Intrinsic fluctuations on Fisher fronts

35
Intrinsic fluctuations on Fisher fronts Svetozar Nesic Departamento de Matem´ aticas, Universidad Carlos III de Madrid February 8, 2012 GISC workshop, Universidad Carlos III de Madrid

Transcript of Intrinsic fluctuations on Fisher fronts

Intrinsic fluctuations on Fisher frontsSvetozar Nesic
February 8, 2012
Fisher waves in a Reaction-Diffusion process
Kinetic reaction:
ρ is the concentration of particles
∂ρ(~r, t) ∂t
= D4ρ(~r, t) + kρ(~r, t)− λρ2(~r, t) + √ ρ(~r, t)/Nη(~r, t)
R. A. Fisher, Ann. Eugenics 7, 355 (1937), A. Kolmogorov, I. Petrovsky, N. Piscounov, Moscou Univ. Bull. Math. A 1, 1 (1937) 2/19
Fisher waves in a Reaction-Diffusion process
Kinetic reaction:
ρ is the concentration of particles
Fisher-Kolmogorov equation
∂ρ(~r, t) ∂t
= D4ρ(~r, t) + kρ(~r, t)− λρ2(~r, t) + √ ρ(~r, t)/Nη(~r, t)
R. A. Fisher, Ann. Eugenics 7, 355 (1937), A. Kolmogorov, I. Petrovsky, N. Piscounov, Moscou Univ. Bull. Math. A 1, 1 (1937) 2/19
Fisher waves in a Reaction-Diffusion process
Kinetic reaction:
ρ is the concentration of particles
Fisher-Kolmogorov equation
∂ρ(~r, t) ∂t
= D4ρ(~r, t) + kρ(~r, t)− λρ2(~r, t) + √ ρ(~r, t)/Nη(~r, t)
R. A. Fisher, Ann. Eugenics 7, 355 (1937), A. Kolmogorov, I. Petrovsky, N. Piscounov, Moscou Univ. Bull. Math. A 1, 1 (1937) 2/19
Fisher waves in a Reaction-Diffusion process
Kinetic reaction:
ρ is the concentration of particles
Fisher-Kolmogorov equation
∂ρ(~r, t) ∂t
= D4ρ(~r, t) + kρ(~r, t)− λρ2(~r, t) + √ ρ(~r, t)/Nη(~r, t)
R. A. Fisher, Ann. Eugenics 7, 355 (1937), A. Kolmogorov, I. Petrovsky, N. Piscounov, Moscou Univ. Bull. Math. A 1, 1 (1937) 2/19
Fisher waves in a Reaction-Diffusion process
Kinetic reaction:
ρ is the concentration of particles
Fisher-Kolmogorov equation
∂ρ(~r, t) ∂t
= D4ρ(~r, t) + kρ(~r, t)− λρ2(~r, t) + √ ρ(~r, t)/Nη(~r, t)
R. A. Fisher, Ann. Eugenics 7, 355 (1937), A. Kolmogorov, I. Petrovsky, N. Piscounov, Moscou Univ. Bull. Math. A 1, 1 (1937) 2/19
Fisher waves in a Reaction-Diffusion process
Kinetic reaction:
ρ is the concentration of particles
Fisher-Kolmogorov equation
∂ρ(~r, t) ∂t
= D4ρ(~r, t) + kρ(~r, t)− λρ2(~r, t) + √ ρ(~r, t)/Nη(~r, t)
R. A. Fisher, Ann. Eugenics 7, 355 (1937), A. Kolmogorov, I. Petrovsky, N. Piscounov, Moscou Univ. Bull. Math. A 1, 1 (1937) 2/19
Fisher waves in a Reaction-Diffusion process
Kinetic reaction:
ρ is the concentration of particles
Fisher-Kolmogorov equation
∂ρ(~r, t) ∂t
