Lens Design OPTI 517 Seidel aberration coefficients...Prof. Jose Sasian OPTI 517 Spherical...
Embed Size (px)
Transcript of Lens Design OPTI 517 Seidel aberration coefficients...Prof. Jose Sasian OPTI 517 Spherical...
-
Prof. Jose SasianOPTI 517
Lens Design OPTI 517
Seidel aberration coefficients
-
Prof. Jose SasianOPTI 517
Fourth-order terms
( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )2400311220
2222131
2040,
HHWHHHWHHW
HWHWWHW
⋅+⋅⋅+⋅⋅+
⋅+⋅⋅+⋅=
ρρρ
ρρρρρρρ
Spherical aberrationComaAstigmatism (cylindrical aberration!)Field curvatureDistortionPiston
-
Prof. Jose SasianOPTI 517
Coordinate system
-
Prof. Jose SasianOPTI 517
Spherical aberration
We have a spherical surface of radius of curvature r, a ray intersecting the surface at point P, intersecting the reference sphere at B’, intersecting the
wavefront in object space at B and in image space at A’, and passing inimage space by the point Q’’ in the optical axis. The reference spherein object space is centered at Q and in image space is centered at Q’
][]'['][']'[' ' PBnPBnPAnPBnW −=−=
3
42
82 rh
rhZ +=
+= y
ruyh2
1
Question: how do we draw the first ordermarginal ray in image space?
-
Prof. Jose SasianOPTI 517
( )
−+
−+=
+
+−
+=
++−=+−=
rs
srh
rs
shs
sr
hr
hr
hshs
hZsZshZsPQ
14
11
4822
1
2][
22
4
2
22
2
2
4
3
422
2
222222
24
2
42 118
118
112
][][][
−+
−−
−−=
−=
rssh
rsrh
rsh
PQOQPB
+= y
ruyh2
1
-
Prof. Jose SasianOPTI 517
24
2
422
118
118
112
12
][][][
−+
−−
−
+−=
−=
rssy
rsry
rsy
ruy
PQOQPB
2
''
4
'2
4
'
22
''
118
118
112
12
][][]'[
−+
−−
−
+−=
−=
rssy
rsry
rsy
ruy
PQOQPB
−−
−+
−−
−−
−−
−
+−=
=−=
22
''
'4
''
2
4
''
2
'
11118
11118
111112
][]'[
rssn
rssny
rsn
rsn
ry
rsn
rsny
ruy
PBnPBnW
Spherical aberration
-
Prof. Jose SasianOPTI 517
Spherical aberration
syu /−='' / syu −=
( )/ /A ni n y s y r= = − −
{ } 0=∆ A
∆−=
nuyAW 2040 8
1
-
Prof. Jose SasianOPTI 517
Surface of radius r
StopS0y
S’
s s’
Objectplane
Image plane
Petzval field curvature PW220
We locate the aperture stop at the center of curvature of the spherical surface. With being the object height, then the inverse of the distancealong the chief ray from the off-axis object point to the surface is:
-
Prof. Jose SasianOPTI 517
Petzval field curvature
( ) ( )( )
( )( ) ( )
( )
2 2200
2
2200
2
2 20 0
2
2 20
2 2
1 1 1
1
1 111 11 22
1 1 1 11 11 12 2
1 1 112 2
S yr r s y r r sr s
yy sr r s r s sr s
y ys r s s s rs
s r
yu u Жs irs s y n ri
= =− − + − + − + − +
−
≅ =
− −− + − + −− = − + = − + = − −
= − + = − −
' 2
' ' 2 '2 '
1 1 12
u ЖS s y n ri
≅ − −−
-
Prof. Jose SasianOPTI 517
Petzval field curvature
{ } 0=∆ A
By inserting the 1/s in the quadratic term of W
−−
−+
−−
−−
−−
−
+−=
=−=
22
''
'4
''
2
4
''
2
'
11118
11118
111112
][]'[
rssn
rssny
rsn
rsn
ry
rsn
rsny
ruy
PBnPBnW
( )
( )
2'
'
2 2' '
'2 ' 2
2'
2
6220
1 1 1 12
1 14 4
14
1 14
P
yW n nS r S r
Ж Жn u nun ri n ri
Ж u uAr
Жr n
W O
= − − − − = = − − − =
= − − = = − ∆
= +
2
2201 14PЖWr n
= − ∆
-
Prof. Jose SasianOPTI 517
Aberration function at CC
( ) ( ) ( )( )ρρρρρ ⋅⋅+⋅= HHWWHW P2202040,
SurfaceExit pupil
Chief ray
CC
-
Prof. Jose SasianOPTI 517
Stop shifting
Ey
Ey
Old stop at CCNew stop
Marginal ray height at old pupil
New chiefray
Hyyy EEshiftE
+= ρρ
HAAH
yy
E
Eshift
+=+= ρρρ
New chief ray height at old pupil
-
Prof. Jose SasianOPTI 517
Expansion about chief ray height
AA
yy
E
E =
Ey
Hyyy EEshiftE
+= ρρ
HAAH
yy
E
Eshift
+=+= ρρρ
Ey
-
Prof. Jose SasianOPTI 517
Expansion about the new chief ray height
( ) ( ) ( )( )ρρρρρ ⋅⋅+⋅= HHWWHW P2202040,H
AAH
yy
E
Eshift
+=+= ρρρ
-
Prof. Jose SasianOPTI 517
Graphical view
Old Pupil
New pupil
Ey
-
Prof. Jose SasianOPTI 517
Quadratic term
HHAAH
AA
HAAH
AA
shiftshift
⋅
+⋅+⋅=
=
+⋅
+=⋅
2
2 ρρρ
ρρρρ
( )( ) ( )( )( )( ) ( )2220
2
220
220220
2 HHWAAHHHW
AA
HHWHHW
PP
PP
⋅
+⋅⋅+
+⋅⋅→⋅⋅
ρ
ρρρρ
-
Prof. Jose SasianOPTI 517
Quartic term
( )
( ) ( )( ) ( )
( )( ) ( )( ) ( )243
22
2
22
42
44
2
2
HHAAHHH
AAHH
AA
HAAH
AA
HHAAH
AA
HHAAH
AA
shiftshift
⋅
+⋅⋅
+⋅⋅+
⋅+⋅⋅+⋅=
=
⋅
+⋅+⋅
×
⋅
+⋅+⋅=⋅
ρρρ
ρρρρρρ
ρρρ
ρρρρρ
-
Prof. Jose SasianOPTI 517
All terms ( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )2400311220
2222131
2040,
HHWHHHWHHW
HWHWWHW
⋅+⋅⋅+⋅⋅+
⋅+⋅⋅+⋅=
ρρρ
ρρρρρρρ
P
P
P
WAAW
AAW
WAAW
AAW
WWAAW
WAAW
WAAW
WW
220
2
040
4
400
220040
3
311
220040
2
220
040
2
222
040131
040040
24
2
4
4
+
=
+
=
+
=
=
=
=
Piston
-
Prof. Jose SasianOPTI 517
For as system of two surfacesExit pupil becomes entrance pupil for next surface.
