Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in...

24
Lecture 6 Sobolev Theory

Transcript of Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in...

Page 1: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

Lecture 6Sobolev Theory

Page 2: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

Dilution Factor I

sinθc = R/r

ω∗ ≡ solid angle subtended by stellar disk

W ≡ ω∗/(4π) ≡ dilution factor

Page 3: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

Dilution Factor II

ω∗ =

∫dΩ = 2π

∫ θc

0sinθ dθ

= 2π(−cosθ)∣∣∣θc0

= 2π [1− cosθc]

= 2π[1−

√1− (R/r)2

]W = ω∗/(4π)

= 1/2[1−

√1− (R/r)2

]W (R) = 1/2

W (r >> R) = 1/4(R/r)2

Page 4: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

Flux from a Star I

sin(90− θ) = z/r = cosθ; sinθ = p/r

µ = cosθ =√

r2 − p2/r

Page 5: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

Flux from a Star II

dµ = −1/2(r2 − p2)−1/22p/rdp

dµ = −(r2 − p2)−1/2p/rdp

F = 2π∫ π

0I cosθd(cosθ)

= −2π∫ 0

rI

√r2 − p2

rp

r√

r2 − p2dp

=2πr2

∫ r

0I p dp

Page 6: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

Constant Direction Velocity SurfacesSurfaces of Constant Line-of-sight Velocity

Page 7: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

Resonant Scattering Qualitative

Page 8: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

Calculation of FluxResonant Scattering

Page 9: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

Sobolev TheoryCastor, 1970

Page 10: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

Mathematics IRadiation travels from positive to negative z, that is from left to rightSurfaces of constant velocity: vz = µv

I(r , µ) = I(p, z)

p2 + z2 = r2; z = −µ r

The transfer equation is:

dIν(p, z)

dz= κν(p, z)(Iν(p, z)− S(r))

Assume thatIν(rc , µ) = Ic for all ν, µ

Iν(p, z) =

∫ ∞z

S((p2 + z ′2)1/2)eτν(p,z)−τν(p,z′) dτν(p, z ′)

for p > rc or z > 0

Page 11: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

Mathematics II

Iν(p, z) =

∫ (r2c−p2)1/2

zS((p2 + z ′2)1/2)eτν(p,z)−τν(p,z′) dτν(p, z ′)

+Iceτν(p,z)−τν(p,−(r2c−p2)1/2)) for p < rc , z < 0

τν(p, z) =

∫ z

−∞κν(p, z ′)dz ′

κν(p, z) = κo(r)φ(ν +ν0

cv(r)

rz − ν0

φ(x) is strongly peaked at x = 0 so

ν0

cv(r)

r(z0)z0 = −(ν − ν0)

ν0

cv((p2 + z2

o )1/2)

(p2 + z2o )1/2

z0 = −(ν − ν0)

Page 12: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

Mathematics IIIThen let x be the argument of φ

x = ν − ν0 + ν0v0(r ′)

r ′z ′

∫ z

−∞φ(ν − ν0 + ν0

v0(r ′)r ′

z ′) dz ′ =

∫ x

−∞φ(x ′)

dz ′

dxdx

≈[∫ x

−∞φ(x ′) dx ′

]1/

dxdz ′|z0

dxdz ′

=∂

∂z(ν0

cv(r)

rz)

=ν0

c

[v(r)

∂z ′/(z ′2 + p2)1/2

∂z ′+

z ′

rdvdr

drdz ′

]

drdz

=zr

Page 13: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

More Math

dxdz ′

=ν0

c

[v(r)

r+ z

d(v/r)

dz ′

]=

ν0

cv(r)

r

[1 + z(

v(r)

r)−1 d(v/r)

drdrdz ′

]=

ν0

cv(r)

r

[1 +

z2

r(v(r)

r)−1 d(v/r)

dr

]=

ν0

cv(r)

r

[1 +

z2

r(v(r)

r)−1 d(v/r)

dr

]=

ν0

cv(r)

r

[1 +

z2

r(v(r)

r)−1[1/r

d(v)

dr− v

r2 ]

]=

ν0

cv(r)

r

[1 +

z2

rrv

[1/rd(v)

dr− v

r2 ]

]

Page 14: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

More Math I

dxdz ′

=ν0

cv(r)

r

[1 +

z2

r2 [r/vd(v)

dr− 1]

]=

ν0

cv(r)

r

[1 +

z2

r2 [d ln vd ln r

− 1]

]So Finally

τν(p, z) = κ0((p2 + z2)1/2)y(ν + ν0

cvr − ν0)

