Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825...

24
Lecture 9: Introduction to Metal Optics 5 nm

Transcript of Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825...

Page 1: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

Lecture 9: Introduction to Metal Optics

5 nm

Page 2: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

What happened at the previous lectures ?

Microparticles

• Particles with d ≈ λ (λ-independent scattering, white clouds)

• Insulators (Rayleigh Scattering, blue sky..)

• Semiconductors (Size dependent absorption, fluorescence..)

• Metals…Resonant absorption at ωsp

• Particles with d >> λ (Intuitive ray-picture useful)

Light interaction with small objects (d < λ)

Dielectric photonic crystal

• Molding the flow of light

What happened at the previous lectures ?

Page 3: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

Metal Optics: An IntroductionMajority of optical components based on dielectrics

• High speed, high bandwidth (ω), but…

Some fundamental problems!

nCORE

nCLAD

Diffraction Limit

Optical mode in waveguide > λ0/2nCORE

• Does not scale well Needed for large scale integration

J. D. Joannopoulos, et al, Nature, vol.386, p.143-9 (1997)

ProblemsBending losses

Solutions ?

Some:Photonic functionality based on metals?!

Metal Optics: An Introduction

Page 4: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

Plasmon-PolaritonsWhat is a plasmon ?

• Compare electron gas in a metal and real gas of molecules

• Metals are expected to allow for electron density waves: plasmons

Strong local field

Metal

Dielectric

z

I

E

HNote: This is a TM wave

• Sometimes called a surface plasmon-polariton (strong coupling to EM field)

Surface plasmon

Bulk plasmon• Metals allow for EM wave propagation above the plasma frequency

They become transparent!

Plasmon-Polaritons

Page 5: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

Local Field Intensity Depends on Wavelength

Long wavelength Short wavelength

z

I

z

I

D << λo

Characteristics plasmon-polariton • Strong localization of the EM field• High local field intensities easy to obtain

Applications: • Guiding of light below the diffraction limit (near-field optics)• Non-linear optics• Sensitive optical studies of surfaces and interfaces• Bio-sensors• Study film growth• ……

Local Field Intensity Depends on Wavelength

Page 6: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

R.M. Dickson and L. A. Lyon, J. Phys. Chem. B 104, 6095-6098 (2000)

Laser excitationλ = 532 nm

8.1 µm Au rod

Light at the other end

Plasmon-Polariton Propagation in Au rod

Plasmon-Polariton Propagation in Au rod

Page 7: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

Plasmon-Polariton Excitation using a Launch Pad

J.R. Krenn et al., Europhys.Lett. 60, 663-669 (2002)

Plasmon-Polariton Excitation using a Launch Pad

Page 8: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

50 nm

• Array of 50 nanometer diameter Au particles spaced by 75 nanometer

• Information transport at speeds and densities exceeding current electronics

• Enables communication between nanoscale devices

M.L. Brongersma, et al., Phys. Rev. B 62, R16356 (2000)S.A. Maier et al., Advanced materials 13, 1501 (2001)

• Guides electromagnetic energy at optical frequency below the diffraction limit

Page 9: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

Purdue Near-Field Optical Microscope

• Nanonics MultiView 2000• NSOM / AFM• Tuning Fork Feedback

Control– Normal or Shear Force

• Aperture tips down to 50 nm• AFM tips down to 30 nm• Radiation Source

– 532 nmPicture taken from Nanonics

Page 10: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

APD

APD

Computer

HV Source

Lock-In Detector

Freq. Gen.

532nm Source

PID Controller

To Piezoelectrics

Filter

Filter

Obj. Lens

Obj. LensUpper Piezo

Lower Piezo

Fiber Tip

Tuning Fork

Page 11: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

Metal optics will make your dreams come true….Enhanced Transmission through Sub-λ Apertures

T.Thio et al., Optics Letters 26, 1972-1974 (2001).

• Ag film with a 440 nm diameter holesurrounded by circular grooves

• 3x more light than directly impingent on hole !

