Large Eddy SimulationLarge Eddy Simulation, LES - Resolving large scales - Modeling small scale...

52
Large Eddy Simulation

Transcript of Large Eddy SimulationLarge Eddy Simulation, LES - Resolving large scales - Modeling small scale...

  • Large Eddy Simulation

  • Turbulence Modellingk-ε Models- Short computational time- Simple, robust- Limited range of validity

    Reynolds Stress Models, RSM- More general, still not universal- More complex, seven PDE:s- Extensive modeling- Longer computational time

    Large Eddy Simulation, LES- Resolving large scales- Modeling small scale effects- Long computational time

    Direct Numerical Simulation, DNS- No Model, resolves all scales - Very long computational time- Limited to low Re

    Approximations

  • The conceptual steps

    • Filtering• Govering equations including Sub-Grid

    Scale (residual) stress tensor• Closure by modelling SGS stress

    tensor• Numerical solution

  • ∫= ')'()',( dxxuxxGu

    Computational Grid

    u u

    • Spatial filtering rather than ensemble average

    Large-Eddy Simulation for Turbulent Flows

  • Turbulent kinetic energy spectrum

    (Kolmogorov theory for isotropic & homogenous turbulence)

    log(

    E(k)

    )

    log(k)

    Dissipationsubrange

    Inertialsubrange

    Largescales

    Universal range

    -5/3

    log(∆)

    Filter cutoff

    LES-spectrum

  • −∆

    ∆= rHrG

    211)(

    Box filter

    κκ

    21

    21sin

    )(Ĝ

  • Gaussian filter

    −∆

    = 22

    2/12

    6exp)6()( rrGπ

    ∆−=

    24exp)(ˆ

    22κrG

  • Sharp spectral filter

    ( )rrrGππ ∆

    =/sin)(

    −∆∆

    = κπκ HG 1)(ˆ

  • Filtering in 3D

    {2/02//1

    ´)(3

    ∆>∆≤∆

    =−i

    i

    xforxfor

    zzG”Box” filter

    ∆−

    ∆=− 22

    2/32 ´

    6exp)6(´)( zzzzGπ

    ”Gaussian” filter

  • Filtered governing equations

    0=i

    i

    xu∂∂

    jj

    i

    ij

    jii

    xxu

    xp

    xuu

    tu

    ∂∂∂ν

    ∂∂

    ρ∂∂

    ∂∂

    +−=+1

    Mass:

    Momentum

    Now consider the non-linear term

  • Filtered governing equations

    Momentum ( )j

    ij

    jj

    i

    iji

    j

    i

    xxxu

    xpuu

    xtu

    ∂∂τ

    ∂∂∂ν

    ∂∂

    ρ∂∂

    ∂∂

    −+−=+1

    jijiij uuuu −=τSub-grid stresses:

    ( ) ( )jijij

    jijj

    ji uuuux

    uuxx

    uu−+=

    ∂∂

    ∂∂

    ∂∂

  • Leonards decomposition

    jijiij uuuu −=τTurbulent stresses

    Leonard’s decomposition ( )( ) jiijjijijjiiji uuuuuuuuuuuuuu ′′+′+′+=′+′+=

    ijijijjijiij RCLuuuu ++=−=τ

    jijiij uuuuL −=

    ijjiij uuuuC ′−′=

    jiij uuR ′′=

    Leonard tensor

    Cross-term tensor

    Reynolds stresses

  • Filtered governing equations

    Momentum

    j

    ij

    jj

    i

    ij

    ij

    i

    xxxu

    xp

    xuu

    tu

    ∂∂τ

    ∂∂∂ν

    ∂∂

    ρ∂∂

    ∂∂

    −+−=+1

    Leonard stresses:

    ( ) ( ) ( )jijij

    jij

    jij

    uuuux

    uux

    uux

    −+=∂∂

    ∂∂

    ∂∂

    jijiij uuuuL −=

    ( )j

    ji

    j

    ijji

    j xuu

    xuuuu

    x ∂∂

    ∂∂

    ∂∂

    +=

    jijiij uuuu −=τSub-grid stresses:

  • Germano’s decomposition

    jijioij uuuuL −=

    ijjiijjioij uuuuuuuuC ′−′−′−′=

    jijioij uuuuR ′′−′′=

    Leonard tensor

    Cross-term tensor

    Reynolds stresses

    Interaction among resolved scales

    Interaction between resolved and non-resolved scales

    Interaction among non-resolved scales

  • Governing Equations

    LES modelling of non-linearities:

    “Convective”: a. Gradient diffusion type (Smagorinsky)b. Scale similarity typec. Dynamic typesd. Others

    Examples for incompressible SGS models

  • Governing Equations - LES

    The Space Filtered Governing Equations

    Transport Equation for an Inert Additive

    j

    j

    jjj

    j

    xxxcD

    xcu

    tc

    ∂∂

    −∂∂

    ∂=∂

    ∂+∂∂ ϕρρ 2

    Subgrid Scale Mixing )( cucu jjj −= ρϕ

  • A note on kinetic energy

    rfijijijjij

    fj

    f PpSuxx

    Eu

    tE

    −−=

    −−

    ∂∂

    −∂∂

    +∂∂

    εδρ

    τν2

    ijijf SSνε 2=

    ijijr SP τ−=

    iiuuE 21

    =

    rf kEE +=

    iif uuE 21

    =

    Filtered kinetic energy

    Decomposition

    Kinetic energy of the resolved scales

    Small if η>>∆

    Can be negative

  • Subgrid Scale Models

    What do they do?

    1. Account for the effects of small scales on the resolved ones

    1. Dissipate the energy transferred to the smallest scales

  • Subgrid Scale Models• Subgrid Scale Stress Tensor

    - No explicit model- Smagorinsky (“Eddy diffusivity”)- Stress Similarity Model- Dynamic Divergence Model- Exact Differential Model

    • Subgrid Scale Mixing- No Explicit Model- Eddy Diffusivity type- Scale Similarity Model - Exact Differential Model

  • Subgrid Scale ModelsSubgrid Scale Stress Tensor

    Smagorinsky

    SSM

    DDM

    EDM

    )( jijiij uuuu −= ρτ

    ( )jijiLkkijij uuuuC −−= ρτδτ 31

    jijm

    jkkij SSSC ,2

    1

    klkl2)(

    ,jij, ) 2(23

    1 ∆−

    = ρτδτ

    )(qfq =

    Liu, S., Meneveau, C. And Katz, J., J. Fluid Mech., 1994.

    Held, J and Fuchs, L., AIAA paper, 97-1931, 1997.

    Fuchs, L., Kluwer Academic Publishers, 1996.

    )(21;)(

    31 2/1

    i

    j

    j

    iijijklklLkkijij x

    uxuSSSSC

    ∂∂

    +∂∂

    =−= ρτδτ

  • SGS Model

    4

    43

    3

    1

    ||41

    j

    ij

    j

    jxuxu

    ∂∂

    ∆− ∑=

    ρ

    No explicit model: an example

    The largest term in the truncation error of the third order upwind scheme proposed by Kawamura and Kuwahara

    Kawamura, T. and Kuwahara, K., “Computation of High Reynolds Number Flow around a Circular Cylinder with Surface Roughness”, AIAA-84-0340, 1984.

  • IMM

    Advantages

    + Simple and fast, (no explicit SGS Model used) + Correct asymptotic behavior (h->0, LES->DNS)

    Disadvantages

    - Not physically related

  • SGS Model

    )(21;)(

    31 2/1

    i

    j

    j

    iijijklklLkkijij x

    uxuSSSSC

    ∂∂

    +∂∂

    =−= ρτδτ

    Smagorinsky

    Momentum:

    Scalar

    jcj x

    CA∂∂

    = ρϕ

    )( cucu jjj −= ρϕ

    )( jijiij uuuu −= ρτ

  • Smagorinsky

    Advantages

    + Simple + Dissipative

    Disadvantages

    - A “free” model parameter: Not universal- Does not account for “back-scatter”- Near wall treatment

  • SGS Model

    ( )131

    =

    −−=

    L

    jijiLkkijij

    C

    uuuuCρτδτ

    The Stress Similarity Model (SSM)

    The Liu et al. type of model

    (SSMC)