Exit pupil for surface J
Entrance pupil for surface J+1
-
Prof. Jose SasianOPTI 517
Fourth-order contributionsFor a given system ray we add the OPD contributed by each surface.The problem is that because of pupilaberrations we do not know the pupil coordinates of the ray at previous exit pupils.However, the error in knowing the ray pupilcoordinate leads to six-order aberrations.
To fourth-order we do not haveother fourth-order terms to account for.
We are assuming we do not have second-order aberrations. Otherwise these will generateother fourth-order terms.
-
Prof. Jose SasianOPTI 517
Order of Error
• We know the ray heights to first-order• There is an error on the ray heights y and
y-bar of third order• If the third order error is accounted for it
leads to sixth-order terms
( ) ( ) ( )
3
4 4 6
4 4 6040 040 040
y y yy y y
W y W y W y
α
β
= +
→ +
→ +
-
Prof. Jose SasianOPTI 517
ConclusionAssume no second order terms in the
aberration functions of each surface
Then for a system of surfaces the fourth-order coefficients are the sum of the
coefficients contributed by each surface
There are no fourth-order extrinsic termsfrom previous aberration in the system
-
Prof. Jose SasianOPTI 517
-
Prof. Jose SasianOPTI 517
-
Prof. Jose SasianOPTI 517
Example : Cooke triplet lens
-
Prof. Jose SasianOPTI 517
Wave coefficients
1.0000 5.8831 16.4912 11.5569 37.9424 61.2785 -10.4705 -14.67532.0000 4.6978 -50.6336 136.4338 -0.1227 -366.9639 -6.5847 35.48543.0000 -22.3709 117.1708 -153.4247 -36.2070 295.7159 18.4586 -48.33984.0000 -9.6490 -65.3484 -110.6438 -40.4402 -324.2767 14.8117 50.15645.0000 1.6894 24.1504 86.3110 10.3704 382.5921 -4.7481 -33.93876.0000 22.0849 -42.6064 20.5492 43.9016 -52.2587 -12.3359 11.8993Totals 2.3352 -0.7760 -9.2175 15.4444 -3.9128 -0.8690 0.5872
W040 W131 W222 W220 W311 W020 W111
In waves at 0.000587 mm
-
Prof. Jose SasianOPTI 517
PrescriptionF/4, f=50 mm; FOV +/- 20 degrees
Stop at surface 3SURFACE DATA SUMMARY:Surf Type Radius Thickness Glass Diameter Conic CommentOBJ STANDARD Infinity Infinity 0 0
1 STANDARD 23.713 4.831 LAK9 20.26679 0 2 STANDARD 7331.288 5.86 18.17704 0 3 STANDARD -24.456 0.975 SF5 9.598584 0 4 STANDARD 21.896 4.822 9.909458 0 5 STANDARD 86.759 3.127 LAK9 16.07715 0 6 STANDARD -20.4942 -10.0135 16.69285 0
STO STANDARD Infinity 51.25 12.90717 0 IMA STANDARD Infinity 36.46158 0
-
Prof. Jose SasianOPTI 517
Summary
• Spherical aberration• Stop shifting• Off-axis aberrations• Entrance/exit pupil concatenation• Seidel sums• Actual coefficients computation• Information acquired
Lens Design OPTI 517��Seidel aberration coefficients��Fourth-order termsCoordinate systemSpherical aberrationSlide Number 5Spherical aberrationSpherical aberration Petzval field curvaturePetzval field curvaturePetzval field curvatureAberration function at CCStop shiftingExpansion about chief ray heightExpansion about the new �chief ray heightGraphical viewQuadratic termQuartic termAll terms For as system of two surfaces�Exit pupil becomes entrance pupil for next surface.�Fourth-order contributionsOrder of ErrorConclusionSlide Number 23Slide Number 24Example : Cooke triplet lensWave coefficientsPrescription�F/4, f=50 mm; FOV +/- 20 degrees�Stop at surface 3Summary