= D4ρ(~r, t) + kρ(~r, t)− λρ2(~r, t) + √ ρ(~r, t)/Nη(~r, t)
R. A. Fisher, Ann. Eugenics 7, 355 (1937), A. Kolmogorov, I. Petrovsky, N. Piscounov, Moscou Univ. Bull. Math. A 1, 1 (1937) 2/19
Fisher waves in a Reaction-Diffusion process
N - number of particles
ρ is the concentration of particles
Fisher-Kolmogorov equation (what if ρ is not a continuous function)
∂ρ(~r, t) ∂t
= D4ρ(~r, t) + kρ(~r, t)− λρ2(~r, t) + √ ρ(~r, t)/Nη(~r, t)
R. A. Fisher, Ann. Eugenics 7, 355 (1937), A. Kolmogorov, I. Petrovsky, N. Piscounov, Moscou Univ. Bull. Math. A 1, 1 (1937) 2/19
Fisher waves in a Reaction-Diffusion process
N - number of particles
ρ is the concentration of particles
Fisher-Kolmogorov-Petrovsky-Piscunov equation
∂ρ(~r, t) ∂t
= D4ρ(~r, t) + kρ(~r, t)− λρ2(~r, t) + √ ρ(~r, t)/Nη(~r, t)
R. A. Fisher, Ann. Eugenics 7, 355 (1937), A. Kolmogorov, I. Petrovsky, N. Piscounov, Moscou Univ. Bull. Math. A 1, 1 (1937) 2/19
Master equation approximated by a diffusion process
∂Pn(t) ∂t
= k V
nPn − λ
∂P(ρ, t) ∂t
= − (k1 − k2)N V
∂ρ2 ρ(1− ρ)P(ρ, t)
where γ = (k1−k2)N V , in the thermodynamic limit V ∼ N and σ2 = k1+k2
V ' 1 N
3/19
∂ρ
x
ρ
4/19
Velocity of the front:
4/19
+ √ ρ/Nη
vN = 2 √
D− C log2 N
E. Brunet and B. Derrida, Phys. Rev. E 56, 2597 (1997)
4/19
+ √ ρ/Nη
x
How does the surface interface scale?
A. L. Barabasi, H. E. Stanley, Fractal Concepts in Surface Growth, CUP, 1995
4/19
x
S(q) = hqh−q
A. L. Barabasi, H. E. Stanley, Fractal Concepts in Surface Growth, CUP, 1995 6/19
Kinetic roughening
Lz
t
α = zβ
A. L. Barabasi, H. E. Stanley, Fractal Concepts in Surface Growth, CUP, 1995 6/19
Two different results using particle model for A→ 2A and 2A→ A process
Conjecture: In general, 2 dimensional Fisher waves belong to the KPZ universality class in 2 dimensions, even though the front is described by a 1 dimensional interface! G. Tripathy and W van Saarloos, Phys. Rev. Lett. 85, 3556 (2000)
2 dimensional Fisher waves belong to the KPZ universality class in the 1 dimension. E. Moro, Phys. Rev. Lett. 87, 238303 (2001)
7/19
Conjecture:
∂φ
where V ′(φ) = f (φ) = φ− φ3
φ
V
and g(φ) = σ(φ− φ3)α, belong to the KPZ universality class of the same dimensionality!
Leading edge transformation φ ∼ 0
φ = e−λξψ and α = 1 give
∂ψ
Only works when α = 1.
G. Tripathy and W van Saarloos, Phys. Rev. Lett. 86, 5215 (2001) U. Ebert and W van Saarloos, Phys. Rev. Lett. 80, 1650 (1998)
8/19
When N is really large, simulations are costly!
