Download - Lens Design OPTI 517 Seidel aberration coefficients...Prof. Jose Sasian OPTI 517 Spherical aberration We have a spherical surface of radius of curvature r, a ray intersecting the surface

Transcript
  • Prof. Jose SasianOPTI 517

    Lens Design OPTI 517

    Seidel aberration coefficients

  • Prof. Jose SasianOPTI 517

    Fourth-order terms

    ( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )2400311220

    2222131

    2040,

    HHWHHHWHHW

    HWHWWHW

    ⋅+⋅⋅+⋅⋅+

    ⋅+⋅⋅+⋅=

    ρρρ

    ρρρρρρρ

    Spherical aberrationComaAstigmatism (cylindrical aberration!)Field curvatureDistortionPiston

  • Prof. Jose SasianOPTI 517

    Coordinate system

  • Prof. Jose SasianOPTI 517

    Spherical aberration

    We have a spherical surface of radius of curvature r, a ray intersecting the surface at point P, intersecting the reference sphere at B’, intersecting the

    wavefront in object space at B and in image space at A’, and passing inimage space by the point Q’’ in the optical axis. The reference spherein object space is centered at Q and in image space is centered at Q’

    ][]'['][']'[' ' PBnPBnPAnPBnW −=−=

    3

    42

    82 rh

    rhZ +=

    += y

    ruyh2

    1

    Question: how do we draw the first ordermarginal ray in image space?

  • Prof. Jose SasianOPTI 517

    ( )

    −+

    −+=

    +

    +−

    +=

    ++−=+−=

    rs

    srh

    rs

    shs

    sr

    hr

    hr

    hshs

    hZsZshZsPQ

    14

    11

    4822

    1

    2][

    22

    4

    2

    22

    2

    2

    4

    3

    422

    2

    222222

    24

    2

    42 118

    118

    112

    ][][][

    −+

    −−

    −−=

    −=

    rssh

    rsrh

    rsh

    PQOQPB

    += y

    ruyh2

    1

  • Prof. Jose SasianOPTI 517

    24

    2

    422

    118

    118

    112

    12

    ][][][

    −+

    −−

    +−=

    −=

    rssy

    rsry

    rsy

    ruy

    PQOQPB

    2

    ''

    4

    '2

    4

    '

    22

    ''

    118

    118

    112

    12

    ][][]'[

    −+

    −−

    +−=

    −=

    rssy

    rsry

    rsy

    ruy

    PQOQPB

    −−

    −+

    −−

    −−

    −−

    +−=

    =−=

    22

    ''

    '4

    ''

    2

    4

    ''

    2

    '

    11118

    11118

    111112

    ][]'[

    rssn

    rssny

    rsn

    rsn

    ry

    rsn

    rsny

    ruy

    PBnPBnW

    Spherical aberration

  • Prof. Jose SasianOPTI 517

    Spherical aberration

    syu /−='' / syu −=

    ( )/ /A ni n y s y r= = − −

    { } 0=∆ A

    ∆−=

    nuyAW 2040 8

    1

  • Prof. Jose SasianOPTI 517

    Surface of radius r

    StopS0y

    S’

    s s’

    Objectplane

    Image plane

    Petzval field curvature PW220

    We locate the aperture stop at the center of curvature of the spherical surface. With being the object height, then the inverse of the distancealong the chief ray from the off-axis object point to the surface is:

  • Prof. Jose SasianOPTI 517

    Petzval field curvature

    ( ) ( )( )

    ( )( ) ( )

    ( )

    2 2200

    2

    2200

    2

    2 20 0

    2

    2 20

    2 2

    1 1 1

    1

    1 111 11 22

    1 1 1 11 11 12 2

    1 1 112 2

    S yr r s y r r sr s

    yy sr r s r s sr s

    y ys r s s s rs

    s r

    yu u Жs irs s y n ri

    = =− − + − + − + − +

    ≅ =

    − −− + − + −− = − + = − + = − −

    = − + = − −

    ' 2

    ' ' 2 '2 '

