i(t) = β ic (t)translates to I = β Ic in the frequency domain.

* Circuit analysis in the sinusoidal steady state using phasors is therefore verysimilar to DC circuits with independent and dependent sources, and resistors.

* Series/parallel formulas for resistors, nodal analysis, mesh analysis, Thevenin’sand Norton’s theorems can be directly applied to circuits in the sinusoidal steadystate.

M. B. Patil, IIT Bombay

Page 78: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RL circuit

I

Vm 6 0

R

jωL

0

1

−1

time (ms) 0 10 20 30

R = 1 Ω

L = 1.6 mH

vs(t) (V)

i(t) (A)

I =Vm∠0

R + jωL≡ Im∠(−θ),

where Im =Vmp

R2 + ω2L2, and θ = tan−1(ωL/R).

In the time domain, i(t) = Im cos (ωt − θ), which lags the source voltage since thepeak (or zero) of i(t) occurs t = θ/ω seconds after that of the source voltage.

For R = 1 Ω, L = 1.6 mH, f = 50 Hz, θ = 26.6, tlag = 1.48 ms.

(SEQUEL file: ee101 rl ac 1.sqproj)

M. B. Patil, IIT Bombay

Page 79: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RL circuit

I

Vm 6 0

R

jωL

0

1

−1

time (ms) 0 10 20 30

R = 1 Ω

L = 1.6 mH

vs(t) (V)

i(t) (A)

I =Vm∠0

R + jωL≡ Im∠(−θ),

where Im =Vmp

R2 + ω2L2, and θ = tan−1(ωL/R).

In the time domain, i(t) = Im cos (ωt − θ), which lags the source voltage since thepeak (or zero) of i(t) occurs t = θ/ω seconds after that of the source voltage.

For R = 1 Ω, L = 1.6 mH, f = 50 Hz, θ = 26.6, tlag = 1.48 ms.

(SEQUEL file: ee101 rl ac 1.sqproj)

M. B. Patil, IIT Bombay

Page 80: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RL circuit

I

Vm 6 0

R

jωL

0

1

−1

time (ms) 0 10 20 30

R = 1 Ω

L = 1.6 mH

vs(t) (V)

i(t) (A)

I =Vm∠0

R + jωL≡ Im∠(−θ),

where Im =Vmp

R2 + ω2L2, and θ = tan−1(ωL/R).

In the time domain, i(t) = Im cos (ωt − θ), which lags the source voltage since thepeak (or zero) of i(t) occurs t = θ/ω seconds after that of the source voltage.

For R = 1 Ω, L = 1.6 mH, f = 50 Hz, θ = 26.6, tlag = 1.48 ms.

(SEQUEL file: ee101 rl ac 1.sqproj)

M. B. Patil, IIT Bombay

Page 81: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RL circuit

I

Vm 6 0

R

jωL

0

1

−1

time (ms) 0 10 20 30

R = 1 Ω

L = 1.6 mH

vs(t) (V)

i(t) (A)

I =Vm∠0

R + jωL≡ Im∠(−θ),

where Im =Vmp

R2 + ω2L2, and θ = tan−1(ωL/R).

In the time domain, i(t) = Im cos (ωt − θ), which lags the source voltage since thepeak (or zero) of i(t) occurs t = θ/ω seconds after that of the source voltage.

For R = 1 Ω, L = 1.6 mH, f = 50 Hz, θ = 26.6, tlag = 1.48 ms.

(SEQUEL file: ee101 rl ac 1.sqproj)

M. B. Patil, IIT Bombay

Page 82: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RL circuit

I

Vm 6 0

R

jωL 0

1

−1

time (ms) 0 10 20 30

R = 1 Ω

L = 1.6 mH

vs(t) (V)

i(t) (A)

I =Vm∠0

R + jωL≡ Im∠(−θ),

where Im =Vmp

R2 + ω2L2, and θ = tan−1(ωL/R).

In the time domain, i(t) = Im cos (ωt − θ), which lags the source voltage since thepeak (or zero) of i(t) occurs t = θ/ω seconds after that of the source voltage.

For R = 1 Ω, L = 1.6 mH, f = 50 Hz, θ = 26.6, tlag = 1.48 ms.

(SEQUEL file: ee101 rl ac 1.sqproj)

M. B. Patil, IIT Bombay

Page 83: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RL circuit

I

VR

VLVs

R

jωLVm 6 0

Re (V)

Im (V)

θ

VR

VL

Vs

I =Vm∠0

R + jωL≡ Im∠(−θ),

where Im =Vmp

R2 + ω2L2, and θ = tan−1(ωL/R).

VR = I× R = R Im ∠(−θ) ,

VL = I× jωL = ωImL ∠(−θ + π/2) ,

The KVL equation, Vs = VR + VL, can be represented in the complex plane by a“phasor diagram.”

If R |jωL|, θ → 0, |VR| ' |Vs| = Vm.

If R |jωL|, θ → π/2, |VL| ' |Vs| = Vm.

M. B. Patil, IIT Bombay

Page 84: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RL circuit

I

VR

VLVs

R

jωLVm 6 0

Re (V)

Im (V)

θ

VR

VL

Vs

I =Vm∠0

R + jωL≡ Im∠(−θ),

where Im =Vmp

R2 + ω2L2, and θ = tan−1(ωL/R).

VR = I× R = R Im ∠(−θ) ,

VL = I× jωL = ωImL ∠(−θ + π/2) ,

The KVL equation, Vs = VR + VL, can be represented in the complex plane by a“phasor diagram.”

If R |jωL|, θ → 0, |VR| ' |Vs| = Vm.

If R |jωL|, θ → π/2, |VL| ' |Vs| = Vm.

M. B. Patil, IIT Bombay

Page 85: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RL circuit

I

VR

VLVs

R

jωLVm 6 0

Re (V)

Im (V)

θ

VR

VL

Vs

I =Vm∠0

R + jωL≡ Im∠(−θ),

where Im =Vmp

R2 + ω2L2, and θ = tan−1(ωL/R).

VR = I× R = R Im ∠(−θ) ,

VL = I× jωL = ωImL ∠(−θ + π/2) ,

The KVL equation, Vs = VR + VL, can be represented in the complex plane by a“phasor diagram.”

If R |jωL|, θ → 0, |VR| ' |Vs| = Vm.

If R |jωL|, θ → π/2, |VL| ' |Vs| = Vm.

M. B. Patil, IIT Bombay

Page 86: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RL circuit

I

VR

VLVs

R

jωLVm 6 0 Re (V)

Im (V)

θ

VR

VL

Vs

I =Vm∠0

R + jωL≡ Im∠(−θ),

where Im =Vmp

R2 + ω2L2, and θ = tan−1(ωL/R).

VR = I× R = R Im ∠(−θ) ,

VL = I× jωL = ωImL ∠(−θ + π/2) ,

The KVL equation, Vs = VR + VL, can be represented in the complex plane by a“phasor diagram.”

If R |jωL|, θ → 0, |VR| ' |Vs| = Vm.

If R |jωL|, θ → π/2, |VL| ' |Vs| = Vm.

M. B. Patil, IIT Bombay

Page 87: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RL circuit

I

VR

VLVs

R

jωLVm 6 0 Re (V)

Im (V)

θ

VR

VL

Vs

I =Vm∠0

R + jωL≡ Im∠(−θ),

where Im =Vmp

R2 + ω2L2, and θ = tan−1(ωL/R).

VR = I× R = R Im ∠(−θ) ,

VL = I× jωL = ωImL ∠(−θ + π/2) ,

The KVL equation, Vs = VR + VL, can be represented in the complex plane by a“phasor diagram.”

If R |jωL|, θ → 0, |VR| ' |Vs| = Vm.

If R |jωL|, θ → π/2, |VL| ' |Vs| = Vm.

M. B. Patil, IIT Bombay

Page 88: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RC circuit

I

1/jωCVm 6 0

R

0

−1

1

time (ms) 0 10 20 30

R = 1 Ω

C = 5.3 mF

vs(t) (V)

i(t) (A)

I =Vm∠0

R + 1/jωC≡ Im∠θ,

where Im =ωCVmp

1 + (ωRC)2, and θ = π/2− tan−1(ωRC).

In the time domain, i(t) = Im cos (ωt + θ), which leads the source voltage since thepeak (or zero) of i(t) occurs t = θ/ω seconds before that of the source voltage.

For R = 1 Ω, C = 5.3 mF, f = 50 Hz, θ = 31, tlead = 1.72 ms.

(SEQUEL file: ee101 rc ac 1.sqproj)

M. B. Patil, IIT Bombay

Page 89: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RC circuit

I

1/jωCVm 6 0

R

0

−1

1

time (ms) 0 10 20 30

R = 1 Ω

C = 5.3 mF

vs(t) (V)

i(t) (A)

I =Vm∠0

R + 1/jωC≡ Im∠θ,

where Im =ωCVmp

1 + (ωRC)2, and θ = π/2− tan−1(ωRC).

In the time domain, i(t) = Im cos (ωt + θ), which leads the source voltage since thepeak (or zero) of i(t) occurs t = θ/ω seconds before that of the source voltage.

For R = 1 Ω, C = 5.3 mF, f = 50 Hz, θ = 31, tlead = 1.72 ms.

(SEQUEL file: ee101 rc ac 1.sqproj)

M. B. Patil, IIT Bombay

Page 90: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RC circuit

I

1/jωCVm 6 0

R

0

−1

1

time (ms) 0 10 20 30

R = 1 Ω

C = 5.3 mF

vs(t) (V)

i(t) (A)

I =Vm∠0

R + 1/jωC≡ Im∠θ,

where Im =ωCVmp

1 + (ωRC)2, and θ = π/2− tan−1(ωRC).