G. Tripathy, W. van Saarloos, Phys. Rev. Lett. 85, 3556 (2000) C. R. Doering, M. A. Burschka, W. Horsthemke, J. Stat. Phys. 65, 953 (1991)
VS
∂ρ∗(x,t) ∂t = D∂2ρ∗(x,t)
∂x2 + ρ∗(x, t)− ρ∗2(x, t)
ρ∗ → ρ0ρ→ ρ∗
I. Dornic, H. Chate, M. A. Munoz, Phys. Rev. Lett. 94, 100601 (2005) E. Moro, Phys. Rev. E, 70, 045102 (2004)
9/19
10 2
10 3
10 4
10 -3
10 -2
10 -1
10 0
10 -6
10 -3
10 0
10 3
10 2
10 3
10 4
α = 1 2
Both macroscopic front line and microscopic edge line belong to 1d KPZ universality class!
11/19
SN(q/B(N))
we scale curves to the curve for which N = 106
A(σ) = a + a1 log N B(σ) = b + b1 log N 8 16log N
1
1.5
2
2.5
10-2 100 102q10-12
N=106
N=1010
N=1014
N=1018
N=1022
N=1026
When q→ 0 we have S(q) = Teff q2 we get that effective temperature
scales as:
No physical significance of ρ < 1 N
δ - distance ahead of the edge The position of the front changes
Xt+δt = {
Xt + vcutoff t + R(δ) with prob. P(δ)
Xt + vcutoff t with prob. 1 − P(δ)
where P(δ) is the probability of a relevant fluctuation during the time t
The effect of noise is so weak that, most of time, it can be ignored and the cutoff theory describes accurately the evolution of the front!
E. Brunet, B. Derrida, A. H. Mueller, and S. Munier, Phys. Rev. E 73, 056126 (2006)
13/19
No physical significance of ρ < 1 N
δ - distance ahead of the edge The position of the front changes
Xt+δt = {
Xt + vcutoff t + R(δ) with prob. P(δ)
Xt + vcutoff t with prob. 1 − P(δ)
where P(δ) is the probability of a relevant fluctuation during the time t
The effect of noise is so weak that, most of time, it can be ignored and the cutoff theory describes accurately the evolution of the front!
E. Brunet, B. Derrida, A. H. Mueller, and S. Munier, Phys. Rev. E 73, 056126 (2006)
13/19
hedge(x, t) = 1 N
hfront(x, t) = 1 2
15/19
7800 8200 8600
!
Cross-Correlation between Wfront(t) and Wedge(t)
Strong fluctuations at the tip will happen at the front after
∼ ln2 N Ly
Microscopic tip fluctuations drive the morphology of macroscopic Fisher fronts
17/19
Conclusions:
One dimensional equipotential lines of stochastic Fisher fronts belong to the one dimensional KPZ universality class contrary to the conjecture!
Even for a large number of particles the front still feels the noise!
Fluctuations propagate from the edge to the front providing the same universality class for all equipotential lines.
18/19
19/19
1.0:
1.1:
1.2:
1.3:
1.4:
1.5:
1.6:
1.7:
1.8:
1.9:
1.10:
1.11:
1.12:
1.13:
1.14:
1.15:
1.16:
1.17:
1.18:
1.19:
1.20:
1.21:
1.22:
1.23:
1.24:
1.25:
1.26:
1.27:
1.28:
1.29:
1.30:
1.31:
1.32:
1.33:
1.34:
1.35:
1.36:
1.37:
1.38:
1.39:
1.40:
1.41:
1.42:
1.43:
1.44:
1.45:
1.46:
1.47:
1.48:
1.49:
1.50:
anm1:
2.0:
2.1:
2.2:
2.3:
2.4:
2.5:
2.6:
2.7:
2.8:
2.9:
2.10:
2.11:
2.12:
2.13:
2.14:
2.15:
2.16:
2.17:
2.18:
2.19:
2.20:
2.21:
2.22:
2.23:
2.24:
2.25:
2.26:
2.27:
2.28:
2.29:
2.30:
2.31:
2.32:
2.33:
2.34:
2.35:
2.36:
2.37:
2.38:
2.39:
2.40:
2.41:
2.42:
2.43:
2.44:
2.45:
2.46:
2.47:
2.48:
2.49:
2.50:
anm2: