J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation...

40
The role of water in the d t ti f ti d denaturation of proteins under high pressure high pressure (Or how to cook an egg at room temperature) J R úlG i J . Raúl Grigera IFLYSIB IFLYSIB (University of La Plata and CONICET, Argentina)

Transcript of J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation...

Page 1: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

The role of water in the d t ti f t i ddenaturation of proteins under

high pressurehigh pressure(Or how to cook an egg at room temperature)

J R úl G iJ. Raúl GrigeraIFLYSIBIFLYSIB

(University of La Plata and CONICET, Argentina)

Page 2: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

Free energy of denaturation

ΔG.

P0

Heat denaturationCold denaturation

0

22 78

5/6/2010 Denaturation by pressure 2T/C‐100 ‐22 78

0 100

Page 3: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

T / °C T / °CT /  C T /  C 

5/6/2010 Denaturation by pressure 3

T / ˚C

Page 4: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

Free energy of denaturation

ΔG.

P0P1 < P0 P2 > P0

0

5/6/2010 Denaturation by pressure 4T/C‐100 0 100

Page 5: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

From Clausius‐ Clapeyron equation

Integrating between T‐T0 y  P ‐P0

with

p

5/6/2010 Denaturation by pressure 55/6/2010Cold denaturation  

5

Page 6: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

The previous expression for p pΔG assume that:

= Const

Which is not trueWhich is not true. Taking  the next term 

= Const

we get different shape

= Constshape

Accepting that condition we get:5/6/2010 Denaturation by pressure 65/6/2010

Cold denaturation  6

Accepting that condition we get:

Page 7: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

5/6/2010 Denaturation by pressure 7

Page 8: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

Under that conditions the PT diagram is elliptic. 

pPressure denaturation

Colddenaturation

T

denaturationNative

5/6/2010 Denaturation by pressure 85/6/2010Cold denaturation  

8

Heat denaturation

Page 9: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

4000p/bar

3000

2000 Chymotrypsinogen (pH 2.07)

1000

0          10          20         30         40          500

5/6/2010 Denaturation by pressure 95/6/2010Cold denaturation  

9

0 0 0 30 40 50

T /°CHawley S.A. Biochemistry, 10, 2436 (1971).

Page 10: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

4000

/b4000

3000

p/bar

3000

p/bar

2000

Ribonuclease (pH 2)3000

Ribonuclease (pH 2)20002000

10001000

00

5/6/2010 Denaturation by pressure 105/6/2010Cold denaturation  

10

0          10         20         30        40         50T /°C

5/6/2010Cold denaturation  

10

0        10      20    30     40      500

T /°C

Page 11: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

We will focus on the hydrophobic i iinteraction

• The solubility of non‐polar solutes decreasesThe solubility of non polar solutes decreases with temperature, therefore: 

ΔΔ) solsolsolSTHTG Δ−Δ=Δ )(

)()( 12 TGTG Δ>Δfor T1 < T2

• Then we have 

0ΔS 0<Δ solS

5/6/2010 Denaturation by pressure 11

Page 12: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

Ka t man propose that the decreasing inKautzman propose that the decreasing in entropy is due to the hydrophobic hydration

ΔS < 0Hydrationsphere ΔS < 0p

5/6/2010Desnaturalización en frío  

AFA ‐ Rosario 2009 12

Page 13: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

Goldammer, Hertz.  J. Phys. Chem (1970)       NMRHallenga, Grigera JR, Berendsen. J. Phys. Chem (1980) Relaj. Dielect..Rezus, Bakker      Phys Rev, Letters (2007) IR 

5/6/2010Desnaturalización en frío  

AFA ‐ Rosario 2009 13

, y , ( )

Page 14: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

Hydrophobic Interactionyd op ob c te act o

ΔSIh>0

ΔSHh<0

Approx 1kcal/mol (4 kJ/mol) 

5/6/2010Desnaturalización en frío  

AFA ‐ Rosario 2009 14

Page 15: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

.

• The hydrophobic hydration, and consequently the hydrophobic interaction,  q y y pcan be produced due to the capacity of water to form hydrogen bond networkswater to form hydrogen bond networks.

• The HB network, remain under anythermodynamics condition?thermodynamics condition?

5/6/2010 Denaturation by pressure 15

Page 16: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

η/η1barViscosity

20.36 oC1.00

6.24 oC

0.98

4.00 oC0.96

2 25 oC

0.96

0 94 2.25 C0.94

p / kbar

0.920.0 0.3 0.6 0.9 1.2 1.5

5/6/2010 Denaturation by pressure 16

p / kbar

Horne R.A, Johnson D.S. J. Phys Chem. 70, 2182‐2190  (1966)

Page 17: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

Translational(D) and rotational (1/τ2) diffusion coefficientscoefficients

2.5

D 1/τ2 ar

)

-30 oC2.0

2

/ x(1

b 30 C

x(p)

/

0 oC

1.5

0 oC

90 oC1.0

0 1 2 3p / kbar

5/6/2010 Denaturation by pressure 17

p / kbar•Wolf. L.A. J. Chem. Soc. Faraday Trans. I. 71,784‐79 (1975)

Page 18: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

.