• Reason: Excitation of plasmon-polaritons

• Transmission enhancement of 10 xcompared to a bare hole

Enhanced Transmission through Sub-λ Apertures

Page 12: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

Optical Properties of an Electron Gas (Metal)Dielectric constant of a free electron gas (no interband transitions)

( ) ( ) ( ){ }Re expt i t! != "E E• Consider a time varying field:

• Equation of motion electron (no damping)2

2

dm edt

= !r

E

• Harmonic time dependence ( ) ( ) ( ){ }Re expt i t! != "p p

• Substitution p into Eq. of motion: ( ) ( )2 2m e! ! !" =p E

( ) ( )2

2

1e

m! !

!= "p E• This can be manipulated into:

• The dielectric constant is:

• Dipole moment electron ( ) ( )t e t= !p r

2

2

2

dm edt

=p

E

( )( )

22

2 2

0 0

11 1 1

p

r

N Ne

m

!!" #

" ! " ! != + = = $ = $

p

E

!

r!

p!

Optical Properties of an Electron Gas (Metal)

Page 13: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

Dispersion Relation for EM Waves in Electron GasDetermination of dispersion relation for bulk plasmons

( )( )

2

2

2 2

,,r

tt

c

! "=#

"

E rE r

t

• The wave equation is given by:

• Investigate solutions of the form: ( ) ( ) ( ){ }, Re , expt i i t! != " #E r E r k r

2 2 2

rc k! " =2

21

p

r

!"

!= #• Dielectric constant:

2

2 2 2 2 2

21

p

p c k!

! ! !!

" #$ = $ =% &% &

' (

!

k

p!

No allowed propagating modes (imaginary k)

ck! =

2 2 2

p c k! != +• Dispersion relation:

Note1: Solutions lie above light lineNote2: Metals: ħωp ≈ 10 eV; Semiconductors ħωp < 0.5 eV (depending on dopant conc.)

Dispersion Relation for EM Waves in Electron Gas

Page 14: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

Dispersion Relation Surface-Plasmon PolaritonsSolve Maxwell’s equations with boundary conditions

• Maxwell’s Equations in medium i (i = metal or dielectric):

0i!" # =E 0!" =H

0µ!

"# = $!

HE

ti!"

#$ ="

EH

t

• At the boundary:

Metal

DielectriczE

H

, ,x m x dE E=

x

ym ydH H=m zm d zmE E! !=

• We are looking for solutions that look like:

( ) ( )0, ,0 expm ym xm zmH i k x k z t!= + "H

( ) ( ),0, expm xm zm xm zm

E E i k x k z t!= + "E

( ) ( )0, ,0 expd yd xd zdH i k x k z t!= + "H

( ) ( ),0, expd xd zd xd zd

E E i k x k z t!= + "E

• Mathematically: z<0

z>0

Dispersion Relation Surface-Plasmon Polaritons

Page 15: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

i

i i!"

#$ ="

EH

t

Dispersion Relation Surface-Plasmon Polaritons

• Start with curl equation for H in medium i (as we did for EM waves in vacuum)

( ) ( )0, ,0 expi yi xi ziH i k x k z t!= + "Hwhere

( ) ( ),0, expi xi zi xi zi

E E i k x k z t!= + "E

( ) ( ), , ,0, ,0,yi yizi xi zi xi

zi yi xi yi i xi i zi

H HH H H Hik H ik H i E i E

y z z x x y!" !"

# #$ %# # # #& & & = = &' (

# # # # # #) *

zi yi i xik H E!"= #• We will use that:zm yi m xmk H E!"= #

zd yd d xdk H E!"= #

• E// across boundary is continuous: , ,x m x d

E E=

zm zdym yd

m d

k kH H

! !=

• H// across boundary is continuous: ym ydH H=

Combine with: zm zdym yd

m d

k kH H

! !=

zm zd

m d

k k

! !=

Dispersion Relation Surface-Plasmon Polaritons

Page 16: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

Dispersion Relation Surface-Plasmon Polaritons

Relations between k vectors

• Condition for SP’s to exist: zm zd

m d

k k

! !=

• Relation for kx (Continuity E//, H//) : xm xdk k=

• For any EM wave:

zdk

zmk

Example1

m! = "

1d! =z

z

2

2 2

x zi ik k

c

!"# $

+ = % &' (

2

2

sp x i zik k kc

!"# $

= = %& '( )

• Both in the metal and dielectric:

zm zd

m d

k k

! !=

1/ 2

m d

x

m d

kc

! !"

