Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage...

70
TLC271, TLC271A, TLC271B LinCMOS PROGAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996 1 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 Input Offset Voltage Drift . . . Typically 0.1 μV/Month, Including the First 30 Days Wide Range of Supply Voltages Over Specified Temperature Range: 0°C to 70°C . . . 3 V to 16 V –40°C to 85°C . . . 4 V to 16 V –55°C to 125°C . . . 5 V to 16 V Single-Supply Operation Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix and I-Suffix Types) Low Noise . . . 25 nV/Hz Typically at f = 1 kHz (High-Bias Mode) Output Voltage Range includes Negative Rail High Input Impedance . . . 10 12 Typ ESD-Protection Circuitry Small-Outline Package Option Also Available in Tape and Reel Designed-In Latch-Up Immunity description The TLC271 operational amplifier combines a wide range of input offset voltage grades with low offset voltage drift and high input impedance. In addition, the TLC271 offers a bias-select mode that allows the user to select the best combination of power dissipation and ac performance for a particular application. These devices use Texas Instruments silicon-gate LinCMOS technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes. AVAILABLE OPTIONS T V PACKAGE T A V IO max AT 25°C SMALL OUTLINE (D) CHIP CARRIER (FK) CERAMIC DIP (JG) PLASTIC DIP (P) 0°C 2 mV TLC271BCD TLC271BCP 0C to 2 mV 5 mV TLC271BCD TLC271ACD TLC271BCP TLC271ACP 70°C 10 mV TLC271CD TLC271CP –40°C 2 mV TLC271BID TLC271BIP 40 C to 2 mV 5 mV TLC271BID TLC271AID TLC271BIP TLC271AIP 85°C 10 mV TLC271ID TLC271IP –55°C to 125°C 10 mV TLC271MD TLC271MFK TLC271MJG TLC271MP The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC271BCDR). Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 1996, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. 1 2 3 4 8 7 6 5 OFFSET N1 IN – IN + GND BIAS SELECT V DD OUT OFFSET N2 D, JG, OR P PACKAGE (TOP VIEW) 3 2 1 20 19 9 10 11 12 13 4 5 6 7 8 18 17 16 15 14 NC V DD NC OUT NC NC IN – NC IN + NC FK PACKAGE (TOP VIEW) NC OFFSET N1 NC NC NC NC GND NC NC – No internal connection OFFSET N2 BIAS SELECT LinCMOS is a trademark of Texas Instruments Incorporated.

Transcript of Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage...

Page 1: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

1POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Input Offset Voltage Drif t . . . Typically0.1 µV/Month, Including the First 30 Days

Wide Range of Supply Voltages OverSpecified Temperature Range:

0°C to 70°C . . . 3 V to 16 V–40°C to 85°C . . . 4 V to 16 V–55°C to 125°C . . . 5 V to 16 V

Single-Supply Operation

Common-Mode Input Voltage RangeExtends Below the Negative Rail (C-Suffixand I-Suffix Types)

Low Nois e . . . 25 nV/√Hz Typically atf = 1 kHz (High-Bias Mode)

Output Voltage Range includes NegativeRail

High Input Impedanc e . . . 1012 Ω Typ

ESD-Protection Circuitry

Small-Outline Package Option AlsoAvailable in Tape and Reel

Designed-In Latch-Up Immunity

description

The TLC271 operational amplifier combines awide range of input offset voltage grades with lowoffset voltage drift and high input impedance. Inaddition, the TLC271 offers a bias-select modethat allows the user to select the best combination of power dissipation and ac performance for a particularapplication. These devices use Texas Instruments silicon-gate LinCMOS technology, which provides offsetvoltage stability far exceeding the stability available with conventional metal-gate processes.