    1 1 12

    u ЖS s y n ri

    ≅ − −−

  • Prof. Jose SasianOPTI 517

    Petzval field curvature

    { } 0=∆ A

    By inserting the 1/s in the quadratic term of W

    −−

    −+

    −−

    −−

    −−

    +−=

    =−=

    22

    ''

    '4

    ''

    2

    4

    ''

    2

    '

    11118

    11118

    111112

    ][]'[

    rssn

    rssny

    rsn

    rsn

    ry

    rsn

    rsny

    ruy

    PBnPBnW

    ( )

    ( )

    2'

    '

    2 2' '

    '2 ' 2

    2'

    2

    6220

    1 1 1 12

    1 14 4

    14

    1 14

    P

    yW n nS r S r

    Ж Жn u nun ri n ri

    Ж u uAr

    Жr n

    W O

    = − − − − = = − − − =

    = − − = = − ∆

    = +

    2

    2201 14PЖWr n

    = − ∆

  • Prof. Jose SasianOPTI 517

    Aberration function at CC

    ( ) ( ) ( )( )ρρρρρ ⋅⋅+⋅= HHWWHW P2202040,

    SurfaceExit pupil

    Chief ray

    CC

  • Prof. Jose SasianOPTI 517

    Stop shifting

    Ey

    Ey

    Old stop at CCNew stop

    Marginal ray height at old pupil

    New chiefray

    Hyyy EEshiftE

    += ρρ

    HAAH

    yy

    E

    Eshift

    +=+= ρρρ

    New chief ray height at old pupil

  • Prof. Jose SasianOPTI 517

    Expansion about chief ray height

    AA

    yy

    E

    E =

    Ey

    Hyyy EEshiftE

    += ρρ

    HAAH

    yy

    E

    Eshift

    +=+= ρρρ

    Ey

  • Prof. Jose SasianOPTI 517

    Expansion about the new chief ray height

    ( ) ( ) ( )( )ρρρρρ ⋅⋅+⋅= HHWWHW P2202040,H

    AAH

    yy

    E

    Eshift

    +=+= ρρρ

  • Prof. Jose SasianOPTI 517

    Graphical view

    Old Pupil

    New pupil

    Ey

  • Prof. Jose SasianOPTI 517

    Quadratic term

    HHAAH

    AA

    HAAH

    AA

    shiftshift

    +⋅+⋅=

    =

    +⋅

    +=⋅

    2

    2 ρρρ

    ρρρρ

    ( )( ) ( )( )( )( ) ( )2220

    2

    220

    220220

    2 HHWAAHHHW

    AA

    HHWHHW

    PP

    PP

    +⋅⋅+

    +⋅⋅→⋅⋅

    ρ

    ρρρρ

  • Prof. Jose SasianOPTI 517

    Quartic term

    ( )

    ( ) ( )( ) ( )

    ( )( ) ( )( ) ( )243

    22

    2

    22

    42

    44

    2

    2

    HHAAHHH

    AAHH

    AA

    HAAH

    AA

    HHAAH

    AA

    HHAAH

    AA

    shiftshift

    +⋅⋅

    +⋅⋅+

    ⋅+⋅⋅+⋅=

    =

    +⋅+⋅

    ×

    +⋅+⋅=⋅

    ρρρ

    ρρρρρρ

    ρρρ

    ρρρρρ

  • Prof. Jose SasianOPTI 517

    All terms ( ) ( ) ( )( ) ( )

    ( ) ( ) ( )( ) ( )2400311220

    2222131

    2040,

    HHWHHHWHHW

    HWHWWHW

    ⋅+⋅⋅+⋅⋅+

    ⋅+⋅⋅+⋅=

    ρρρ

    ρρρρρρρ

    P

    P

    P

    WAAW

    AAW

    WAAW

    AAW

    WWAAW

    WAAW

    WAAW

    WW

    220

    2

    040

    4

    400

    220040

    3

    311

    220040

    2

    220

    040

    2

    222

    040131

    040040

    24

    2

    4

    4

    +

    =

    +

    =

    +

    =

    =

    =

    =

    Piston

  • Prof. Jose SasianOPTI 517

    For as system of two surfacesExit pupil becomes entrance pupil for next surface.