! !

# $= % &

+' (

Dispersion relation

homework

Example Air

SiO2true at any boundary

Dispersion Relation Surface-Plasmon Polaritons

Page 17: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

Dispersion Relation Surface-Plasmon Polaritons

1/ 2

m d

x

m d

kc

! !"

! !

# $= % &

+' (

Plot of the dispersion relation

• Last page:

• Plot dielectric constants

• Low ω: 1/ 2

limm

m d

x d

m d

kc c!

! !" "!

! !#$%

& '= () *

++ ,

• At ω = ωsp (when εm = -εd):

!

r!

p!

sp!

d!"

d! dielectric

metal

xk !"

!

k

sp!

dk

c

!"=

• Note: Solution lies below the light line

Dispersion Relation Surface-Plasmon Polaritons

Page 18: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

Dispersion Relation Surface-Plasmon Polaritons

Dispersion relation plasma modes and SPP

• Note: Higher index medium on metal results in lower ωsp2

21

p

m d

!" "

!= # = # 2 2 2

p d! ! " !# = #

2

2

1

p

d

!!

"=

+ω = ωsp when:

Metal/air

Metal/dielectric with εd

1

p

d

!!

"=

+

,SP Air!

, dSP !"

Dispersion Relation Surface-Plasmon Polaritons

Page 19: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

Excitation Surface-Plasmon Polaritons with Electrons

Excitation with electrons

• First experiments with high energy electrons

• Whole dispersion relation can be investigated

• Measurement: Energy lossDirection of e’s:

• Low k’s are hard!

Example: 50 keV has a λ = 0.005 nm << λlight

kelectron >> klight

Stringent requirement on divergence e- beam

Excitation Surface-Plasmon Polaritons with Electrons

Page 20: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

• The operating speed of data transporting and processing systems

The ever-increasing need for faster information processing and transport is undeniable

Electronic components are running out of steam due to issues with RC-delay times

Nanophotonics with Plasmonics: Alogical next step?

1825 1850 1875 1900 1925 1950 1975 2000 2025 20501

1k

1M

1G

1T

130 nm

1.8 µm

DWDMWDM

Coaxial circuits

Telephone

Transcontinental cable

Telegraph

Opera

ting s

peed (

Hz)

Time

Plasmonics?

CMOS Electronics

Photonics

Time

Communication networks

CMOS Electronics

Plasmonics

(µm-scale structures ~ 1µm)(nm-scale structures)

Nanophotonics with Plasmonics: A logical next step?

Page 21: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

)!()bit/s(10

1/

2

2

15

max

2max

LAL

AB

L

A

RCBLCALR

<<!"#

$$#$%$

Electronics is aspect-ratio limited in speed!

As data rates AND component packing densities INCREASE,

electrical interconnects become progressively limited by RC-delay:

L

A

Why not electronics?

Why not electronics?

Page 22: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

The bit rate in optical communications is fundamentally limited

only by the carrier frequency: Bmax < f ~ 100 Tbit/s (!),

but light propagation is subjected to diffraction:

cladding

core

a

)!(1 :size mode22/:modeguidedwell

2aë

2!2 22

<<!"#$!

"!=#+=+=

nnnaV

nnnnaVnnnnncladcorecladcore

%%&'

%&

'%%

Photonics is diffraction- limited in size!

Why not photonics?

Why not photonics?

Page 23: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

( ) ( )m d! " ! "# $

!

ksp ="

c

#m#d

#m + #d

Dispersion Relation for SPPs:

λp ~ very small

Why Plasmonics?

optical ωnm-scale λ

- - -+ + + - - - + + +

E

H

Dλsp

εd > 0εm < 0

SP wavelengths can reach nanoscale at optical frequencies!SPPs are “x-ray waves” with optical frequencies

Why Plasmonics?

Page 24: Lecture 9: Introduction to Metal Optics · Nanophotonics with Plasmonics: A logical next step? 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050 1 1k 1M 1G 1T ... 2006.10.05-EE695S-L09.ppt

Why nanophotonics needs plasmons?

Courtesy of M. Brongersma