AVAILABLE OPTIONS

TV

PACKAGE

TAVIOmaxAT 25°C

SMALL OUTLINE

(D)

CHIPCARRIER

(FK)

CERAMICDIP(JG)

PLASTIC DIP(P)

0°C 2 mV TLC271BCD TLC271BCP0 Cto

2 mV5 mV

TLC271BCDTLC271ACD — —

TLC271BCPTLC271ACP

70°C 10 mV TLC271CD TLC271CP

–40°C 2 mV TLC271BID TLC271BIP40 Cto

2 mV5 mV

TLC271BIDTLC271AID — —

TLC271BIPTLC271AIP

85°C 10 mV TLC271ID TLC271IP

–55°Cto

125°C10 mV TLC271MD TLC271MFK TLC271MJG TLC271MP

The D package is available taped and reeled. Add R suffix to the device type (e.g.,TLC271BCDR).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Copyright 1996, Texas Instruments IncorporatedPRODUCTION DATA information is current as of publication date.Products conform to specifications per the terms of Texas Instrumentsstandard warranty. Production processing does not necessarily includetesting of all parameters.

1

2

3

4

8

7

6

5

OFFSET N1IN –IN +

GND

BIAS SELECTVDDOUTOFFSET N2

D, JG, OR P PACKAGE(TOP VIEW)

3 2 1 20 19

9 10 11 12 13

4

5

6

7

8

18

17

16

15

14

NCVDDNCOUTNC

NCIN –NC

IN +NC

FK PACKAGE(TOP VIEW)

NC

OF

FS

ET

N1

NC

NC

NC

NC

GN

DN

C

NC – No internal connection

OF

FS

ET

N2

BIA

S S

ELE

CT

LinCMOS is a trademark of Texas Instruments Incorporated.

Page 2: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

DEVICE FEATURES

PARAMETER†BIAS-SELECT MODE

UNITPARAMETER†HIGH MEDIUM LOW

UNIT

PD 3375 525 50 µW

SR 3.6 0.4 0.03 V/µs

Vn 25 32 68 nV/√Hz

B1 1.7 0.5 0.09 MHz

AVD 23 170 480 V/mV

† Typical at VDD = 5 V, TA = 25°C

description (continued)

Using the bias-select option, these cost-effective devices can be programmed to span a wide range ofapplications that previously required BiFET, NFET or bipolar technology. Three offset voltage grades areavailable (C-suffix and I-suffix types), ranging from the low-cost TLC271 (10 mV) to the TLC271B (2 mV)low-offset version. The extremely high input impedance and low bias currents, in conjunction with goodcommon-mode rejection and supply voltage rejection, make these devices a good choice for newstate-of-the-art designs as well as for upgrading existing designs.

In general, many features associated with bipolar technology are available in LinCMOS operational amplifiers,without the power penalties of bipolar technology. General applications such as transducer interfacing, analogcalculations, amplifier blocks, active filters, and signal buffering are all easily designed with the TLC271. Thedevices also exhibit low-voltage single-supply operation, making them ideally suited for remote andinaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip-carrier versions for high-densitysystem applications.

The device inputs and output are designed to withstand –100-mA surge currents without sustaining latch-up.

The TLC271 incorporates internal ESD-protection circuits that prevent functional failures at voltages up to 2000V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devicesas exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterizedfor operation from – 40°C to 85°C. The M-suffix devices are characterized for operation over the full militarytemperature range of – 55°C to 125°C.

bias-select feature

The TLC271 offers a bias-select feature that allows the user to select any one of three bias levels dependingon the level of performance desired. The tradeoffs between bias levels involve ac performance and powerdissipation (see Table 1).

Page 3: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

3POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

bias-select feature (continued)

Table 1. Effect of Bias Selection on Performance

TYPICAL PARAMETER VALUESMODE

UNITTYPICAL PARAMETER VALUES

TA = 25°C, VDD = 5 V HIGH BIAS MEDIUM BIAS LOW BIAS UNITTA = 25 C, VDD = 5 V HIGH BIASRL = 10 kΩ

MEDIUM BIASRL = 100 kΩ

LOW BIASRL = 1 MΩ

PD Power dissipation 3.4 0.5 0.05 mW

SR Slew rate 3.6 0.4 0.03 V/µs

Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz

B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz

φm Phase margin 46° 40° 34°AVD Large-signal differential voltage amplification 23 170 480 V/mV

bias selection

Bias selection is achieved by connecting the bias select pin to one of three voltage levels (see Figure 1). Formedium-bias applications, it is recommended that the bias select pin be connected to the midpoint between thesupply rails. This procedure is simple in split-supply applications, since this point is ground. In single-supplyapplications, the medium-bias mode necessitates using a voltage divider as indicated in Figure 1. The use oflarge-value resistors in the voltage divider reduces the current drain of the divider from the supply line. However,large-value resistors used in conjunction with a large-value capacitor require significant time to charge up tothe supply midpoint after the supply is switched on. A voltage other than the midpoint can be used if it is withinthe voltages specified in Figure 1.

