LECTURE 12: Water pressure, velocity & discharge measurements in...

6
1 LECTURE 12: Water pressure, velocity & discharge measurements in pipes 12.1. Pitot Tube Energy Equation for point 1 & 2 z V + P z V + P h L z z At point 2 V 0 P P k.γ P k.γ∆h.γP P P γ.∆h V .P P = ...∆ = 2.g.∆h C V V V 2.g.∆h Dh k .1 .2 Patm Patm

Transcript of LECTURE 12: Water pressure, velocity & discharge measurements in...

1

LECTURE 12: Water pressure, velocity &

discharge measurements in pipes

12.1. Pitot Tube

Energy Equation for point 1 & 2

z� � V���� +

P� � z� � V���� +

P� �hL

z� � z�

At point 2 V� � 0

P� � P��� � k. γ

P� � k. γ � ∆h. γ � P���

P� � P� � γ. ∆h

V� � ���.�P��P�� = ��.�..∆� = �2. g. ∆h

CV � V"#$%"&V$'()*($+#"&

,� � -.�2. g. ∆h

Dh

k

.1 .2

Patm

Patm

2

12.2 Pitot tube in conjuction with a static tube

P/01�2�3/4H2�6 � P �z

P/201�2�3/4 P3288932 � P+γz

z� � V���� +

P� � z� � V���� +

P�

V� � 0

V� � �2. g. ∆ :P � z;

P� � γ. �z� � z<� � γ�. �z< � z=� � P= � P>

P� � γ. �z� � z?� � γ. �z? � z>�

z? � z<

z? � z> � z< � z=

�P� � γ. z�� � γ�. ∆h � �P� � γ. z�� � γ. ∆h

�P� � γ. z�� � �P� � γ. z�� � �γ� � γ�. ∆h

@P�γ � z�A � @P�γ � z�A � @γ� � γγ A . ∆h

V� � Cv �:���CD�∆� ;

Difference in pressure

and elevation heads

1

2

3

4

6

5

3

12.3. Venturimeters

Q � A���A�/A����� . �2. gH�P� � P��/γ � z� � z�I

Cd=Discharge Coefficient

Q � A�. C6. �2. g. K∆�P/γ� � zL Q � A�. C6. �2. g. ∆�P/γ�

12.4 Nozzle Meter and Orifice meter

The coefficient of disccharge for nozzle meters and orifice meters can not be computed

directly from the area ratio, A1/A2. The discharge equations must be modified by an

experimental, dimensionless coefficient, Cv.

Q � A�. CMC6. N2g. O∆ @Pγ � zAP

4

(a) Nozzle meter and (b) orifice meter

Example 12.1. A 6 cm(throat) Venturi meter is installed in a 12 cm diameter horizontal water

pipe. A Differential (mercury-water) manometer is installed between the throat and the entry

section registers a mercury (sp. Gr =13.6) column reading of 15.2 cm. Calculate the dicharge.

∆P � ∆h. HγH� � γI

∆P � ∆h. :HR� ;

� ∆h. K13.6 � 1L

∆P � �15.2 cm�. �12.6�

A� � Y.D�> �

Y.���> � 113 cm�

A� � Y.D�> �

Y.<�> � 28.3 cm�

C6 � ���A�/A����� � 0.259

Q � �0.259�. �113/10000�. �2. �9.81�. �15.2/100�. �12.6�

Q=0.0179 m3/s

5

Example 12.2: The Venturi meter in Example 12.1 is replaced with an ASME flow nozzle

meter. During operation, the attached differential (mercury – water) manometer registers a

mercury column reading of 15.2 cm. The water in the pipeline is 20]. Determine the

discharge.

C6 � 0.259

We assume it

Assume experimental meter coefficient CV as 0.99

Q � �0.99�. �0.259�. �113/10000�. �2. �9.81�. �15.2/100�. �12.6�

Q � 0.0178 m?/sec

Check Reynolds number of the nozzle.

NR � V�.6�c �

d�e.e�fg�/:�Y/>�.�</�ee��;h.�e.e<��.eei�eDj

� 3.78 i 10=

From Figure 9.8 , Cv=0.986

Corrected discharge: Q � �0.986�. �0.259�. 0.0178=0.0177 m3/s

6