kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted...

36
elliptical tracks evidence for superluminal electrons? quantized elliptical tracks sizes expected of bound monopoles yet requiring v > c

Transcript of kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted...

Page 1: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

elliptical tracksevidence for superluminal electrons?

quantized elliptical tracks

sizes expected of bound monopoles

yet requiring v > c

Page 2: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

ICCF 11: Urutskoev, Ivoilov, Lochak, Strange radiation

ICCF 18: replication of tracks with simplified technique

Do these particles respond to electric or magnetic fields?

Page 3: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL
Page 4: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL
Page 5: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

n = 5.0track cce a = 621.1 ±7.3 μm

a.) Ellipse fitted to trackb.) After processing and background eradication.c.) Photo using Leitz PL 40x objective.

y (μm)c.b.a.

Page 6: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

track lee2

Page 7: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

n = 2.75track lee2 a = 56.9 ±13.0 μm

a.) Ellipse fitted to trackb.) After processing and background eradication.c.) Photo using Leitz PL 100x objective.

Page 8: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

n = 8track be a = 4078.6 ±14.6 μm

Page 9: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL
Page 10: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

n = 2.75track rse2 a = 56.7 ±9.5 μm

Page 11: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

a (μm)

Page 12: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

No observed curvature effects due to applied electric or magnetic fields

Elliptical tracks are 1372n2 bigger than Bohr-Sommerfeld hydrogen

Decay events

the ellipses must be bound states caused by an inverse square (1/r2) central force

breakthrough

Page 13: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

larger than Bohr-Sommerfeld hydrogen

1372n2 = n2

α2 , g = 2gD

Page 14: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

g = ecα

Schwinger quantization condition g = 2gD

Page 15: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

using analogy with the electron, the coupling constant for the magnetic monopole is

αm = α−1 = kmg 2

ℏc

Page 16: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

Semi-major axes of the fitted ellipses, , differ fromthe semi-major axes, , of corresponding Bohr-Sommerfeld ellipses for hydrogen by .

am = aen2

α2

≃ 1372n2

amae

Using g = 2gD ,

Page 17: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

a0e = ℏ/mecα,a0m = ℏα/mmc

Substituting the Bohr radius,monopole Bohr radius, (αm = 1/α),

a0m

a0e= 1

α2

For n = 1,

and the

Page 18: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

mm = meα4

= 1.45 × 10−3

monopole mass:

eV/c2

Page 19: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

interesting aside…

1.45 × 10−3

∼ 1.33 × 10−3

eV/c2

eV/c2

John Wallace’s exceedingly small effective mass

= 2 × (1.3 × 10−9me)

Page 20: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

Bohr radius

a0e = ℏmecα

a0m = ℏαmmc

v0e = kee2

ℏ = cα < c

v0m = kmg 2

ℏ = cα

> c

gso velocity

!

Page 21: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

c

a0m

λcm

r0m

a0e

λce

r0e

c/α

lengthvelocity

α

α

α

α

α

α

α

α

L > d

L < d

v > c

v < c 2.82x10-15

3.86x10-13

9.93x10-07

1.36x10-04

1.86x10-02

7.25x10-09

4.11x1010

2.99x108

2.19x106

v0m

v0e 5.29x10-11

d

d/α

Page 22: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

there is a relativistic scale transformationand framesv > c v < c

( n2

α2 )2

( x2

a(n)2m

+ y2

b(n)2m ) = 1 ,

here contracting the monopole ellipse into the electron ellipse

between

Page 23: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

the Coulomb flip

Page 24: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

the superluminal electron, equivalent to a magnetic charge, together with the subluminal electron, creates the condition for charge quantization

Page 25: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

next

thick nuclear track emulsions

replicate quantized elliptical tracks

Page 26: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

best evidence yet for magnetic charge?

repeatable experiment

consistent with the idea of magnetic charge

funding for 1 physicist

Page 28: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

Q: How can you be sure that the applied magnetic fields are not responsible for the tracks?

A: The magnetic source creating the central force for the ellipse has to be a spherically symmetric point source. The applied magnetic fields were not spherically symmetric point sources.

Q: Under quantum mechanics, how can these tracks even occur? Any sharply defined track, including all those routinely observed in bubble chambers or in photographic films, is produced by a sufficiently small, fast moving wave packet. And the latter is generally formed only by a superposition of many stationary states, even though each such state alone is spatially extended. This is universally true in relativistic and non-relativistic domain. One cannot in principle attribute a single definite quantum number n to a semi-classical track observed.

A: This apparent contradiction points to new physics. The classicaltracks occur and are quantized making them semi-classical in the spirit of Bohr-Sommerfeld.

Page 29: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

1.) initial particle, P1, trajectory.

2.) at point a. particle decays into P1′, continuing on initial trajectory and P2, which is captured into an elliptical orbit.3.) at point b. particle escapes from the elliptical orbit.

Capture into and escape from an elliptical orbit

Page 30: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

Urutskoev

Ivoilov

Lochak

Priem, Daviau, etc

Fredericksdischarges in water

discharges in water

discharges in water

light leptonic monopoleuniform photon exposure

Othersglow discharge,laser irradiation,electron beams

theoryexperiment

Page 31: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

Periodicity

Penetration

Random motion

Correlation of tracks

Central force

Tracks in various materials

Large angles of curvature

White tracks

emulsions, metals, semiconductors

Page 32: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL
Page 33: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

elliptical tracks

Disk Magnet

white track

black trackshadow

Page 34: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

E(n)m = − km

g 2

2a(n)m

E(n)e = − ke

e2

2a(n)e

v(n)m = n

v(n)e = c

αn

p(n)m = nℏ

a(n)m

p(n)e = nℏ

a(n)e

m(n)m = n4ℏα

a(n)m c

m(n)e = n2ℏ

a(n)e cα

superluminal dualof electron electron

Page 35: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

Low Energy Generation of the “Strange” Radiation, N. G. Ivoilov (2006).

Transmutations et traces de monopôles obtenues lors de décharges électriques, D. Priem et al. (2009).

Unusual structures on the material surfaces irradiated by low energy ions, B. Rodionov and I. Savvatimova, (2005)

Low-energy nuclear reactions and the leptonic monopole, G. Lochak and L. Urutskoev, (2004)

Tracks of magnetic monopoles, C. Daviau, D. Fargue, D. Priem, and G. Racineux (2013).

Observation of transformation of chemical elements during electric discharge Urutskoev, L. I.; Liksonov, V. I.; Tsinoev, V. G. (2000)

Page 36: kf mit colloquium 2019 - Cold Fusion · track cce a = 621.1 ±7.3 μm n = 5.0 a.) Ellipse fitted to track b.) After processing and background eradication. c.) Photo using Leitz PL

• K. A. Fredericks. Possible detection of tachyon monopoles in photographic emulsions. Eng. Phys., 6, 2013.

• K. A. Fredericks. Possibility of tachyon monopoles detected in photographic emulsions. J. Condensed Matter Nucl. Sci., 15:203–230, 2015.

• K. A. Fredericks, Monopole mass from fundamental lengths, Phys. Essays 30, 269 (2017).