bias selection (continued)

VDD

1 MΩ

1 MΩ

0.01 µF

Low

Medium

High

To the BiasSelect Pin

BIAS MODEBIAS-SELECT VOLTAGE

(single supply)

Low

Medium

High

VDD1 V to VDD – 1 V

GND

Figure 1. Bias Selection for Single-Supply Applications

high-bias mode

In the high-bias mode, the TLC271 series features low offset voltage drift, high input impedance, and low noise.Speed in this mode approaches that of BiFET devices but at only a fraction of the power dissipation. Unity-gainbandwidth is typically greater than 1 MHz.

medium-bias mode

The TLC271 in the medium-bias mode features low offset voltage drift, high input impedance, and low noise.Speed in this mode is similar to general-purpose bipolar devices but power dissipation is only a fraction of thatconsumed by bipolar devices.

Page 4: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

low-bias mode

In the low-bias mode, the TLC271 features low offset voltage drift, high input impedance, extremely low powerconsumption, and high differential voltage gain.

ORDER OF CONTENTS

TOPIC BIAS MODE

schematic all

absolute maximum ratings all

recommended operating conditions all

electrical characteristicsoperating characteristicstypical characteristics

high(Figures 2 – 33)

electrical characteristicsoperating characteristicstypical characteristics

medium(Figures 34 – 65)

electrical characteristicsoperating characteristicstypical characteristics

low(Figures 66 – 97)

parameter measurement information all

application information all

equivalent schematic

P3

P1

R1IN –

IN +

P2 R2

P4R6

N5

R5 C1

N3

N2N1

R3 D1

R4

D2N4

OFFSETN1 N2

OFFSET OUT GND

R7

N6

BIASSELECT

N10

N7

N9

N13

N12

N11

P12

P11

P10

P7A P8

P9A

P9B

P7BP6BP6A

P5

VDD

Page 5: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

5POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

absolute maximum ratings over operating free-air temperature (unless otherwise noted) †

Supply voltage, VDD (see Note 1) 18 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential input voltage, VID (see Note 2) ±VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input voltage range, VI (any input) – 0.3 V to VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input current, II ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output current, IO ±30 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Duration of short-circuit current at (or below) 25°C (see Note 3) Unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous total dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating free-air temperature, TA: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I suffix – 40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M suffix – 55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Storage temperature range – 65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Case temperature for 60 seconds: FK package 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package 260°C. . . . . . . . . . . . . . . . . Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package 300°C. . . . . . . . . . . . . . . . . . . .

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, andfunctional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is notimplied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.2. Differential voltages are at IN+ with respect to IN–.3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum

dissipation rating is not exceeded (see application section).