    Exit pupil for surface J

    Entrance pupil for surface J+1

  • Prof. Jose SasianOPTI 517

    Fourth-order contributionsFor a given system ray we add the OPD contributed by each surface.The problem is that because of pupilaberrations we do not know the pupil coordinates of the ray at previous exit pupils.However, the error in knowing the ray pupilcoordinate leads to six-order aberrations.

    To fourth-order we do not haveother fourth-order terms to account for.

    We are assuming we do not have second-order aberrations. Otherwise these will generateother fourth-order terms.

  • Prof. Jose SasianOPTI 517

    Order of Error

    • We know the ray heights to first-order• There is an error on the ray heights y and

    y-bar of third order• If the third order error is accounted for it

    leads to sixth-order terms

    ( ) ( ) ( )

    3

    4 4 6

    4 4 6040 040 040

    y y yy y y

    W y W y W y

    α

    β

    = +

    → +

    → +

  • Prof. Jose SasianOPTI 517

    ConclusionAssume no second order terms in the

    aberration functions of each surface

    Then for a system of surfaces the fourth-order coefficients are the sum of the

    coefficients contributed by each surface

    There are no fourth-order extrinsic termsfrom previous aberration in the system

  • Prof. Jose SasianOPTI 517

  • Prof. Jose SasianOPTI 517

  • Prof. Jose SasianOPTI 517

    Example : Cooke triplet lens

  • Prof. Jose SasianOPTI 517

    Wave coefficients

    1.0000 5.8831 16.4912 11.5569 37.9424 61.2785 -10.4705 -14.67532.0000 4.6978 -50.6336 136.4338 -0.1227 -366.9639 -6.5847 35.48543.0000 -22.3709 117.1708 -153.4247 -36.2070 295.7159 18.4586 -48.33984.0000 -9.6490 -65.3484 -110.6438 -40.4402 -324.2767 14.8117 50.15645.0000 1.6894 24.1504 86.3110 10.3704 382.5921 -4.7481 -33.93876.0000 22.0849 -42.6064 20.5492 43.9016 -52.2587 -12.3359 11.8993Totals 2.3352 -0.7760 -9.2175 15.4444 -3.9128 -0.8690 0.5872

    W040 W131 W222 W220 W311 W020 W111

    In waves at 0.000587 mm

  • Prof. Jose SasianOPTI 517

    PrescriptionF/4, f=50 mm; FOV +/- 20 degrees

    Stop at surface 3SURFACE DATA SUMMARY:Surf Type Radius Thickness Glass Diameter Conic CommentOBJ STANDARD Infinity Infinity 0 0

    1 STANDARD 23.713 4.831 LAK9 20.26679 0 2 STANDARD 7331.288 5.86 18.17704 0 3 STANDARD -24.456 0.975 SF5 9.598584 0 4 STANDARD 21.896 4.822 9.909458 0 5 STANDARD 86.759 3.127 LAK9 16.07715 0 6 STANDARD -20.4942 -10.0135 16.69285 0

    STO STANDARD Infinity 51.25 12.90717 0 IMA STANDARD Infinity 36.46158 0

  • Prof. Jose SasianOPTI 517

    Summary

    • Spherical aberration• Stop shifting• Off-axis aberrations• Entrance/exit pupil concatenation• Seidel sums• Actual coefficients computation• Information acquired

    Lens Design OPTI 517��Seidel aberration coefficients��Fourth-order termsCoordinate systemSpherical aberrationSlide Number 5Spherical aberrationSpherical aberration Petzval field curvaturePetzval field curvaturePetzval field curvatureAberration function at CCStop shiftingExpansion about chief ray heightExpansion about the new �chief ray heightGraphical viewQuadratic termQuartic termAll terms For as system of two surfaces�Exit pupil becomes entrance pupil for next surface.�Fourth-order contributionsOrder of ErrorConclusionSlide Number 23Slide Number 24Example : Cooke triplet lensWave coefficientsPrescription�F/4, f=50 mm; FOV +/- 20 degrees�Stop at surface 3Summary