List of Examples - Nob Hill Publishing Production rate of oxygen ... List of Examples xxxiii 6.1...

2

Click here to load reader

Transcript of List of Examples - Nob Hill Publishing Production rate of oxygen ... List of Examples xxxiii 6.1...

Page 1: List of Examples - Nob Hill Publishing Production rate of oxygen ... List of Examples xxxiii 6.1 Constant-pressure versus constant ... 6.5 Oxidation of o-xylene to phthalic anhydride

List of Examples

2.1 Stoichiometric matrix for a single reaction . . . . . . . . 302.2 Columns of ν . . . . . . . . . . . . . . . . . . . . . . . . . . . 302.3 Rows of ν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.4 Stoichiometric matrix for CVD chemistry . . . . . . . . . 332.5 Conservation of mass . . . . . . . . . . . . . . . . . . . . . 342.6 More species than reactions . . . . . . . . . . . . . . . . . 372.7 Maximal set of reactions for methane oxidation . . . . . 392.8 Production rate for SiH2 . . . . . . . . . . . . . . . . . . . . 45

3.1 Ideal-gas equilibrium . . . . . . . . . . . . . . . . . . . . . . 663.2 Ideal-gas equilibrium, revisited . . . . . . . . . . . . . . . . 683.3 Minimum in G for an ideal gas . . . . . . . . . . . . . . . . 733.4 Chemical and phase equilibrium for a nonideal mixture 823.5 Equilibrium composition for multiple reactions . . . . . 903.6 Multiple reactions with optimization . . . . . . . . . . . . 93

4.1 Reaching steady state in a CSTR . . . . . . . . . . . . . . . 1284.2 Phenol production in a CSTR . . . . . . . . . . . . . . . . . 1304.3 Semi-batch polymerization . . . . . . . . . . . . . . . . . . 1394.4 Changing flowrate in a PFR . . . . . . . . . . . . . . . . . . 1474.5 Benzene pyrolysis in a PFR . . . . . . . . . . . . . . . . . . 1504.6 Benzene pyrolysis, revisited . . . . . . . . . . . . . . . . . 1534.7 Ethane pyrolysis in the presence of NO . . . . . . . . . . . 1544.8 The PFR versus CSTR with separation . . . . . . . . . . . 1594.9 Stochastic vs. deterministic simulation of a virus model 168

5.1 Computing a rate constant . . . . . . . . . . . . . . . . . . 2055.2 Production rate of acetone . . . . . . . . . . . . . . . . . . 2265.3 Production rate of oxygen . . . . . . . . . . . . . . . . . . . 2285.4 Free-radical polymerization kinetics . . . . . . . . . . . . 2305.5 Ethane pyrolysis . . . . . . . . . . . . . . . . . . . . . . . . . 2325.6 Fitting Langmuir adsorption constants to CO data . . . . 2445.7 Equilibrium CO and O surface concentrations . . . . . . 2495.8 Production rate of CO2 . . . . . . . . . . . . . . . . . . . . . 2505.9 Production rate of methane . . . . . . . . . . . . . . . . . . 252

xxxii

Page 2: List of Examples - Nob Hill Publishing Production rate of oxygen ... List of Examples xxxiii 6.1 Constant-pressure versus constant ... 6.5 Oxidation of o-xylene to phthalic anhydride

List of Examples xxxiii

6.1 Constant-pressure versus constant-volume reactors . . 2796.2 Liquid-phase batch reactor . . . . . . . . . . . . . . . . . . 2816.3 Temperature control in a CSTR . . . . . . . . . . . . . . . . 2856.4 PFR and interstage cooling . . . . . . . . . . . . . . . . . . 3176.5 Oxidation of o-xylene to phthalic anhydride . . . . . . . 3216.6 Ammonia synthesis . . . . . . . . . . . . . . . . . . . . . . . 325

7.1 Using the Thiele modulus and effectiveness factor . . . 3677.2 Catalytic converter . . . . . . . . . . . . . . . . . . . . . . . 3927.3 First-order, isothermal fixed-bed reactor . . . . . . . . . . 3997.4 Mass-transfer limitations in a fixed-bed reactor . . . . . 4007.5 Second-order, isothermal fixed-bed reactor . . . . . . . . 4017.6 Hougen-Watson kinetics in a fixed-bed reactor . . . . . . 4047.7 Multiple-reaction, nonisothermal fixed-bed reactor . . . 407

8.1 Transient start-up of a PFR . . . . . . . . . . . . . . . . . . 4468.2 Order matters . . . . . . . . . . . . . . . . . . . . . . . . . . 4488.3 Two CSTRs in series . . . . . . . . . . . . . . . . . . . . . . 4578.4 Optimal is neither segregated nor maximally mixed . . . 4708.5 Mixing two liquid-phase streams in a stirred tank . . . . 4758.6 Maximizing yield in dispersed plug flow . . . . . . . . . . 480

9.1 Estimating the rate constant and activation energy . . . 5159.2 Unknown measurement variance and few data points . 5219.3 Fitting single and multiple adsorption experiments . . . 5259.4 Fitting reaction-rate constant and order . . . . . . . . . . 5379.5 Fitting rate constants in hepatitis B virus model . . . . . 541

10.1 Mass and energy balances with multiple phases . . . . . 58810.2 Crystallization model . . . . . . . . . . . . . . . . . . . . . . 59110.3 Emulsion polymerization model . . . . . . . . . . . . . . . 59210.4 Fermentation model . . . . . . . . . . . . . . . . . . . . . . 593

A.1 Estimating reaction rates . . . . . . . . . . . . . . . . . . . 636A.2 Two simple sensitivity calculations . . . . . . . . . . . . . 649A.3 Single-pellet profile . . . . . . . . . . . . . . . . . . . . . . . 653A.4 A simple fixed-bed reactor problem . . . . . . . . . . . . . 655A.5 Estimating two rate constants in reaction A→ B→ C . . . 659