DISSIPATION RATING TABLE

PACKAGETA ≤ 25°C

POWER RATINGDERATING FACTORABOVE TA = 25°C

TA = 70°CPOWER RATING

TA = 85°CPOWER RATING

TA = 125°CPOWER RATING

D 725 mW 5.8 mW/°C 464 mW 377 mW 145 mW

FK 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW

JG 1050 mW 8.4 mW/°C 672 mW 546 mW 210 mW

P 1000 mW 8.0 mW/°C 640 mW 520 mW 200 mW

recommended operating conditions

C SUFFIX I SUFFIX M SUFFIXUNIT

MIN MAX MIN MAX MIN MAXUNIT

Supply voltage, VDD 3 16 4 16 5 16 V

Common-mode input voltage VICVDD = 5 V –0.2 3.5 –0.2 3.5 0 3.5

VCommon-mode input voltage, VICVDD = 10 V –0.2 8.5 –0.2 8.5 0 8.5

V

Operating free-air temperature, TA 0 70 –40 85 –55 125 °C

Page 6: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

HIGH-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

PARAMETERTEST †

TLC271C, TLC271AC, TLC271BC

UNITPARAMETERTEST

CONDITIONS TA† VDD = 5 V VDD = 10 V UNITCONDITIONS AMIN TYP MAX MIN TYP MAX

V I ff l

TLC271C

V 1 4 V

25°C 1.1 10 1.1 10

VV I ff l

TLC271C

VO = 1 4 VFull range 12 12

VVIO Input offset voltage TLC271AC

VO = 1.4 V,VIC = 0 V, 25°C 0.9 5 0.9 5

mVVIO Input offset voltage TLC271AC VIC 0 V,RS = 50 Ω,R 10 kΩ

Full range 6.5 6.5mV

TLC271BCRL = 10 kΩ

25°C 0.34 2 0.39 2TLC271BC

Full range 3 3

αVIOAverage temperature coefficientof input offset voltage

25°C to70°C 1.8 2 µV/°C

IIO Input offset current (see Note 4)VO = VDD/2, 25°C 0.1 0.1

pAIIO Input offset current (see Note 4)VO VDD/2,VIC = VDD/2 70°C 7 300 7 300

pA

IIB Input bias current (see Note 4)VO = VDD/2, 25°C 0.6 0.7

pAIIB Input bias current (see Note 4)VO VDD/2,VIC = VDD/2 70°C 40 600 50 600

pA

Common-mode input voltage

25°C–0.2

to4

–0.3to

4.2

–0.2to9

–0.3to

9.2V

VICRCommon-mode input voltagerange (see Note 5)

Full range–0.2

to3.5

–0.2to

8.5V

V Hi h l l lV 100 mV

25°C 3.2 3.8 8 8.5

VVOH High-level output voltageVID = 100 mV,RL = 10 kΩ 0°C 3 3.8 7.8 8.5 VOH g p gRL = 10 kΩ

70°C 3 3.8 7.8 8.4

V L l l lV 100 mV

25°C 0 50 0 50

VVOL Low-level output voltageVID = –100 mV,IOL = 0

0°C 0 50 0 50 mVOL p gIOL = 0

70°C 0 50 0 50

ALarge signal differential R 10 kΩ

25°C 5 23 10 36

V/ VAVDLarge-signal differentialvoltage amplification

RL = 10 kΩ,See Note 6

0°C 4 27 7.5 42 V/mVVD voltage amplification See Note 670°C 4 20 7.5 32

CMRR C d j i i V V i

25°C 65 80 65 85

dBCMRR Common-mode rejection ratio VIC = VICRmin 0°C 60 84 60 88 dBj IC ICR70°C 60 85 60 88

kSupply voltage rejection ratio V 5 V to 10 V

25°C 65 95 65 95

dBkSVRSupply-voltage rejection ratio(∆VDD/∆VIO)

VDD = 5 V to 10 VVO = 1.4 V

0°C 60 94 60 94 dBSVR (∆VDD/∆VIO) VO = 1.4 V70°C 60 96 60 96

II(SEL) Input current (BIAS SELECT) VI(SEL) = 0 25°C –1.4 –1.9 µA

I S lVO = VDD/2, 25°C 675 1600 950 2000

AIDD Supply currentVO = VDD/2,VIC = VDD/2,N l d

0°C 775 1800 1125 2200 µADD pp y IC DDNo load 70°C 575 1300 750 1700

µ

† Full range is 0°C to 70°C.NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