E i t l id h th t th• Experimental evidences show that the pressure produce a weakening on the hydrogen bond networking of water phenomenon that start innetworking of water , phenomenon that start in the range of 1‐2 kbar. Around that range the distinctive characteristics of water change their gtrend.

• How can we define the crossover ?

5/6/2010 Denaturation by pressure 18

Page 19: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

SPC/E 1bar

The radial distribution function(simulation by MD)

*

333Argon

( y )

SPCE  15 kbar

2

(r) 2

)

2

(r)

Tetrahedal structure

1

g( g(r)

1

g(

111HexagonalStructure

01 2 3

00

5/6/2010Desnaturalización en frío  

AFA ‐ Rosario 2009 19

1 2 3

r / σ

1 2 3

r / σ1 2 3

r / σ* Berendsen, Grigera. & Straatsma J. Phys Chem. 91, 6269‐6271. (1987)

Page 20: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

G ‐ Decomposition4

Freundlich 1Gaussian 1 Tetrahedrical

3Hexagonal

Gaussian 2 Freundlich 2Gaussian 3

2

g Gaussian 5 Sigmoid Long distance

The sum = g(r)2 The sum = g(r)

1

0

5/6/2010 Denaturation by pressure 20

0 1 2 3 4 5 6r / σ

Page 21: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

3

MD G-Decomposition

3

2

r)g(

r

1

1 2 3 40

5/6/2010 Denaturation by pressure 21

1 2 3 4

r / σ

Page 22: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

2 5

3.0 g(r)

1 5

2.0

2.5

1.6 2 54

0 51.0

1.52.54

0.0

0.5

113

57 p / kbar

2 2

0 1 2 3 4

79

/

2.2

5/6/2010 Denaturation by pressure 22

r / σ

Page 23: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

Order parameterpPr =1   Pure tetrahedralPr=‐1 Pure hexagonal. Pr= 1   Pure hexagonal

0.8

0.4

0.6

ussi

an

0.2

Ga

(Gaussian 1)A

5/6/2010 Denaturation by pressure 231 2

0.0

r / σ

Page 24: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

0.2

0.1

0.2 water

argon

0.0

-0.1

Pr Crossover

0 3

-0.2P Crossover

-0.4

-0.3

0 2 4 6 8 10-0.5

5/6/2010 Denaturation by pressure 24

0 2 4 6 8 10

p / kbar

Page 25: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

• The order parameter tell us the range in which water start to lose its characteristic properties.

• We will show our data on nonpolar solutes aqueous systems by Molecular Dynamics

• The question is: Can we reproduce the effects pressure and temperature on hydrophobic interaction?

5/6/2010 Denaturation by pressure 25

Page 26: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

Lennard‐Jones particles in SPC/E water

0 8

1.0

e

0 6

0.8st

er S

ize

0.4

0.6

ed C

lus

DiameterConcentration

0.2

orm

aliz

e

0.0

No

2 3 4 5 6 7 8 9

Ratio Area LJ/SPCE*100

5/6/2010 Denaturation by pressure 26Ferrara, MacCarthy & Grigera  J.  Chem. Phys. 127, 104502 ‐1‐5 (2007). 

Page 27: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

Lennard‐Jones particles in SPC/E water0 80.8

Size

0.6

lust

er

0.4

Mea

n C

0 2lized

M

0.2

Nor

mal

200 250 300 350 400 450 5000.0

N

5/6/2010 Denaturation by pressure 27

T / KFerrara., MacCarthy & Grigera J.  Chem. Phys. 127, 104502 ‐1‐5 (2007). 

Page 28: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

Lennard‐Jones particles in SPC/E water

50 Ferrara C.G., MacCarthy A. N. & Grigera J.R. J.  Chem. Phys. 127, 104502 ‐1‐5 

40

r Siz

e (2007). 

30

Clu

ster

20

erag

e C

10Ave

0 1 2 3 4 50

5/6/2010 Denaturation by pressure 28

Pressure / kbar

Page 29: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

1000Lennard‐Jones particles in SPC/E water

800

1000

0 4

0.6

0.8

an C

lust

er S

ize

800

ar 200 250 300 350 400 450 5000.0

0.2

0.4

Nor

mal

ized

Mea

600

P / b

a T / K

400P

200

300 400 5000

5/6/2010Cold denaturation  

29

300 400 500T / KFerrara C.G. & Grigera J.R.

(Unpublished)

Page 30: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

.

This simple system in which the onlyThis simple system, in which  the only interaction present is the hydrophobic effect,  shows a  behaviour quite similar to what we can see in the proteins.can see in  the proteins. 