    1)(

    =

    −=

    c

    jjcj

    CcucuCρϕ

  • SSM

    Advantages

    + Simple + Correct asymptotic behavior in the inertial subrange+ Accounts for some “back-scatter”

    Disadvantages

    - A “free” model parameter - Requires an additional filter- Not absolutely dissipative

  • SGS ModelThe Dynamic Smagorinsky Model (Germano’s model)

    ) 2(2 31 2

    1

    klkl2

    ijij ijijkkij SSSC ∆−=+

    = ραατδτ

    S)2(2 31

    ij21

    2ij klklijkkijij SSCTT ∆−=+

    = ρββδ

    mnmnklkl

    ijijg

    jijiijijij

    SSSL

    C

    uuuuTL

    αβ

    τ

    −=

    −=−= )(

    Sub-grid scale stresses:

    Sub-test scale stresses:

    Germano’s identity

    ijklklgkkijij SSSC2/12 )(

    31

    ∆−= ρτδτ

    StressTurbulent Resolved = Lij

  • SGS ModelThe Dynamic Smagorinsky Model (Germano’s model)

    mnmnklkl

    ijijg

    jijiijijij

    SSSL

    C

    uuuuTL

    αβ

    τ

    −=

    −=−= )(Germano’s identity

    StressTurbulent Resolved = Lij

    Gives 6 values of the model parameter, choose by minimizing the error:

    ( )( )2ijijij CCLQ αβ −−=

    ( )( )( )mnmnmnmn

    ijijijg

    LC

    αβαβαβ

    −−−

    =

  • Germano’s model

    Advantages

    + No “free” model parameter+ Correct asymptotic behavior (h->0, LES->DNS) Disadvantages

    - Requires an additional filter- May require limiting of the model parameters- Isotropic coefficient

  • SGS ModelThe Dynamic Divergence Model (DDM)

    jijj

    kkij C ,,

    jij, 31 ατδτ +

    =

    31

    ,,

    , jijj

    kkijjij CTT βδ +

    =

    ( )

    lilkik

    jiji

    jjijijijjijjij

    LC

    uuuuTL

    ,,

    ,

    ,,,, )(

    αβ

    τ

    −=

    −=−=

    Sub-grid scale stresses:

    Sub-test scale stresses:

    One model parameter for each direction

    Model directly the divergence of the SGS stresses:j

    ijjij x∂

    ∂=

    ττ ,

  • SGS ModelThe Dynamic Divergence Model (DDM)

    Bounding of the model parameter

    Total dissipation must be positive 0≥++ numSGSvisc εεε

    ( )

    ∂∂

    +

    =≥

    j

    iijklkl

    i

    xuS

    h

    SSCC

    3

    21

    2min

    )2(2

    1 ν

    ( )

    ∆∆

    =≤ νt

    h

    SSCC

    klkl

    i2

    21

    2max

    )2(2

    1

  • DDM

    Advantages

    + No “free” model parameter+ Correct asymptotic behavior (h->0, LES->DNS) + Non-isotropic coefficients

    Disadvantages

    - Requires an additional filter- May require limiting of the model parameters

  • SGS ModelKinetic energy SGS model

    Subgrid kinetic energy: ( )kkkksgs uuuuk −= 21

    The SGS-stresses: ijsgskijsgsij SkCk

    T

    ν

    δτ 2/1)(232

    ∆−=−

    ∂∂

    ∂∂

    +∆

    −∂∂

    −=∂∂

    +∂

    j

    sgs

    k

    T

    j

    sgs

    j

    iij

    j

    sgsj

    sgs

    xk

    xk

    Cxu

    xk

    ut

    kσντ ε

    2/3

    Accounts for the transport of SGS turbulent kinetic energy

  • SGS Model

    The Exact Differential Model (EDM)

    ∫ −= ξξξ dqxGq )()(

    We look for filters (G) such that the “error” of filtering becomes:

    qDPqq )(−=−

    Where P(D) is a polynomial of differentials.

    (1)

    (2)

  • SGS Model

    Fourier transform ( ) relations (1) and (2):

    qikPqqandqGq ˆ)(ˆˆˆˆˆ −=−=

    We look for filters (G) such that the “error” of filtering becomes:

    )(11ˆ

    ikPG

    −=

    For realizability require that P is an even polynomial.