Page 7: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

7POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

HIGH-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

PARAMETERTEST †

TLC271I, TLC271AI, TLC271BI

UNITPARAMETERTEST

CONDITIONS TA† VDD = 5 V VDD = 10 V UNITCONDITIONS AMIN TYP MAX MIN TYP MAX

V I ff l

TLC271I

V 1 4 V

25°C 1.1 10 1.1 10

VV I ff l

TLC271I

VO = 1 4 VFull range 13 13

VVIO Input offset voltage TLC271AI

VO = 1.4 V,VIC = 0 V, 25°C 0.9 5 0.9 5

mVVIO Input offset voltage TLC271AI VIC 0 V,RS = 50 Ω,R 10 kΩ

Full range 7 7mV

TLC271BIRL = 10 kΩ

25°C 0.34 2 0.39 2TLC271BI

Full range 3.5 3.5

αVIOAverage temperature coefficientof input offset voltage

25°C to 85°C 1.8 2 µV/°C

IIO Input offset current (see Note 4)VO = VDD/2, 25°C 0.1 0.1

pAIIO Input offset current (see Note 4)VO VDD/2,VIC = VDD/2 85°C 24 1000 26 1000

pA

IIB Input bias current (see Note 4)VO = VDD/2, 25°C 0.6 0.7

pAIIB Input bias current (see Note 4)VO VDD/2,VIC = VDD/2 85°C 200 2000 220 2000

pA

VICRCommon-mode input

25°C–0.2

to4

–0.3to

4.2

–0.2to9

–0.3to

9.2V

VICRCommon mode inputvoltage range (see Note 5)

Full range–0.2

to3.5

–0.2to

8.5V

V Hi h l l lV 100 mV

25°C 3.2 3.8 8 8.5

VVOH High-level output voltageVID = 100 mV,RL = 10 kΩ –40°C 3 3.8 7.8 8.5 VOH g p gRL = 10 kΩ

85°C 3 3.8 7.8 8.5

V L l l lV 100 mV

25°C 0 50 0 50

VVOL Low-level output voltageVID = –100 mV,IOL = 0

–40°C 0 50 0 50 mVOL p gIOL = 0

85°C 0 50 0 50

ALarge signal differential R 10 kΩ

25°C 5 23 10 36

V/ VAVDLarge-signal differentialvoltage amplification

RL = 10 kΩ,See Note 6

–40°C 3.5 32 7 46 V/mVVD voltage amplification See Note 685°C 3.5 19 7 31

CMRR C d j i i V V i

25°C 65 80 65 85

dBCMRR Common-mode rejection ratio VIC = VICRmin –40°C 60 81 60 87 dBj IC ICR85°C 60 86 60 88

kSupply voltage rejection ratio V 5 V to 10 V

25°C 65 95 65 95

dBkSVRSupply-voltage rejection ratio(∆VDD/∆VIO)

VDD = 5 V to 10 VVO = 1.4 V

–40°C 60 92 60 92 dBSVR (∆VDD/∆VIO) VO = 1.4 V85°C 60 96 60 96

II(SEL) Input current (BIAS SELECT) VI(SEL) = 0 25°C –1.4 –1.9 µA

I S lVO = VDD/2, 25°C 675 1600 950 2000

AIDD Supply currentVO = VDD/2,VIC = VDD/2,N l d

–40°C 950 2200 1375 2500 µADD pp yNo load 85°C 525 1200 725 1600

µ

† Full range is –40°C to 85°C.NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

Page 8: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

HIGH-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

PARAMETERTEST †

TLC271M

UNITPARAMETERTEST

CONDITIONS TA† VDD = 5 V VDD = 10 V UNITCONDITIONS AMIN TYP MAX MIN TYP MAX

V I ff l

VO = 1.4 V, 25°C 1 1 10 1 1 10VVIO Input offset voltage

VO = 1.4 V,VIC = 0 V,

25°C 1.1 10 1.1 10mVVIO Input offset voltage VIC 0 V,

RS = 50 Ω,Full range 12 12

mVS ,

RL = 10 kΩ Full range 12 12

αVIOAverage temperature coefficientof input offset voltage

25°C to 125°C 2.1 2.2 µV/°C

IIO Input offset current (see Note 4)VO = VDD/2, 25°C 0.1 0.1 pA

IIO Input offset current (see Note 4)VO VDD/2,VIC = VDD/2 125°C 1.4 15 1.8 15 nA

IIB Input bias current (see Note 4)VO = VDD/2, 25°C 0.6 0.7 pA

IIB Input bias current (see Note 4)VO VDD/2,VIC = VDD/2 125°C 9 35 10 35 nA

VICRCommon-mode input voltage

25°C0to4

–0.3to

4.2

0to9

–0.3to

9.2V

VICRCommon mode input voltagerange (see Note 5)