In the time domain, i(t) = Im cos (ωt + θ), which leads the source voltage since thepeak (or zero) of i(t) occurs t = θ/ω seconds before that of the source voltage.

For R = 1 Ω, C = 5.3 mF, f = 50 Hz, θ = 31, tlead = 1.72 ms.

(SEQUEL file: ee101 rc ac 1.sqproj)

M. B. Patil, IIT Bombay

Page 91: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RC circuit

I

1/jωCVm 6 0

R

0

−1

1

time (ms) 0 10 20 30

R = 1 Ω

C = 5.3 mF

vs(t) (V)

i(t) (A)

I =Vm∠0

R + 1/jωC≡ Im∠θ,

where Im =ωCVmp

1 + (ωRC)2, and θ = π/2− tan−1(ωRC).

In the time domain, i(t) = Im cos (ωt + θ), which leads the source voltage since thepeak (or zero) of i(t) occurs t = θ/ω seconds before that of the source voltage.

For R = 1 Ω, C = 5.3 mF, f = 50 Hz, θ = 31, tlead = 1.72 ms.

(SEQUEL file: ee101 rc ac 1.sqproj)

M. B. Patil, IIT Bombay

Page 92: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RC circuit

I

1/jωCVm 6 0

R

0

−1

1

time (ms) 0 10 20 30

R = 1 Ω

C = 5.3 mF

vs(t) (V)

i(t) (A)

I =Vm∠0

R + 1/jωC≡ Im∠θ,

where Im =ωCVmp

1 + (ωRC)2, and θ = π/2− tan−1(ωRC).

In the time domain, i(t) = Im cos (ωt + θ), which leads the source voltage since thepeak (or zero) of i(t) occurs t = θ/ω seconds before that of the source voltage.

For R = 1 Ω, C = 5.3 mF, f = 50 Hz, θ = 31, tlead = 1.72 ms.

(SEQUEL file: ee101 rc ac 1.sqproj)

M. B. Patil, IIT Bombay

Page 93: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RC circuit

I

VR

VCVs

R

1/jωCVm 6 0

Re (V)

Im (V)

θ

VC

VR

Vs

I =Vm∠0

R + 1/jωC≡ Im∠θ,

where Im =ωCVmp

1 + (ωRC)2, and θ = π/2− tan−1(ωRC).

VR = I× R = R Im ∠θ ,

VC = I× (1/jωC) = (Im/ωC) ∠(θ − π/2) ,

The KVL equation, Vs = VR + VC, can be represented in the complex plane by a“phasor diagram.”

If R |1/jωC |, θ → 0, |VR| ' |Vs| = Vm.

If R |1/jωC |, θ → π/2, |VC| ' |Vs| = Vm.

M. B. Patil, IIT Bombay

Page 94: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RC circuit

I

VR

VCVs

R

1/jωCVm 6 0

Re (V)

Im (V)

θ

VC

VR

Vs

I =Vm∠0

R + 1/jωC≡ Im∠θ,

where Im =ωCVmp

1 + (ωRC)2, and θ = π/2− tan−1(ωRC).

VR = I× R = R Im ∠θ ,

VC = I× (1/jωC) = (Im/ωC) ∠(θ − π/2) ,

The KVL equation, Vs = VR + VC, can be represented in the complex plane by a“phasor diagram.”

If R |1/jωC |, θ → 0, |VR| ' |Vs| = Vm.

If R |1/jωC |, θ → π/2, |VC| ' |Vs| = Vm.

M. B. Patil, IIT Bombay

Page 95: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RC circuit

I

VR

VCVs

R

1/jωCVm 6 0

Re (V)

Im (V)

θ

VC

VR

Vs

I =Vm∠0

R + 1/jωC≡ Im∠θ,

where Im =ωCVmp

1 + (ωRC)2, and θ = π/2− tan−1(ωRC).

VR = I× R = R Im ∠θ ,

VC = I× (1/jωC) = (Im/ωC) ∠(θ − π/2) ,

The KVL equation, Vs = VR + VC, can be represented in the complex plane by a“phasor diagram.”

If R |1/jωC |, θ → 0, |VR| ' |Vs| = Vm.

If R |1/jωC |, θ → π/2, |VC| ' |Vs| = Vm.

M. B. Patil, IIT Bombay

Page 96: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RC circuit

I

VR

VCVs

R

1/jωCVm 6 0 Re (V)

Im (V)

θ

VC

VR

Vs

I =Vm∠0

R + 1/jωC≡ Im∠θ,

where Im =ωCVmp

1 + (ωRC)2, and θ = π/2− tan−1(ωRC).

VR = I× R = R Im ∠θ ,

VC = I× (1/jωC) = (Im/ωC) ∠(θ − π/2) ,

The KVL equation, Vs = VR + VC, can be represented in the complex plane by a“phasor diagram.”

If R |1/jωC |, θ → 0, |VR| ' |Vs| = Vm.

If R |1/jωC |, θ → π/2, |VC| ' |Vs| = Vm.

M. B. Patil, IIT Bombay

Page 97: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

RC circuit

I

VR

VCVs

R

1/jωCVm 6 0 Re (V)

Im (V)

θ

VC

VR

Vs

I =Vm∠0

R + 1/jωC≡ Im∠θ,

where Im =ωCVmp

1 + (ωRC)2, and θ = π/2− tan−1(ωRC).

VR = I× R = R Im ∠θ ,

VC = I× (1/jωC) = (Im/ωC) ∠(θ − π/2) ,

The KVL equation, Vs = VR + VC, can be represented in the complex plane by a“phasor diagram.”

If R |1/jωC |, θ → 0, |VR| ' |Vs| = Vm.

If R |1/jωC |, θ → π/2, |VC| ' |Vs| = Vm.

M. B. Patil, IIT Bombay

Page 98: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Series/parallel connections

A

B

A

B

(ω = 100 rad/s)

Z0.25 H

100 µF

Z1

Z2

Z1 = j× 100× 0.25 = j 25Ω

Z2 = −j/(100× 100× 10−6) = −j 100Ω

Z = Z1 + Z2 = −j 75Ω

A

B

A

B

(ω = 100 rad/s)

Z0.25 H

100 µF

Z1 Z2

Z =Z1Z2

Z1 + Z2

=25× 100

−j 75

=(j 25)× (−j 100)

j 25− j 100

= j 33.3Ω

M. B. Patil, IIT Bombay

Page 99: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Series/parallel connections

A

B

A

B

(ω = 100 rad/s)

Z0.25 H

100 µF

Z1

Z2

Z1 = j× 100× 0.25 = j 25Ω

Z2 = −j/(100× 100× 10−6) = −j 100Ω

Z = Z1 + Z2 = −j 75Ω

A

B

A

B

(ω = 100 rad/s)

Z0.25 H

100 µF

Z1 Z2

Z =Z1Z2

Z1 + Z2

=25× 100

−j 75

=(j 25)× (−j 100)

j 25− j 100

= j 33.3Ω

M. B. Patil, IIT Bombay

Page 100: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Series/parallel connections

A

B

A

B

(ω = 100 rad/s)

Z0.25 H

100 µF

Z1

Z2

Z1 = j× 100× 0.25 = j 25Ω

Z2 = −j/(100× 100× 10−6) = −j 100Ω

Z = Z1 + Z2 = −j 75Ω

A

B

A

B

(ω = 100 rad/s)

Z0.25 H

100 µF

Z1 Z2

Z =Z1Z2

Z1 + Z2

=25× 100

−j 75

=(j 25)× (−j 100)

j 25− j 100

= j 33.3Ω

M. B. Patil, IIT Bombay

Page 101: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Series/parallel connections

A

B

A

B

(ω = 100 rad/s)

Z0.25 H

100 µF

Z1

Z2

Z1 = j× 100× 0.25 = j 25Ω

Z2 = −j/(100× 100× 10−6) = −j 100Ω

Z = Z1 + Z2 = −j 75Ω

A

B

A

B

(ω = 100 rad/s)

Z0.25 H

100 µF

Z1 Z2

Z =Z1Z2

Z1 + Z2

=25× 100

−j 75

=(j 25)× (−j 100)

j 25− j 100

= j 33.3Ω

M. B. Patil, IIT Bombay

Page 102: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance example

A

B

A

B

Obtain Z in polar form.

(ω = 100 rad/s)

j 10 ΩZ

10 ΩZ1

Z2

Z =10× j10

10 + j10=

j10

1 + j

=j10

1 + j× 1− j

1− j

Method 1:

Convert to polar form → Z = 7.07 6 45 Ω

=10 + j10

2= 5 + j5Ω

Method 2:

= 5√

2 6 (π/2− π/4) = 7.07 6 45 Ω

Z =10× j10

10 + j10=

100 6 π/2

10√

2 6 π/4

M. B. Patil, IIT Bombay

Page 103: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance example

A

B

A

B

Obtain Z in polar form.

(ω = 100 rad/s)

j 10 ΩZ

10 ΩZ1

Z2

Z =10× j10

10 + j10=

j10

1 + j

=j10

1 + j× 1− j

1− j

Method 1:

Convert to polar form → Z = 7.07 6 45 Ω

=10 + j10

2= 5 + j5Ω

Method 2:

= 5√

2 6 (π/2− π/4) = 7.07 6 45 Ω

Z =10× j10

10 + j10=

100 6 π/2

10√

2 6 π/4

M. B. Patil, IIT Bombay

Page 104: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Impedance example

A

B

A

B

Obtain Z in polar form.