    To lowest order (P(D)= ∆) one gets:

  • SGS Model

    ~

    ~

    ~~

    ~

    ~ tu~

    =q~ where ~

    2

    22i2

    j,ij

    2

    22222

    −+∆+++∆−=

    =∇∆−=∇∆−=

    j

    i

    ij

    ji

    j

    ji

    j

    ji

    j

    xu

    xp

    xuu

    xuu

    xuu

    xqqqqqqq

    ∂∂

    µ∂∂

    ∂ρ∂

    ∂ρ∂

    ∂ρ∂

    ∂ρ∂

    τ

    ∂∂

    The Exact Differential Model (EDM)

    An additional term enters into the continuity equation

    0~

    2 =∂∂

    ∆−∂∂

    k

    k

    i

    i

    xu

    xu

  • EDMAdvantages

    + Exact expression for the SGS term + No model parameter+ Enhanced understanding of SGS roles + Can estimate the contribution of each term + Correct asymptotic behavior (h/D ->0 for all flows!

    h = cell size and D = filter width)

    Disadvantages

    - Additional (model dependent) boundary conditions- Boundary conditions have to be computed implicitly - Direct use may be numerically unstable

  • Issues: Inflow/outflow boundary conditions

    Handling walls and near wall effects

    Accuracy

    Modelling of Turbulent Flows

  • Model comparisonsImpinging jet

  • Impinging Jet

  • Impinging Jet

  • Impinging Jet

  • EXAMPLES

    LES of turbulent flows

  • Results

    Concentration

    Velocity

    Area shown in the animation

  • Results

    Instantaneous velocity field in the wall jet.

    Instantaneous concentration field.

  • Impinging jets

  • Impinging Jets: Scalar Mode 0,1,2

    Largest variance (instead of energy)

    Asymmetric

  • Impinging Jets

    Mode 0,1,2 (the most energetic)

    Coherent vortices

    T

    vu

    vu

    R

    =

    Vector valued u:

  • 49

    Unsteady Impinging Jet

    Basic case H/D=2, S=0, Re=20000, LES

    x

    y

    z

    Free jet region

    Wall jet region

    Stagnation region

  • 50

    Centreline (x/D=0) frequency spectra u-vel.

    Unsteady Impinging Jet

    (-): y/D=0.004

    (--): y/D=1

    St2

    St1

    • Vortex shedding at x/D=0.5

    • St1: fundamental freq.

    • St2: sub-harmonic freq

  • • Spectra normalized with local RMS and energy levels

    • Initially inviscid instabilities (inflection point, laminar flow + perturbations)

    • Rolling up of vortices, growing downstream

    • Vortex shedding, vortex pairing

    LES Case1 (H/D=2, Re=20000, S=0)

    Space/frequency relation

    St2 St1 St2

    St1

    Energy levels of St1 and St2Dominant frequencies at x/D=0.5

    y / D

    St E

    Thomas Hällqvist

  • LES (H/D=2, Re=20000, S=0,1)

    Space/frequency relation

    St2 St1

    Dominant frequencies at x/D=0.5

    y / D

    Thomas Hällqvist

    Bildnummer 1Turbulence Modelling The conceptual stepsBildnummer 4Bildnummer 5Bildnummer 6Bildnummer 7Bildnummer 8Bildnummer 9Bildnummer 10Bildnummer 11Bildnummer 12Bildnummer 13Bildnummer 14Bildnummer 15Bildnummer 16Bildnummer 17Bildnummer 18Bildnummer 19Bildnummer 20Bildnummer 21Bildnummer 22Bildnummer 23Bildnummer 24Bildnummer 25Bildnummer 26Bildnummer 27Bildnummer 28Bildnummer 29Bildnummer 30Bildnummer 31Bildnummer 32Bildnummer 33Bildnummer 34Bildnummer 35Bildnummer 36Bildnummer 37Modelling of Turbulent FlowsModel comparisonsImpinging JetImpinging JetImpinging JetBildnummer 43ResultsResultsBildnummer 46Bildnummer 47Bildnummer 48Bildnummer 49Bildnummer 50Bildnummer 51Bildnummer 52