Full range0to

3.5

0to

8.5V

V Hi h l l lV 100 mV

25°C 3.2 3.8 8 8.5

VVOH High-level output voltageVID = 100 mV,RL = 10 kΩ –55°C 3 3.8 7.8 8.5 VOH g p gRL = 10 kΩ

125°C 3 3.8 7.8 8.4

V L l l lV 100 mV

25°C 0 50 0 50

VVOL Low-level output voltageVID = –100 mV,IOL = 0

–55°C 0 50 0 50 mVOL p gIOL = 0

125°C 0 50 0 50

ALarge signal differential R 10 kΩ

25°C 5 23 10 36

V/ VAVDLarge-signal differentialvoltage amplification

RL = 10 kΩ,See Note 6

–55°C 3.5 35 7 50 V/mVVD voltage amplification See Note 6125°C 3.5 16 7 27

CMRR C d j i i V V i

25°C 65 80 65 85

dBCMRR Common-mode rejection ratio VIC = VICRmin –55°C 60 81 60 87 dBj IC ICR125°C 60 84 60 86

kSupply voltage rejection ratio V 5 V to 10 V

25°C 65 95 65 95

dBkSVRSupply-voltage rejection ratio(∆VDD/∆VIO)

VDD = 5 V to 10 VVO = 1.4 V

–55°C 60 90 60 90 dBSVR (∆VDD/∆VIO) VO = 1.4 V125°C 60 97 60 97

II(SEL) Input current (BIAS SELECT) VI(SEL) = 0 25°C –1.4 –1.9 µA

I S lVO = VDD/2, 25°C 675 1600 950 2000

AIDD Supply currentVO = VDD/2,VIC = VDD/2,N l d

–55°C 1000 2500 1475 3000 µADD pp yNo load 125°C 475 1100 625 1400

µ

† Full range is –55°C to 125°C.NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

Page 9: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

9POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

HIGH-BIAS MODE

operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TA

TLC271C, TLC271AC,TLC271BC UNITA

MIN TYP MAXUNIT

SR Sl i iR 10 kΩ

V 1 V

25°C 3.6

V/SR Sl i iR 10 kΩ

VI(PP) = 1 V 0°C 4

V/SR Slew rate at unity gainRL = 10 kΩ,CL = 20 pF

I(PP)70°C 3

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 2 5 V

25°C 2.9V/µs

See Figure 98VI(PP) = 2.5 V 0°C 3.1I(PP)

70°C 2.5

Vn Equivalent input noise voltagef = 1 kHz, RS = 20 Ω,

25°C 25 nV/√HzVn Equivalent input noise voltagef 1 kHz,See Figure 99

RS 20 Ω,25°C 25 nV/√Hz

B M i i b d id hV V C 20 pF

25°C 320

kHBOM Maximum output-swing bandwidthVO = VOH ,RL = 10 kΩ,

CL = 20 pF,See Figure 98

0°C 340 kHzOM p gRL = 10 kΩ, See Figure 98

70°C 260

B U i i b d id hV 10 mV C 20 pF

25°C 1.7

MHB1 Unity-gain bandwidthVI = 10 mV,See Figure 100

CL = 20 pF,0°C 2 MHz1 y g

See Figure 10070°C 1.3

Ph iV 10 mV f B

25°C 46°

φm Phase marginVI = 10 mV,CL = 20 pF,

f = B1,See Figure 100

0°C 47°φm gCL = 20 pF, See Figure 100

70°C 44°

operating characteristics at specified free-air temperature, V DD = 10 V

PARAMETER TEST CONDITIONS TA

TLC271C, TLC271AC,TLC271BC UNITA

MIN TYP MAX

SR Sl i iR 10 kΩ

V 1 V

25°C 5.3

V/SR Sl i iR 10 kΩ

VI(PP) = 1 V 0°C 5.9

V/SR Slew rate at unity gainRL = 10 kΩ,CL = 20 pF

I(PP)70°C 4.3

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 5 5 V

25°C 4.6V/µs

See Figure 98VI(PP) = 5.5 V 0°C 5.1I(PP)