(ω = 100 rad/s)

j 10 ΩZ

10 ΩZ1

Z2

Z =10× j10

10 + j10=

j10

1 + j

=j10

1 + j× 1− j

1− j

Method 1:

Convert to polar form → Z = 7.07 6 45 Ω

=10 + j10

2= 5 + j5Ω

Method 2:

= 5√

2 6 (π/2− π/4) = 7.07 6 45 Ω

Z =10× j10

10 + j10=

100 6 π/2

10√

2 6 π/4

M. B. Patil, IIT Bombay

Page 105: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Circuit example

iL

is

iC

15 mH2 mF

10 Ω2 Ω

10 6 0 Vf = 50 Hz

Z1

Z3

IC

Vs

Z2

Z4

Is

IL

Vs

Is

ZEQ

Z3 =1

j × 2π × 50× 2× 10−3= −j 1.6 Ω

Z4 = 2π × 50× 15× 10−3 = j 4.7 Ω

ZEQ = Z1 + Z3 ‖ (Z2 + Z4)

= 2 + (−j 1.6) ‖ (10 + j 4.7) = 2 +(−j 1.6)× (10 + j 4.7)

−j 1.6 + 10 + j 4.7

= 2 +1.6∠ (−90)× 11.05∠ (25.2)

10.47∠ (17.2)= 2 +

17.7∠ (−64.8)

10.47∠ (17.2)

= 2 + 1.69∠ (−82) = 2 + (0.235− j 1.67)

= 2.235− j 1.67 = 2.79∠ (−36.8) Ω

M. B. Patil, IIT Bombay

Page 106: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Circuit example

iL

is

iC

15 mH2 mF

10 Ω2 Ω

10 6 0 Vf = 50 Hz

Z1

Z3

IC

Vs

Z2

Z4

Is

IL

Vs

Is

ZEQ

Z3 =1

j × 2π × 50× 2× 10−3= −j 1.6 Ω

Z4 = 2π × 50× 15× 10−3 = j 4.7 Ω

ZEQ = Z1 + Z3 ‖ (Z2 + Z4)

= 2 + (−j 1.6) ‖ (10 + j 4.7) = 2 +(−j 1.6)× (10 + j 4.7)

−j 1.6 + 10 + j 4.7

= 2 +1.6∠ (−90)× 11.05∠ (25.2)

10.47∠ (17.2)= 2 +

17.7∠ (−64.8)

10.47∠ (17.2)

= 2 + 1.69∠ (−82) = 2 + (0.235− j 1.67)

= 2.235− j 1.67 = 2.79∠ (−36.8) Ω

M. B. Patil, IIT Bombay

Page 107: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Circuit example

iL

is

iC

15 mH2 mF

10 Ω2 Ω

10 6 0 Vf = 50 Hz

Z1

Z3

IC

Vs

Z2

Z4

Is

IL

Vs

Is

ZEQ

Z3 =1

j × 2π × 50× 2× 10−3= −j 1.6 Ω

Z4 = 2π × 50× 15× 10−3 = j 4.7 Ω

ZEQ = Z1 + Z3 ‖ (Z2 + Z4)

= 2 + (−j 1.6) ‖ (10 + j 4.7) = 2 +(−j 1.6)× (10 + j 4.7)

−j 1.6 + 10 + j 4.7

= 2 +1.6∠ (−90)× 11.05∠ (25.2)

10.47∠ (17.2)= 2 +

17.7∠ (−64.8)

10.47∠ (17.2)

= 2 + 1.69∠ (−82) = 2 + (0.235− j 1.67)

= 2.235− j 1.67 = 2.79∠ (−36.8) Ω

M. B. Patil, IIT Bombay

Page 108: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Circuit example

iL

is

iC

15 mH2 mF

10 Ω2 Ω

10 6 0 Vf = 50 Hz

Z1

Z3

IC

Vs

Z2

Z4

Is

IL

Vs

Is

ZEQ

Z3 =1

j × 2π × 50× 2× 10−3= −j 1.6 Ω

Z4 = 2π × 50× 15× 10−3 = j 4.7 Ω

ZEQ = Z1 + Z3 ‖ (Z2 + Z4)

= 2 + (−j 1.6) ‖ (10 + j 4.7) = 2 +(−j 1.6)× (10 + j 4.7)

−j 1.6 + 10 + j 4.7

= 2 +1.6∠ (−90)× 11.05∠ (25.2)

10.47∠ (17.2)= 2 +

17.7∠ (−64.8)

10.47∠ (17.2)

= 2 + 1.69∠ (−82) = 2 + (0.235− j 1.67)

= 2.235− j 1.67 = 2.79∠ (−36.8) Ω

M. B. Patil, IIT Bombay

Page 109: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Circuit example

iL

is

iC

15 mH2 mF

10 Ω2 Ω

10 6 0 Vf = 50 Hz

Z1

Z3

IC

Vs

Z2

Z4

Is

IL

Vs

Is

ZEQ

Z3 =1

j × 2π × 50× 2× 10−3= −j 1.6 Ω

Z4 = 2π × 50× 15× 10−3 = j 4.7 Ω

ZEQ = Z1 + Z3 ‖ (Z2 + Z4)

= 2 + (−j 1.6) ‖ (10 + j 4.7) = 2 +(−j 1.6)× (10 + j 4.7)

−j 1.6 + 10 + j 4.7

= 2 +1.6∠ (−90)× 11.05∠ (25.2)

10.47∠ (17.2)= 2 +

17.7∠ (−64.8)

10.47∠ (17.2)

= 2 + 1.69∠ (−82) = 2 + (0.235− j 1.67)

= 2.235− j 1.67 = 2.79∠ (−36.8) Ω

M. B. Patil, IIT Bombay

Page 110: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Circuit example

iL

is

iC

15 mH2 mF

10 Ω2 Ω

10 6 0 Vf = 50 Hz

Z1

Z3

IC

Vs

Z2

Z4

Is

IL

Vs

Is

ZEQ

Z3 =1

j × 2π × 50× 2× 10−3= −j 1.6 Ω

Z4 = 2π × 50× 15× 10−3 = j 4.7 Ω

ZEQ = Z1 + Z3 ‖ (Z2 + Z4)

= 2 + (−j 1.6) ‖ (10 + j 4.7) = 2 +(−j 1.6)× (10 + j 4.7)

−j 1.6 + 10 + j 4.7

= 2 +1.6∠ (−90)× 11.05∠ (25.2)

10.47∠ (17.2)= 2 +

17.7∠ (−64.8)

10.47∠ (17.2)

= 2 + 1.69∠ (−82) = 2 + (0.235− j 1.67)

= 2.235− j 1.67 = 2.79∠ (−36.8) Ω

M. B. Patil, IIT Bombay

Page 111: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Circuit example

iL

is

iC

15 mH2 mF

10 Ω2 Ω

10 6 0 Vf = 50 Hz

Z1

Z3

IC

Vs

Z2

Z4

Is

IL

Vs

Is

ZEQ

Z3 =1

j × 2π × 50× 2× 10−3= −j 1.6 Ω

Z4 = 2π × 50× 15× 10−3 = j 4.7 Ω

ZEQ = Z1 + Z3 ‖ (Z2 + Z4)

= 2 + (−j 1.6) ‖ (10 + j 4.7) = 2 +(−j 1.6)× (10 + j 4.7)

−j 1.6 + 10 + j 4.7

= 2 +1.6∠ (−90)× 11.05∠ (25.2)

10.47∠ (17.2)= 2 +

17.7∠ (−64.8)

10.47∠ (17.2)

= 2 + 1.69∠ (−82) = 2 + (0.235− j 1.67)

= 2.235− j 1.67 = 2.79∠ (−36.8) Ω

M. B. Patil, IIT Bombay

Page 112: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Circuit example

iL

is

iC

15 mH2 mF

10 Ω2 Ω

10 6 0 Vf = 50 Hz

Z1

Z3

IC

Vs

Z2

Z4

Is

IL

Vs

Is

ZEQ

Z3 =1

j × 2π × 50× 2× 10−3= −j 1.6 Ω

Z4 = 2π × 50× 15× 10−3 = j 4.7 Ω

ZEQ = Z1 + Z3 ‖ (Z2 + Z4)

= 2 + (−j 1.6) ‖ (10 + j 4.7) = 2 +(−j 1.6)× (10 + j 4.7)

−j 1.6 + 10 + j 4.7

= 2 +1.6∠ (−90)× 11.05∠ (25.2)

10.47∠ (17.2)= 2 +

17.7∠ (−64.8)

10.47∠ (17.2)

= 2 + 1.69∠ (−82) = 2 + (0.235− j 1.67)

= 2.235− j 1.67 = 2.79∠ (−36.8) Ω

M. B. Patil, IIT Bombay

Page 113: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Circuit example

iL

is

iC

15 mH2 mF

10 Ω2 Ω

10 6 0 Vf = 50 Hz

Z1

Z3

IC

Vs

Z2

Z4

Is

IL

Vs

Is

ZEQ

Z3 =1

j × 2π × 50× 2× 10−3= −j 1.6 Ω

Z4 = 2π × 50× 15× 10−3 = j 4.7 Ω

ZEQ = Z1 + Z3 ‖ (Z2 + Z4)

= 2 + (−j 1.6) ‖ (10 + j 4.7) = 2 +(−j 1.6)× (10 + j 4.7)

−j 1.6 + 10 + j 4.7

= 2 +1.6∠ (−90)× 11.05∠ (25.2)