• Consequently, we consider that this q y,mechanism provided a coherent explanation f th d t ti b li dof the denaturation process by cooling and 

pressure .

5/6/2010 Denaturation by pressure 30

Page 31: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

We have made MolecularWe have made Molecular Dynamics simulation underDynamics simulation under pressure of different proteins.pressure of different proteins.  We will show some results on apomyglobin

5/6/2010 Denaturation by pressure 31

Page 32: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

RMSD = Root Mean Square of all α‐carbon atoms respect to  the initial conformation

J

Apomyoglobin

5/6/2010Cold denaturation  

32

Page 33: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

Total Solvent Accessible SurfaceMD simulation of solvated apomyolgobin

1 b

MD simulation of solvated apomyolgobin(Chara , McCarthy , Ferrara , Caffarena & Grigera . Physica A 388, 2552, 2009).

‐‐‐‐‐ 1 bar‐‐‐‐‐ 3 kbar

3 kbar (extrapolated non‐linear regression)1 bar (average)1 bar (average)

5/6/2010Desnaturalización en frío  

AFA ‐ Rosario 2009 33

Page 34: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

Solvent Accesible Surface

MacCarthy & Grigera. B. B. Acta‐ Proteins and Proteomics 1764 506–515(2006)and Proteomics.  1764 506 515(2006)

5/6/2010 Denaturation by pressure 345/6/2010Cold denaturation  

34

Page 35: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

5/6/2010Cold denaturation  

35

Page 36: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

l iConclusion

The disturbance of the hydrogen bond y gnetwork by pressure or temperature alter the hydrophobic interaction (thealter the hydrophobic interaction, (the main driving force to maintain the native folding of proteins) and, therefore induce the denaturationtherefore, induce the denaturation. 

5/6/2010 Denaturation by pressure 36

Page 37: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

• MacCarthy A N & Grigera J R Effect of Pressure on the Conformation of

Recent related publication on the subject• MacCarthy A. N. & Grigera J.R. . Effect of Pressure on the Conformation of 

Proteins. A Molecular Dynamics Simulation of Lysozyme J. of Mol. Graph. and Mod.. 24, 254–261 (2005)M C h A N & G i J R P D i f A l bi A• MacCarthy A. N. & Grigera J.R. Pressure Denaturation of Aapomyoglobin. A Molecular Dynamics Simulation Study. Bioch. Bioph. Acta‐ Proteins and Proteomics. 1764, 506–515(2006) 

• Ferrara C.G., MacCarthy A. N. & Grigera J.R. Clustering of Lennard‐Jones particles in water: Temperature and pressure effects. J. Chem. Phys. 127, 104502 ‐1‐5 (2007) 

• Chara O., MacCarthy A.N., Grigera J.R. Water behavior in the neighborhood of hydrophilic and hydrophobic membranes: Lessons from molecular dynamics simulation. J. Biol. Phys.s 33, 523‐539 (2007) 

• Chara O., McCarthy A.N., Ferrara C.G., Caffarena E.R. &  Grigera J.R.  Water behavior in the neighborhood of hydrophilic and hydrophobic membranes: Lessons from molecular dynamics simulation Physica A 388, 2552‐2449 (2009). f y y , ( )

• Grigera J.R. & McCarthy A.N. The behavior of the hydrophobic effect under pressure and protein Denaturation. Biophys. J. 98; 8, : 1527; DOI: 10.1016/j.bpj.2009.12.4298 (in the press).

5/6/2010Cold denaturation  

37

10.1016/j.bpj.2009.12.4298 (in the press).• Chara O., McCarthy A.N. & Grigera J.R. Crossover between tetrahedral and 

hexagonal structures in liquid water (submitted).

Page 38: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

ColaboradoresCollaboratorsIn the development of  this work have participated:

Dr Osvaldo Chara

work have participated:

Dr. Osvaldo Chara

Dr Andrés N McCarthyDr. Andrés N. McCarthy

Dr Ernesto R CaffarenaDr. Ernesto R. Caffarena

Lic Carlos G FerraraLic. Carlos G. Ferrara

5/6/2010Desnaturalización en frío  

AFA ‐ Rosario 2009 38IFLYSIB, La Plata, Argentina

Page 39: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

The work was supported (but not 

l ) btoo generously) by

‐The University of La.‐The University of La Plata

The National Research Council of 

i (CO C )Argentina (CONICET)

‐ National Agency for‐ National Agency for Promotion of Science and Technology of Argentina (ANPCyT)

5/6/2010 Denaturation by pressure 39La Plata, Cathedral

Page 40: J. RúlR aúl GiGrigera · Free energy of denaturation ΔG P 0 Cold denaturation Heat denaturation 0 22 78 5/6/2010 Denaturation by pressure T/C 2 ‐100 0 100

5/6/2010Cold denaturation  

40