ν0c

vr

[1 +

z2

r2 [d ln vd ln r

− 1]

]−1

y(x) =

∫ x

−∞φ(x ′) dx ′

y(+∞) = 1y(−∞) = 0

τν(p, z) = τν(p,∞)y

Page 15: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

More Math II

In the limit:

φ→ δ

y → Θ(z − z0)

τν(p,∞) =

πe2

mc (gf )lu(Nlgl− Nu

gu)

νoc

vr

[1 +

z2

r2 [d ln vd ln r

− 1]

]−1

Iν(p, z) =

∫ 1

y(z)S((p2 + z2)1/2)eτν(p,∞)(y(z)−y(z′))

τν(p,∞)dy(z ′)

p > rcorz > 0

(1)

Page 16: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

More Math III

Iν(p, z) =

∫ y(−(r2c−p2)1/2)

y(z)S((p2 + z2)1/2)eτν(p,∞)(y(z)−y(z′))

τν(p,∞)dy(z ′)

+Iceτν(p,∞)(y(z)−y(−(r2c−p2)1/2)) p < rc , z < 0

Recall,y(z) = y(ν +

ν0

cvr

z − ν0)

and that if z > z0 the integrals nearly vanish. If z < z0 then the lowerlimit→ 0. In this case most of the contribution to Iν comes at z = z0.Thus we can pull S out of the integral and evaluate it at z = z0

Iν(p, z) = S((p2 + z20 )1/2)

(1− eτν(p,∞)(y(z)−1))

)p > rcorz > 0

Page 17: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

More Math IV

Iν(p, z) = S((p2 + z20 )1/2)

(1− eτν(p,∞)(y(z)−y(z′))

)+Iceτν(p,∞)(y(z)−y(−(r2

c−p2)1/2)) p < rc , z < 0

Page 18: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

Flux I

F = 4π∫ rc

0

[S((p2 + z2

0 )1/2)(1− e−τ(p,∞)y(−(r2

c−p2)1/2))

+Ice−τ(p,∞)y(−(r2c−p2)1/2)

]2πp dp

+4π∫ ∞

rc

[S((p2 + z2

0 )1/2(1− e−τ(p,∞))]

2πp dp

Define

Fc = 4π∫ rc

02πpIc dp = 4π2r2

c Ic

Page 19: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

Flux II

Fν − Fc

Fc=

1r2c

∫ ∞0

S((p2 + z20 )1/2)

Ic

(1− e−τ(p,∞)

)2p dp

− 1r2c

∫ rc

0

[1− e−τ(p,∞)y(−(r2

c−p2)1/2)]

2p dp

− 1r2c

∫ rc

0

S((p2 + z20 )1/2

Ic

[e−τ(p,∞)y(−(r2

c−p2)1/2)

−e−τ(p,∞)]

2p dp

I Term 1: Emission from entire core as if it were transparentI Term 2: Radiation removed from continuum by material in front of

the coreI Radiation that would have come from the part of the envelope that

is occulted by the core

Page 20: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

Flux III

y(−((r2c − p2)1/2) =

0 if ∆ν < 01 if ∆ν > 0

So absorption and occultation terms are images of each other aroundthe line center modulo the factor S/Ic in the occultation term.

Page 21: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

Shell

Page 22: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

Homologous Lines

Page 23: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

SYNOW Assumptions I

S = WIc

W =12

[1−

√1− rc

r

2]

v ∝ r

so photons come into resonance with lines i.e., y = 0,1 and weassume τ ≡ τ(r) which is specified to be for example a power-law orexponential in SYNOW. Then the flux for z ≥ 0 is

F (z) = 2π∫ rc

0Icp dp +

∫ ∞rc

S(r)[1− e−τ(r)

]p dp

= πr2c Ic + 2π

∫ ∞rc

S(r)[1− e−τ(r)

]p dp

Page 24: Lecture 6 Sobolev Theorybaron/grk_lectures/lec06.pdf · the line center modulo the factor S=Ic in the occultation term. Shell. Homologous Lines. SYNOW AssumptionsI S = WIc W = 1 2

SYNOW Assumptions II

Then the flux for z < 0 is

F (z) = 2π∫ p0

0Icp dp + 2π

∫ ∞p0

S(r)[1− e−τ(r)

]p dp

+2π∫ rc

p0

Ice−τ(r)p dp

= πp20Ic +

∫ ∞rc

S(r)[1− e−τ(r)

]p dp

p0 =

√r2c − z2 for −rc < z < 0

0 for z ≤ −rc