10.47∠ (17.2)= 2 +

17.7∠ (−64.8)

10.47∠ (17.2)

= 2 + 1.69∠ (−82) = 2 + (0.235− j 1.67)

= 2.235− j 1.67 = 2.79∠ (−36.8) Ω

M. B. Patil, IIT Bombay

Page 114: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Circuit example

iL

is

iC

15 mH2 mF

10 Ω2 Ω

10 6 0 Vf = 50 Hz

Z1

Z3

IC

Vs

Z2

Z4

Is

IL

Vs

Is

ZEQ

Z3 =1

j × 2π × 50× 2× 10−3= −j 1.6 Ω

Z4 = 2π × 50× 15× 10−3 = j 4.7 Ω

ZEQ = Z1 + Z3 ‖ (Z2 + Z4)

= 2 + (−j 1.6) ‖ (10 + j 4.7) = 2 +(−j 1.6)× (10 + j 4.7)

−j 1.6 + 10 + j 4.7

= 2 +1.6∠ (−90)× 11.05∠ (25.2)

10.47∠ (17.2)= 2 +

17.7∠ (−64.8)

10.47∠ (17.2)

= 2 + 1.69∠ (−82) = 2 + (0.235− j 1.67)

= 2.235− j 1.67 = 2.79∠ (−36.8) Ω

M. B. Patil, IIT Bombay

Page 115: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Circuit example (continued)

Z1

Z3

IC

Vs Vs

Z2

Z4

Is

IL

Is

ZEQ

iL

is

iC

15 mH2 mF

10 Ω2 Ω

10 6 0 Vf = 50 Hz

Is =Vs

ZEQ=

10 ∠ (0)

2.79 ∠ (−36.8)= 3.58 ∠ (36.8) A

IC =(Z2 + Z4)

Z3 + (Z2 + Z4)× Is = 3.79 ∠ (44.6) A

IL =Z3

Z3 + (Z2 + Z4)× Is = 0.546 ∠ (−70.6) A

3

2

1

0

−110 2 3

Is

IL

IC

Re(I)

Im(I

)

M. B. Patil, IIT Bombay

Page 116: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Circuit example (continued)

Z1

Z3

IC

Vs Vs

Z2

Z4

Is

IL

Is

ZEQ

iL

is

iC

15 mH2 mF

10 Ω2 Ω

10 6 0 Vf = 50 Hz

Is =Vs

ZEQ=

10 ∠ (0)

2.79 ∠ (−36.8)= 3.58 ∠ (36.8) A

IC =(Z2 + Z4)

Z3 + (Z2 + Z4)× Is = 3.79 ∠ (44.6) A

IL =Z3

Z3 + (Z2 + Z4)× Is = 0.546 ∠ (−70.6) A

3

2

1

0

−110 2 3

Is

IL

IC

Re(I)

Im(I

)

M. B. Patil, IIT Bombay

Page 117: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Circuit example (continued)

Z1

Z3

IC

Vs Vs

Z2

Z4

Is

IL

Is

ZEQ

iL

is

iC

15 mH2 mF

10 Ω2 Ω

10 6 0 Vf = 50 Hz

Is =Vs

ZEQ=

10 ∠ (0)

2.79 ∠ (−36.8)= 3.58 ∠ (36.8) A

IC =(Z2 + Z4)

Z3 + (Z2 + Z4)× Is = 3.79 ∠ (44.6) A

IL =Z3

Z3 + (Z2 + Z4)× Is = 0.546 ∠ (−70.6) A

3

2

1

0

−110 2 3

Is

IL

IC

Re(I)

Im(I

)

M. B. Patil, IIT Bombay

Page 118: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Circuit example (continued)

Z1

Z3

IC

Vs Vs

Z2

Z4

Is

IL

Is

ZEQ

iL

is

iC

15 mH2 mF

10 Ω2 Ω

10 6 0 Vf = 50 Hz

Is =Vs

ZEQ=

10 ∠ (0)

2.79 ∠ (−36.8)= 3.58 ∠ (36.8) A

IC =(Z2 + Z4)

Z3 + (Z2 + Z4)× Is = 3.79 ∠ (44.6) A

IL =Z3

Z3 + (Z2 + Z4)× Is = 0.546 ∠ (−70.6) A

3

2

1

0

−110 2 3

Is

IL

IC

Re(I)

Im(I

)

M. B. Patil, IIT Bombay

Page 119: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Circuit example (continued)

Z1

Z3

IC

Vs Vs

Z2

Z4

Is

IL

Is

ZEQ

iL

is

iC

15 mH2 mF

10 Ω2 Ω

10 6 0 Vf = 50 Hz

Is =Vs

ZEQ=

10 ∠ (0)

2.79 ∠ (−36.8)= 3.58 ∠ (36.8) A

IC =(Z2 + Z4)

Z3 + (Z2 + Z4)× Is = 3.79 ∠ (44.6) A

IL =Z3

Z3 + (Z2 + Z4)× Is = 0.546 ∠ (−70.6) A

3

2

1

0

−110 2 3

Is

IL

IC

Re(I)

Im(I

)

M. B. Patil, IIT Bombay

Page 120: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state: power computation

V

I Z

Let v(t) = Vm cos (ωt + θ), i.e., V = Vm ∠ θ ,

i(t) = Im cos (ωt + φ), i.e., I = Im ∠φ .

The instantaneous power absorbed by Z is,

P(t) = v(t) i(t)

= Vm Im cos (ωt + θ) cos (ωt + φ)

=1

2Vm Im [cos (2ωt + θ + φ) + cos (θ − φ)] (1)

The average power absorbed by Z is

P =1

T

Z T

0P(t) dt, where T = 2π/ω.

The first term in Eq. (1) has an average value of zero and does not contribute to P.Therefore,

P =1

2Vm Im cos (θ − φ) gives the average power absorbed by Z.

M. B. Patil, IIT Bombay

Page 121: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state: power computation

V

I Z

Let v(t) = Vm cos (ωt + θ), i.e., V = Vm ∠ θ ,

i(t) = Im cos (ωt + φ), i.e., I = Im ∠φ .

The instantaneous power absorbed by Z is,

P(t) = v(t) i(t)

= Vm Im cos (ωt + θ) cos (ωt + φ)

=1

2Vm Im [cos (2ωt + θ + φ) + cos (θ − φ)] (1)

The average power absorbed by Z is

P =1

T

Z T

0P(t) dt, where T = 2π/ω.

The first term in Eq. (1) has an average value of zero and does not contribute to P.Therefore,

P =1

2Vm Im cos (θ − φ) gives the average power absorbed by Z.

M. B. Patil, IIT Bombay

Page 122: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state: power computation

V

I Z

Let v(t) = Vm cos (ωt + θ), i.e., V = Vm ∠ θ ,

i(t) = Im cos (ωt + φ), i.e., I = Im ∠φ .

The instantaneous power absorbed by Z is,

P(t) = v(t) i(t)

= Vm Im cos (ωt + θ) cos (ωt + φ)

=1

2Vm Im [cos (2ωt + θ + φ) + cos (θ − φ)] (1)

The average power absorbed by Z is

P =1

T

Z T

0P(t) dt, where T = 2π/ω.

The first term in Eq. (1) has an average value of zero and does not contribute to P.Therefore,

P =1

2Vm Im cos (θ − φ) gives the average power absorbed by Z.

M. B. Patil, IIT Bombay

Page 123: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state: power computation

V

I Z

Let v(t) = Vm cos (ωt + θ), i.e., V = Vm ∠ θ ,

i(t) = Im cos (ωt + φ), i.e., I = Im ∠φ .

The instantaneous power absorbed by Z is,

P(t) = v(t) i(t)

= Vm Im cos (ωt + θ) cos (ωt + φ)

=1

2Vm Im [cos (2ωt + θ + φ) + cos (θ − φ)] (1)

The average power absorbed by Z is

P =1

T

Z T

0P(t) dt, where T = 2π/ω.

The first term in Eq. (1) has an average value of zero and does not contribute to P.Therefore,

P =1

2Vm Im cos (θ − φ) gives the average power absorbed by Z.

M. B. Patil, IIT Bombay

Page 124: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state: power computation

V

I Z

Let v(t) = Vm cos (ωt + θ), i.e., V = Vm ∠ θ ,

i(t) = Im cos (ωt + φ), i.e., I = Im ∠φ .

The instantaneous power absorbed by Z is,

P(t) = v(t) i(t)

= Vm Im cos (ωt + θ) cos (ωt + φ)

=1

2Vm Im [cos (2ωt + θ + φ) + cos (θ − φ)] (1)

The average power absorbed by Z is

P =1

T

Z T

0P(t) dt, where T = 2π/ω.

The first term in Eq. (1) has an average value of zero and does not contribute to P.Therefore,

P =1

2Vm Im cos (θ − φ) gives the average power absorbed by Z.

M. B. Patil, IIT Bombay

Page 125: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Sinusoidal steady state: power computation

V

I Z

Let v(t) = Vm cos (ωt + θ), i.e., V = Vm ∠ θ ,

i(t) = Im cos (ωt + φ), i.e., I = Im ∠φ .

The instantaneous power absorbed by Z is,

P(t) = v(t) i(t)

= Vm Im cos (ωt + θ) cos (ωt + φ)

=1

2Vm Im [cos (2ωt + θ + φ) + cos (θ − φ)] (1)

The average power absorbed by Z is

P =1

T

Z T

0P(t) dt, where T = 2π/ω.

The first term in Eq. (1) has an average value of zero and does not contribute to P.Therefore,

P =1

2Vm Im cos (θ − φ) gives the average power absorbed by Z.

M. B. Patil, IIT Bombay

Page 126: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Average power for R, L, C

General formula:V

I Z P =1

2Vm Im cos (θ − φ)

V = Vm 6 θ , I = Im 6 φ

V

I R

For I = Im 6 α, V = R Im 6 α ,

V = R I

P =1

2(R Im) Im cos (α− α) =

1

2I2m R =

1

2V2

m/R

V

I L

For I = Im 6 α, V = ωL Im 6 (α + π/2) ,

P =1

2Vm Im cos [(α + π/2)− α] = 0

V = jωL I

V

IC

For V = Vm 6 α, I = ωC Vm 6 (α + π/2) ,

P =1

2Vm Im cos [α− (α + π/2)] = 0

I = jωCV

M. B. Patil, IIT Bombay

Page 127: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Average power for R, L, C

General formula:V

I Z P =1

2Vm Im cos (θ − φ)

V = Vm 6 θ , I = Im 6 φ

V

I R

For I = Im 6 α, V = R Im 6 α ,

V = R I

P =1

2(R Im) Im cos (α− α) =

1

2I2m R =

1

2V2

m/R

V

I L

For I = Im 6 α, V = ωL Im 6 (α + π/2) ,

P =1

2Vm Im cos [(α + π/2)− α] = 0

V = jωL I

V

IC

For V = Vm 6 α, I = ωC Vm 6 (α + π/2) ,

P =1

2Vm Im cos [α− (α + π/2)] = 0

I = jωCV

M. B. Patil, IIT Bombay

Page 128: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Average power for R, L, C

General formula:V

I Z P =1

2Vm Im cos (θ − φ)

V = Vm 6 θ , I = Im 6 φ

V

I R

For I = Im 6 α, V = R Im 6 α ,

V = R I

P =1

2(R Im) Im cos (α− α) =

1

2I2m R =

1

2V2

m/R

V

I L

For I = Im 6 α, V = ωL Im 6 (α + π/2) ,

P =1

2Vm Im cos [(α + π/2)− α] = 0

V = jωL I

V

IC

For V = Vm 6 α, I = ωC Vm 6 (α + π/2) ,

P =1

2Vm Im cos [α− (α + π/2)] = 0

I = jωCV

M. B. Patil, IIT Bombay

Page 129: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Average power for R, L, C

General formula:V

I Z P =1

2Vm Im cos (θ − φ)

V = Vm 6 θ , I = Im 6 φ

V

I R

For I = Im 6 α, V = R Im 6 α ,

V = R I

P =1

2(R Im) Im cos (α− α) =

1

2I2m R =

1

2V2

m/R

V

I L

For I = Im 6 α, V = ωL Im 6 (α + π/2) ,

P =1

2Vm Im cos [(α + π/2)− α] = 0

V = jωL I

V

IC

For V = Vm 6 α, I = ωC Vm 6 (α + π/2) ,

P =1

2Vm Im cos [α− (α + π/2)] = 0

I = jωCV

M. B. Patil, IIT Bombay

Page 130: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Average power: example

Find the average power absorbed.

V

50Ω j25ΩI

Given: I = 2 6 45 A

Method 1:

V = (50 + j25)× 2 ∠ 45

= 55.9 ∠ 26.6 × 2 ∠ 45

= 111.8 ∠ (45 + 26.6)

P =1

2× 111.8× 2× cos (26.6) = 100 W .

Method 2:

No average power is absorbed by the inductor.

⇒ P = PR (average power absorbed by R)

=1

2I 2m R =

1

2× 22 × 50

= 100 W .

M. B. Patil, IIT Bombay

Page 131: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Average power: example

Find the average power absorbed.

V

50Ω j25ΩI

Given: I = 2 6 45 A

Method 1:

V = (50 + j25)× 2 ∠ 45

= 55.9 ∠ 26.6 × 2 ∠ 45

= 111.8 ∠ (45 + 26.6)

P =1

2× 111.8× 2× cos (26.6) = 100 W .

Method 2:

No average power is absorbed by the inductor.

⇒ P = PR (average power absorbed by R)

=1

2I 2m R =

1

2× 22 × 50

= 100 W .

M. B. Patil, IIT Bombay

Page 132: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Average power: example

Find the average power absorbed.

V

50Ω j25ΩI

Given: I = 2 6 45 A

Method 1:

V = (50 + j25)× 2 ∠ 45

= 55.9 ∠ 26.6 × 2 ∠ 45

= 111.8 ∠ (45 + 26.6)

P =1

2× 111.8× 2× cos (26.6) = 100 W .

Method 2:

No average power is absorbed by the inductor.

⇒ P = PR (average power absorbed by R)

=1

2I 2m R =

1

2× 22 × 50

= 100 W .

M. B. Patil, IIT Bombay

Page 133: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Average power: example

Find the average power absorbed.

V

50Ω j25ΩI

Given: I = 2 6 45 A

Method 1:

V = (50 + j25)× 2 ∠ 45

= 55.9 ∠ 26.6 × 2 ∠ 45

= 111.8 ∠ (45 + 26.6)

P =1

2× 111.8× 2× cos (26.6) = 100 W .

Method 2:

No average power is absorbed by the inductor.

⇒ P = PR (average power absorbed by R)

=1

2I 2m R =

1

2× 22 × 50

= 100 W .

M. B. Patil, IIT Bombay

Page 134: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Average power: example

Find the average power absorbed.

V

50Ω j25ΩI

Given: I = 2 6 45 A

Method 1:

V = (50 + j25)× 2 ∠ 45

= 55.9 ∠ 26.6 × 2 ∠ 45

= 111.8 ∠ (45 + 26.6)

P =1

2× 111.8× 2× cos (26.6) = 100 W .

Method 2:

No average power is absorbed by the inductor.

⇒ P = PR (average power absorbed by R)

=1

2I 2m R =

1

2× 22 × 50

= 100 W .

M. B. Patil, IIT Bombay

Page 135: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Maximum power transfer

ZLVTh

IZTh

Let ZL = RL + jXL, ZTh = RTh + jXTh, and I = Im ∠φ .

The power absorbed by ZL is,

P =1

2I 2mRL

=1

2

˛VTh

ZTh + ZL

˛2RL

=1

2

|VTh|2(RTh + RL)2 + (XTh + XL)2

RL .

For P to be maximum, (XTh + XL) must be zero. ⇒ XL = −XTh.

With XL = −XTh, we have,

P =1

2

|VTh|2(RTh + RL)2

RL ,

which is maximum for RL = RTh.

Therefore, for maximum power transfer to the load ZL, we need,

RL = RTh, XL = −XTh, i.e., ZL = Z∗Th.

M. B. Patil, IIT Bombay

Page 136: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Maximum power transfer

ZLVTh

IZThLet ZL = RL + jXL, ZTh = RTh + jXTh, and I = Im ∠φ .

The power absorbed by ZL is,

P =1

2I 2mRL

=1

2

˛VTh

ZTh + ZL

˛2RL

=1

2

|VTh|2(RTh + RL)2 + (XTh + XL)2

RL .

For P to be maximum, (XTh + XL) must be zero. ⇒ XL = −XTh.

With XL = −XTh, we have,

P =1

2

|VTh|2(RTh + RL)2

RL ,

which is maximum for RL = RTh.

Therefore, for maximum power transfer to the load ZL, we need,

RL = RTh, XL = −XTh, i.e., ZL = Z∗Th.

M. B. Patil, IIT Bombay

Page 137: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Maximum power transfer

ZLVTh

IZThLet ZL = RL + jXL, ZTh = RTh + jXTh, and I = Im ∠φ .

The power absorbed by ZL is,

P =1

2I 2mRL

=1

2

˛VTh

ZTh + ZL

˛2RL

=1

2

|VTh|2(RTh + RL)2 + (XTh + XL)2

RL .

For P to be maximum, (XTh + XL) must be zero. ⇒ XL = −XTh.

With XL = −XTh, we have,

P =1

2

|VTh|2(RTh + RL)2

RL ,

which is maximum for RL = RTh.

Therefore, for maximum power transfer to the load ZL, we need,

RL = RTh, XL = −XTh, i.e., ZL = Z∗Th.

M. B. Patil, IIT Bombay

Page 138: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Maximum power transfer

ZLVTh

IZThLet ZL = RL + jXL, ZTh = RTh + jXTh, and I = Im ∠φ .

The power absorbed by ZL is,

P =1

2I 2mRL

=1

2

˛VTh

ZTh + ZL

˛2RL

=1

2

|VTh|2(RTh + RL)2 + (XTh + XL)2

RL .

For P to be maximum, (XTh + XL) must be zero. ⇒ XL = −XTh.

With XL = −XTh, we have,

P =1

2

|VTh|2(RTh + RL)2

RL ,

which is maximum for RL = RTh.

Therefore, for maximum power transfer to the load ZL, we need,

RL = RTh, XL = −XTh, i.e., ZL = Z∗Th.

M. B. Patil, IIT Bombay

Page 139: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Maximum power transfer

ZLVTh

IZThLet ZL = RL + jXL, ZTh = RTh + jXTh, and I = Im ∠φ .

The power absorbed by ZL is,

P =1

2I 2mRL

=1

2

˛VTh

ZTh + ZL

˛2RL

=1

2

|VTh|2(RTh + RL)2 + (XTh + XL)2

RL .

For P to be maximum, (XTh + XL) must be zero. ⇒ XL = −XTh.

With XL = −XTh, we have,

P =1

2

|VTh|2(RTh + RL)2

RL ,

which is maximum for RL = RTh.

Therefore, for maximum power transfer to the load ZL, we need,

RL = RTh, XL = −XTh, i.e., ZL = Z∗Th.

M. B. Patil, IIT Bombay

Page 140: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Maximum power transfer

ZLVTh

IZThLet ZL = RL + jXL, ZTh = RTh + jXTh, and I = Im ∠φ .

The power absorbed by ZL is,

P =1

2I 2mRL

=1

2

˛VTh

ZTh + ZL

˛2RL

=1

2

|VTh|2(RTh + RL)2 + (XTh + XL)2

RL .

For P to be maximum, (XTh + XL) must be zero. ⇒ XL = −XTh.

With XL = −XTh, we have,

P =1

2

|VTh|2(RTh + RL)2

RL ,

which is maximum for RL = RTh.

Therefore, for maximum power transfer to the load ZL, we need,

RL = RTh, XL = −XTh, i.e., ZL = Z∗Th.

M. B. Patil, IIT Bombay

Page 141: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Maximum power transfer: example

A

B

ZL

j3Ω4 Ω

-j6Ω16 6 0 V

A

B

ZLVTh

ZTh

ZTh = (−j 6) ‖ (4 + j 3) = 5.76− j 1.68 Ω .

For maximum power transfer, ZL = Z∗Th = 5.76 + j 1.68 Ω ≡ RL + j XL .

VTh = 16 ∠ 0 × −j 6

(4 + j 3) + (−j 6)= 19.2 ∠(−53.13) .

I =VTh

ZTh + ZL=

VTh

2 RL.

P =1

2I 2mRL =

1

2

„19.2

2 RL

«2

× RL =1

2

(19.2)2

4 RL= 8 W .

M. B. Patil, IIT Bombay

Page 142: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Maximum power transfer: example

A

B

ZL

j3Ω4 Ω

-j6Ω16 6 0 V

A

B

ZLVTh

ZTh

ZTh = (−j 6) ‖ (4 + j 3) = 5.76− j 1.68 Ω .

For maximum power transfer, ZL = Z∗Th = 5.76 + j 1.68 Ω ≡ RL + j XL .

VTh = 16 ∠ 0 × −j 6

(4 + j 3) + (−j 6)= 19.2 ∠(−53.13) .

I =VTh

ZTh + ZL=

VTh

2 RL.

P =1

2I 2mRL =

1

2

„19.2

2 RL

«2

× RL =1

2

(19.2)2

4 RL= 8 W .

M. B. Patil, IIT Bombay

Page 143: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Maximum power transfer: example

A

B

ZL

j3Ω4 Ω

-j6Ω16 6 0 V

A

B

ZLVTh

ZTh

ZTh = (−j 6) ‖ (4 + j 3) = 5.76− j 1.68 Ω .

For maximum power transfer, ZL = Z∗Th = 5.76 + j 1.68 Ω ≡ RL + j XL .

VTh = 16 ∠ 0 × −j 6

(4 + j 3) + (−j 6)= 19.2 ∠(−53.13) .

I =VTh

ZTh + ZL=

VTh

2 RL.

P =1

2I 2mRL =

1

2

„19.2

2 RL

«2

× RL =1

2

(19.2)2

4 RL= 8 W .

M. B. Patil, IIT Bombay

Page 144: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Maximum power transfer: example

A

B

ZL

j3Ω4 Ω

-j6Ω16 6 0 V

A

B

ZLVTh

ZTh

ZTh = (−j 6) ‖ (4 + j 3) = 5.76− j 1.68 Ω .

For maximum power transfer, ZL = Z∗Th = 5.76 + j 1.68 Ω ≡ RL + j XL .

VTh = 16 ∠ 0 × −j 6

(4 + j 3) + (−j 6)= 19.2 ∠(−53.13) .

I =VTh

ZTh + ZL=

VTh

2 RL.

P =1

2I 2mRL =

1

2

„19.2

2 RL

«2

× RL =1

2

(19.2)2

4 RL= 8 W .

M. B. Patil, IIT Bombay

Page 145: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Maximum power transfer: example

A

B

ZL

j3Ω4 Ω

-j6Ω16 6 0 V

A

B

ZLVTh

ZTh

ZTh = (−j 6) ‖ (4 + j 3) = 5.76− j 1.68 Ω .

For maximum power transfer, ZL = Z∗Th = 5.76 + j 1.68 Ω ≡ RL + j XL .

VTh = 16 ∠ 0 × −j 6

(4 + j 3) + (−j 6)= 19.2 ∠(−53.13) .

I =VTh

ZTh + ZL=

VTh

2 RL.

P =1

2I 2mRL =

1

2

„19.2

2 RL

«2

× RL =1

2

(19.2)2

4 RL= 8 W .

M. B. Patil, IIT Bombay

Page 146: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Maximum power transfer: example

A

B

ZL

j3Ω4 Ω

-j6Ω16 6 0 V

A

B

ZLVTh

ZTh

ZTh = (−j 6) ‖ (4 + j 3) = 5.76− j 1.68 Ω .

For maximum power transfer, ZL = Z∗Th = 5.76 + j 1.68 Ω ≡ RL + j XL .

VTh = 16 ∠ 0 × −j 6

(4 + j 3) + (−j 6)= 19.2 ∠(−53.13) .

I =VTh

ZTh + ZL=

VTh

2 RL.

P =1

2I 2mRL =

1

2

„19.2

2 RL

«2

× RL =1

2

(19.2)2

4 RL= 8 W .

M. B. Patil, IIT Bombay

Page 147: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Maximum power transfer: example

A

B

ZL

j3Ω4 Ω

-j6Ω16 6 0 V

A

B

ZLVTh

ZTh

ZTh = (−j 6) ‖ (4 + j 3) = 5.76− j 1.68 Ω .

For maximum power transfer, ZL = Z∗Th = 5.76 + j 1.68 Ω ≡ RL + j XL .

VTh = 16 ∠ 0 × −j 6

(4 + j 3) + (−j 6)= 19.2 ∠(−53.13) .

I =VTh

ZTh + ZL=

VTh

2 RL.

P =1

2I 2mRL =

1

2

„19.2

2 RL

«2

× RL =1

2

(19.2)2

4 RL= 8 W .

M. B. Patil, IIT Bombay

Page 148: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Effective (rms) values of voltage/current

R Ri(t)

v(t) Veff

Ieff

time-varying v and i constant v and i

Consider a periodic current i(t) passing through R.

The average power absorbed by R is,

P1 =1

T

Z t0+T

t0

[i(t)]2 R dt ,

where t0 is some reference time (we will take t0 to be 0).

The average power absorbed by R in the DC case is,

P2 = I 2eff R.

Ieff , the effective value of i(t), is defined such that P1 = P2, i.e.,

I 2eff R =

1

T

Z T

0[i(t)]2 R dt ,

Ieff =

s1

T

Z T

0[i(t)]2 dt .

M. B. Patil, IIT Bombay

Page 149: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Effective (rms) values of voltage/current

R Ri(t)

v(t) Veff

Ieff

time-varying v and i constant v and i

Consider a periodic current i(t) passing through R.

The average power absorbed by R is,

P1 =1

T

Z t0+T

t0

[i(t)]2 R dt ,

where t0 is some reference time (we will take t0 to be 0).

The average power absorbed by R in the DC case is,

P2 = I 2eff R.

Ieff , the effective value of i(t), is defined such that P1 = P2, i.e.,

I 2eff R =

1

T

Z T

0[i(t)]2 R dt ,

Ieff =

s1

T

Z T

0[i(t)]2 dt .

M. B. Patil, IIT Bombay

Page 150: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Effective (rms) values of voltage/current

R Ri(t)

v(t) Veff

Ieff

time-varying v and i constant v and i

Consider a periodic current i(t) passing through R.

The average power absorbed by R is,

P1 =1

T

Z t0+T

t0

[i(t)]2 R dt ,

where t0 is some reference time (we will take t0 to be 0).

The average power absorbed by R in the DC case is,

P2 = I 2eff R.

Ieff , the effective value of i(t), is defined such that P1 = P2, i.e.,

I 2eff R =

1

T

Z T

0[i(t)]2 R dt ,

Ieff =

s1

T

Z T

0[i(t)]2 dt .

M. B. Patil, IIT Bombay

Page 151: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Effective (rms) values of voltage/current

R Ri(t)

v(t) Veff

Ieff

time-varying v and i constant v and i

Consider a periodic current i(t) passing through R.

The average power absorbed by R is,

P1 =1

T

Z t0+T

t0

[i(t)]2 R dt ,

where t0 is some reference time (we will take t0 to be 0).

The average power absorbed by R in the DC case is,

P2 = I 2eff R.

Ieff , the effective value of i(t), is defined such that P1 = P2, i.e.,

I 2eff R =

1

T

Z T

0[i(t)]2 R dt ,

Ieff =

s1

T

Z T

0[i(t)]2 dt .

M. B. Patil, IIT Bombay

Page 152: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Effective (rms) values of voltage/current

R Ri(t)

v(t) Veff

Ieff

time-varying v and i constant v and i

Ieff =

s1

T

Z T

0[i(t)]2 dt .

Ieff is called the root-mean-square (rms) value of i(t) because of the operations(root, mean, and square) involved in its computation.

If i(t) is sinusoidal, i.e., i(t) = Im cos (ωt + φ),

Ieff =

s1

T

Z T

0I 2m cos2(ωt + φ) dt = Im

s1

T

Z T

0

1

2[1 + cos (2ωt + 2φ)] dt

= Im

r1

T

1

2T = Im/

√2 .

Similarly, Veff = Vm/√

2 .

M. B. Patil, IIT Bombay

Page 153: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Effective (rms) values of voltage/current

R Ri(t)

v(t) Veff

Ieff

time-varying v and i constant v and i

Ieff =

s1

T

Z T

0[i(t)]2 dt .

Ieff is called the root-mean-square (rms) value of i(t) because of the operations(root, mean, and square) involved in its computation.

If i(t) is sinusoidal, i.e., i(t) = Im cos (ωt + φ),

Ieff =

s1

T

Z T

0I 2m cos2(ωt + φ) dt = Im

s1

T

Z T

0

1

2[1 + cos (2ωt + 2φ)] dt

= Im

r1

T

1

2T = Im/

√2 .

Similarly, Veff = Vm/√

2 .

M. B. Patil, IIT Bombay

Page 154: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Effective (rms) values of voltage/current

R Ri(t)

v(t) Veff

Ieff

time-varying v and i constant v and i

Ieff =

s1

T

Z T

0[i(t)]2 dt .

Ieff is called the root-mean-square (rms) value of i(t) because of the operations(root, mean, and square) involved in its computation.

If i(t) is sinusoidal, i.e., i(t) = Im cos (ωt + φ),

Ieff =

s1

T

Z T

0I 2m cos2(ωt + φ) dt = Im

s1

T

Z T

0

1

2[1 + cos (2ωt + 2φ)] dt

= Im

r1

T

1

2T = Im/

√2 .

Similarly, Veff = Vm/√

2 .

M. B. Patil, IIT Bombay

Page 155: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Apparent power, real power, and power factor

V

ZI

V = Vm 6 θ

I = Im 6 φ

The average (“real”) power absorbed by Z is,

P =1

2Vm Im cos (θ − φ) =

Vm√2

Im√2

cos (θ − φ)

= Veff Ieff cos (θ − φ) (Watts)

Apparent power is defined as Papp = Veff Ieff (Volt-Amp).

Power factor is defined as P.F . =Average power

Apparent power= cos (θ − φ).

(θ − φ) > 0: i(t) lags v(t), the P. F. is called a lagging P. F.

(inductive impedance)

(θ − φ) < 0: i(t) leads v(t), the P. F. is called a leading P. F.

(capacitive impedance)

M. B. Patil, IIT Bombay

Page 156: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Apparent power, real power, and power factor

V

ZI

V = Vm 6 θ

I = Im 6 φ

The average (“real”) power absorbed by Z is,

P =1

2Vm Im cos (θ − φ) =

Vm√2

Im√2

cos (θ − φ)

= Veff Ieff cos (θ − φ) (Watts)

Apparent power is defined as Papp = Veff Ieff (Volt-Amp).

Power factor is defined as P.F . =Average power

Apparent power= cos (θ − φ).

(θ − φ) > 0: i(t) lags v(t), the P. F. is called a lagging P. F.

(inductive impedance)

(θ − φ) < 0: i(t) leads v(t), the P. F. is called a leading P. F.

(capacitive impedance)

M. B. Patil, IIT Bombay

Page 157: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Apparent power, real power, and power factor

V

ZI

V = Vm 6 θ

I = Im 6 φ

The average (“real”) power absorbed by Z is,

P =1

2Vm Im cos (θ − φ) =

Vm√2

Im√2

cos (θ − φ)

= Veff Ieff cos (θ − φ) (Watts)

Apparent power is defined as Papp = Veff Ieff (Volt-Amp).

Power factor is defined as P.F . =Average power

Apparent power= cos (θ − φ).

(θ − φ) > 0: i(t) lags v(t), the P. F. is called a lagging P. F.

(inductive impedance)

(θ − φ) < 0: i(t) leads v(t), the P. F. is called a leading P. F.

(capacitive impedance)

M. B. Patil, IIT Bombay

Page 158: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Apparent power, real power, and power factor

V

ZI

V = Vm 6 θ

I = Im 6 φ

The average (“real”) power absorbed by Z is,

P =1

2Vm Im cos (θ − φ) =

Vm√2

Im√2

cos (θ − φ)

= Veff Ieff cos (θ − φ) (Watts)

Apparent power is defined as Papp = Veff Ieff (Volt-Amp).

Power factor is defined as P.F . =Average power

Apparent power= cos (θ − φ).

(θ − φ) > 0: i(t) lags v(t), the P. F. is called a lagging P. F.

(inductive impedance)

(θ − φ) < 0: i(t) leads v(t), the P. F. is called a leading P. F.

(capacitive impedance)

M. B. Patil, IIT Bombay

Page 159: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Apparent power, real power, and power factor

V

ZI

V = Vm 6 θ

I = Im 6 φ

The average (“real”) power absorbed by Z is,

P =1

2Vm Im cos (θ − φ) =

Vm√2

Im√2

cos (θ − φ)

= Veff Ieff cos (θ − φ) (Watts)

Apparent power is defined as Papp = Veff Ieff (Volt-Amp).

Power factor is defined as P.F . =Average power

Apparent power= cos (θ − φ).

(θ − φ) > 0: i(t) lags v(t), the P. F. is called a lagging P. F.

(inductive impedance)

(θ − φ) < 0: i(t) leads v(t), the P. F. is called a leading P. F.

(capacitive impedance)

M. B. Patil, IIT Bombay

Page 160: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Power factor: examples

V

ZI

1. Given: V = 120 ∠ 0 V (rms), I = 2 ∠ (−36.9) A (rms).Find Papp , P.F., and P.

Papp = 120× 2 = 240 V-A.

P.F. = cos (0 − (−36.9)) = 0.8 lagging (since I lags V).

P = Papp × P.F. = 192 W .

2. Given: P = 50 kW , P.F. = 0.95 (lagging), V = 480 ∠ 0 V (rms).Find I.

Veff × Ieff × P.F = 50× 103

Ieff =50× 103

480× 0.95= 109.6 A.

Since P.F. is 0.95 (lagging), I lags V by cos−1(0.95) = 18.2.

⇒ I = 109.6 ∠ (−18.2) A (rms).

M. B. Patil, IIT Bombay

Page 161: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Power factor: examples

V

ZI

1. Given: V = 120 ∠ 0 V (rms), I = 2 ∠ (−36.9) A (rms).Find Papp , P.F., and P.

Papp = 120× 2 = 240 V-A.

P.F. = cos (0 − (−36.9)) = 0.8 lagging (since I lags V).

P = Papp × P.F. = 192 W .

2. Given: P = 50 kW , P.F. = 0.95 (lagging), V = 480 ∠ 0 V (rms).Find I.

Veff × Ieff × P.F = 50× 103

Ieff =50× 103

480× 0.95= 109.6 A.

Since P.F. is 0.95 (lagging), I lags V by cos−1(0.95) = 18.2.

⇒ I = 109.6 ∠ (−18.2) A (rms).

M. B. Patil, IIT Bombay

Page 162: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Power factor: examples

V

ZI

1. Given: V = 120 ∠ 0 V (rms), I = 2 ∠ (−36.9) A (rms).Find Papp , P.F., and P.

Papp = 120× 2 = 240 V-A.

P.F. = cos (0 − (−36.9)) = 0.8 lagging (since I lags V).

P = Papp × P.F. = 192 W .

2. Given: P = 50 kW , P.F. = 0.95 (lagging), V = 480 ∠ 0 V (rms).Find I.

Veff × Ieff × P.F = 50× 103

Ieff =50× 103

480× 0.95= 109.6 A.

Since P.F. is 0.95 (lagging), I lags V by cos−1(0.95) = 18.2.

⇒ I = 109.6 ∠ (−18.2) A (rms).

M. B. Patil, IIT Bombay

Page 163: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Power factor: examples

V

ZI

1. Given: V = 120 ∠ 0 V (rms), I = 2 ∠ (−36.9) A (rms).Find Papp , P.F., and P.

Papp = 120× 2 = 240 V-A.

P.F. = cos (0 − (−36.9)) = 0.8 lagging (since I lags V).

P = Papp × P.F. = 192 W .

2. Given: P = 50 kW , P.F. = 0.95 (lagging), V = 480 ∠ 0 V (rms).Find I.

Veff × Ieff × P.F = 50× 103

Ieff =50× 103

480× 0.95= 109.6 A.

Since P.F. is 0.95 (lagging), I lags V by cos−1(0.95) = 18.2.

⇒ I = 109.6 ∠ (−18.2) A (rms).

M. B. Patil, IIT Bombay

Page 164: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Power factor: examples

V

ZI

1. Given: V = 120 ∠ 0 V (rms), I = 2 ∠ (−36.9) A (rms).Find Papp , P.F., and P.

Papp = 120× 2 = 240 V-A.

P.F. = cos (0 − (−36.9)) = 0.8 lagging (since I lags V).

P = Papp × P.F. = 192 W .

2. Given: P = 50 kW , P.F. = 0.95 (lagging), V = 480 ∠ 0 V (rms).Find I.

Veff × Ieff × P.F = 50× 103

Ieff =50× 103

480× 0.95= 109.6 A.

Since P.F. is 0.95 (lagging), I lags V by cos−1(0.95) = 18.2.

⇒ I = 109.6 ∠ (−18.2) A (rms).

M. B. Patil, IIT Bombay

Page 165: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Power factor: examples

V

ZI

1. Given: V = 120 ∠ 0 V (rms), I = 2 ∠ (−36.9) A (rms).Find Papp , P.F., and P.

Papp = 120× 2 = 240 V-A.

P.F. = cos (0 − (−36.9)) = 0.8 lagging (since I lags V).

P = Papp × P.F. = 192 W .

2. Given: P = 50 kW , P.F. = 0.95 (lagging), V = 480 ∠ 0 V (rms).Find I.

Veff × Ieff × P.F = 50× 103

Ieff =50× 103

480× 0.95= 109.6 A.

Since P.F. is 0.95 (lagging), I lags V by cos−1(0.95) = 18.2.

⇒ I = 109.6 ∠ (−18.2) A (rms).

M. B. Patil, IIT Bombay

Page 166: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Power factor: examples

V

ZI

1. Given: V = 120 ∠ 0 V (rms), I = 2 ∠ (−36.9) A (rms).Find Papp , P.F., and P.

Papp = 120× 2 = 240 V-A.

P.F. = cos (0 − (−36.9)) = 0.8 lagging (since I lags V).

P = Papp × P.F. = 192 W .

2. Given: P = 50 kW , P.F. = 0.95 (lagging), V = 480 ∠ 0 V (rms).Find I.

Veff × Ieff × P.F = 50× 103

Ieff =50× 103

480× 0.95= 109.6 A.

Since P.F. is 0.95 (lagging), I lags V by cos−1(0.95) = 18.2.

⇒ I = 109.6 ∠ (−18.2) A (rms).

M. B. Patil, IIT Bombay

Page 167: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Power factor: examples

V

ZI

1. Given: V = 120 ∠ 0 V (rms), I = 2 ∠ (−36.9) A (rms).Find Papp , P.F., and P.

Papp = 120× 2 = 240 V-A.

P.F. = cos (0 − (−36.9)) = 0.8 lagging (since I lags V).

P = Papp × P.F. = 192 W .

2. Given: P = 50 kW , P.F. = 0.95 (lagging), V = 480 ∠ 0 V (rms).Find I.

Veff × Ieff × P.F = 50× 103

Ieff =50× 103

480× 0.95= 109.6 A.

Since P.F. is 0.95 (lagging), I lags V by cos−1(0.95) = 18.2.

⇒ I = 109.6 ∠ (−18.2) A (rms).

M. B. Patil, IIT Bombay

Page 168: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Power factor: examples

V

ZI

1. Given: V = 120 ∠ 0 V (rms), I = 2 ∠ (−36.9) A (rms).Find Papp , P.F., and P.

Papp = 120× 2 = 240 V-A.

P.F. = cos (0 − (−36.9)) = 0.8 lagging (since I lags V).

P = Papp × P.F. = 192 W .

2. Given: P = 50 kW , P.F. = 0.95 (lagging), V = 480 ∠ 0 V (rms).Find I.

Veff × Ieff × P.F = 50× 103

Ieff =50× 103

480× 0.95= 109.6 A.

Since P.F. is 0.95 (lagging), I lags V by cos−1(0.95) = 18.2.

⇒ I = 109.6 ∠ (−18.2) A (rms).

M. B. Patil, IIT Bombay

Page 169: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Why is power factor important?

Vs VL ZL

IL

R = 0.1Ω

IC

C

Consider a simplified model of a power system consisting of a generator (Vs ),transmission line (R), and load (ZL).

The load is specified as P = 50 kW , P.F.= 0.6 (lagging), VL = 480 ∠ 0 V (rms).Note: lagging power factors are typical of industrial loads (motors).

P = 50× 103 W = |VL| × |IL| × P.F.⇒ |IL| =50× 103

480× 0.6= 173.6 A (rms).

Power loss in the transmission line Ploss = |IL|2R = (173.6)2 × 0.1 = 3 kW .

If the load power factor was 0.95 (lagging), we would have

|IL| =50× 103

480× 0.95= 109.6 A (rms), and Ploss = (109.6)2 × 0.1 = 1.2 kW .

Thus, a higher power factor can substantially reduce transmission losses.The effective power factor of an inductive load can be improved by connecting asuitable capacitance in parallel.

M. B. Patil, IIT Bombay

Page 170: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Why is power factor important?

Vs VL ZL

IL

R = 0.1Ω

IC

C

Consider a simplified model of a power system consisting of a generator (Vs ),transmission line (R), and load (ZL).

The load is specified as P = 50 kW , P.F.= 0.6 (lagging), VL = 480 ∠ 0 V (rms).Note: lagging power factors are typical of industrial loads (motors).

P = 50× 103 W = |VL| × |IL| × P.F.⇒ |IL| =50× 103

480× 0.6= 173.6 A (rms).

Power loss in the transmission line Ploss = |IL|2R = (173.6)2 × 0.1 = 3 kW .

If the load power factor was 0.95 (lagging), we would have

|IL| =50× 103

480× 0.95= 109.6 A (rms), and Ploss = (109.6)2 × 0.1 = 1.2 kW .

Thus, a higher power factor can substantially reduce transmission losses.The effective power factor of an inductive load can be improved by connecting asuitable capacitance in parallel.

M. B. Patil, IIT Bombay

Page 171: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Why is power factor important?

Vs VL ZL

IL

R = 0.1Ω

IC

C

Consider a simplified model of a power system consisting of a generator (Vs ),transmission line (R), and load (ZL).

The load is specified as P = 50 kW , P.F.= 0.6 (lagging), VL = 480 ∠ 0 V (rms).Note: lagging power factors are typical of industrial loads (motors).

P = 50× 103 W = |VL| × |IL| × P.F.⇒ |IL| =50× 103

480× 0.6= 173.6 A (rms).

Power loss in the transmission line Ploss = |IL|2R = (173.6)2 × 0.1 = 3 kW .

If the load power factor was 0.95 (lagging), we would have

|IL| =50× 103

480× 0.95= 109.6 A (rms), and Ploss = (109.6)2 × 0.1 = 1.2 kW .

Thus, a higher power factor can substantially reduce transmission losses.The effective power factor of an inductive load can be improved by connecting asuitable capacitance in parallel.

M. B. Patil, IIT Bombay

Page 172: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Why is power factor important?

Vs VL ZL

IL

R = 0.1Ω

IC

C

Consider a simplified model of a power system consisting of a generator (Vs ),transmission line (R), and load (ZL).

The load is specified as P = 50 kW , P.F.= 0.6 (lagging), VL = 480 ∠ 0 V (rms).Note: lagging power factors are typical of industrial loads (motors).

P = 50× 103 W = |VL| × |IL| × P.F.⇒ |IL| =50× 103

480× 0.6= 173.6 A (rms).

Power loss in the transmission line Ploss = |IL|2R = (173.6)2 × 0.1 = 3 kW .

If the load power factor was 0.95 (lagging), we would have

|IL| =50× 103

480× 0.95= 109.6 A (rms), and Ploss = (109.6)2 × 0.1 = 1.2 kW .

Thus, a higher power factor can substantially reduce transmission losses.The effective power factor of an inductive load can be improved by connecting asuitable capacitance in parallel.

M. B. Patil, IIT Bombay

Page 173: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Why is power factor important?

Vs VL ZL

IL

R = 0.1Ω

IC

C

Consider a simplified model of a power system consisting of a generator (Vs ),transmission line (R), and load (ZL).

The load is specified as P = 50 kW , P.F.= 0.6 (lagging), VL = 480 ∠ 0 V (rms).Note: lagging power factors are typical of industrial loads (motors).

P = 50× 103 W = |VL| × |IL| × P.F.⇒ |IL| =50× 103

480× 0.6= 173.6 A (rms).

Power loss in the transmission line Ploss = |IL|2R = (173.6)2 × 0.1 = 3 kW .

If the load power factor was 0.95 (lagging), we would have

|IL| =50× 103

480× 0.95= 109.6 A (rms), and Ploss = (109.6)2 × 0.1 = 1.2 kW .

Thus, a higher power factor can substantially reduce transmission losses.

The effective power factor of an inductive load can be improved by connecting asuitable capacitance in parallel.

M. B. Patil, IIT Bombay

Page 174: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Why is power factor important?

Vs VL ZL

IL

R = 0.1Ω

IC

C

Consider a simplified model of a power system consisting of a generator (Vs ),transmission line (R), and load (ZL).

The load is specified as P = 50 kW , P.F.= 0.6 (lagging), VL = 480 ∠ 0 V (rms).Note: lagging power factors are typical of industrial loads (motors).

P = 50× 103 W = |VL| × |IL| × P.F.⇒ |IL| =50× 103

480× 0.6= 173.6 A (rms).

Power loss in the transmission line Ploss = |IL|2R = (173.6)2 × 0.1 = 3 kW .

If the load power factor was 0.95 (lagging), we would have

|IL| =50× 103

480× 0.95= 109.6 A (rms), and Ploss = (109.6)2 × 0.1 = 1.2 kW .

Thus, a higher power factor can substantially reduce transmission losses.The effective power factor of an inductive load can be improved by connecting asuitable capacitance in parallel.

M. B. Patil, IIT Bombay

Page 175: EE101: Sinusoidal steady state analysissequel/ee101/ee101_phasors_1.pdf · EE101: Sinusoidal steady state analysis M. B. Patil mbpatil@ee.iitb.ac.in sequel Department of Electrical

Power computation: home work

I1

Is

I2

j5Ω−j2Ω

2Ω 10Ω

10 6 0 V

* Find I1, I2, Is .

* Compute the average power absorbed by each element.

* Verify power balance.

(SEQUEL file: ee101 phasors 2.sqproj)

M. B. Patil, IIT Bombay