70°C 3.8

Vn Equivalent input noise voltagef = 1 kHz, RS = 20 Ω,

25°C 25 nV/√HzVn Equivalent input noise voltagef 1 kHz,See Figure 99

RS 20 Ω,25°C 25 nV/√Hz

B M i i b d id hV V C 20 pF

25°C 200

kHBOM Maximum output-swing bandwidthVO = VOH,RL = 10 kΩ,

CL = 20 pF,See Figure 98

0°C 220 kHzOM p gRL = 10 kΩ, See Figure 98

70°C 140

B U i i b d id hV 10 mV C 20 pF

25°C 2.2

MHB1 Unity-gain bandwidthVI = 10 mV,See Figure 100

CL = 20 pF,0°C 2.5 MHz1 y g

See Figure 10070°C 1.8

Ph if = B1 VI = 10 mV

25°C 49°

φm Phase marginf = B1,CL = 20 pF,

VI = 10 mV,See Figure 100 0°C 50°φm g CL = 20 pF, See Figure 100

70°C 46°

Page 10: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

HIGH-BIAS MODE

operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TA

TLC271I, TLC271AI,TLC271BI UNITA

MIN TYP MAX

SR Sl i iR 10 kΩ

V 1 V

25°C 3.6

V/SR Sl i iR 10 kΩ

VI(PP) = 1 V –40°C 4.5

V/SR Slew rate at unity gainRL = 10 kΩ,CL = 20 pF

I(PP)85°C 2.8

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 2 5 V

25°C 2.9V/µs

See Figure 98VI(PP) = 2.5 V –40°C 3.5I(PP)

85°C 2.3

Vn Equivalent input noise voltagef = 1 kHz, RS = 20 Ω,

25°C 25 nV/√HzVn Equivalent input noise voltagef 1 kHz,See Figure 99

RS 20 Ω,25°C 25 nV/√Hz

B M i i b d id hV V C 20 pF

25°C 320

kHBOM Maximum output-swing bandwidthVO = VOH,RL = 10 kΩ

CL = 20 pF,See Figure 98

–40°C 380 kHzOM p gRL = 10 kΩ, See Figure 98

85°C 250

B U i i b d id hV 10 mV C 20 pF

25°C 1.7

MHB1 Unity-gain bandwidthVI = 10 mV,See Figure 100

CL = 20 pF,–40°C 2.6 MHz1 y g

See Figure 10085°C 1.2

Ph iV 10 mV f B

25°C 46°

φm Phase marginVI = 10 mV,CL = 20 pF

f = B1,See Figure 100

–40°C 49°φm gCL = 20 pF, See Figure 100

85°C 43°

operating characteristics at specified free-air temperature, V DD = 10 V

PARAMETER TEST CONDITIONS TA

TLC271I, TLC271AI,TLC271BI UNITA

MIN TYP MAX

SR Sl i iR 10 kΩ

V 1 V

25°C 5.3

V/SR Sl i iR 10 kΩ

VI(PP) = 1 V –40°C 6.8

V/SR Slew rate at unity gainRL = 10 kΩ,CL = 20 pF

I(PP)85°C 4

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 5 5 V

25°C 4.6V/µs

See Figure 98VI(PP) = 5.5 V –40°C 5.8I(PP)

85°C 3.5

Vn Equivalent input noise voltagef = 1 kHz, RS = 20 Ω,

25°C 25 nV/√HzVn Equivalent input noise voltagef 1 kHz,See Figure 99

RS 20 Ω,25°C 25 nV/√Hz

B M i i b d id hV V C 20 pF

25°C 200

kHBOM Maximum output-swing bandwidthVO = VOH,RL = 10 kΩ

CL = 20 pF,See Figure 98

–40°C 260 kHzOM p gRL = 10 kΩ, See Figure 98

85°C 130

B U i i b d id hV 10 mV C 20 pF

25°C 2.2

MHB1 Unity-gain bandwidthVI = 10 mV,See Figure 100

CL = 20 pF,–40°C 3.1 MHz1 y g

See Figure 10085°C 1.7

Ph iV 10 mV f B

25°C 49°

φm Phase marginVI = 10 mV,CL = 20 pF

f= B1,See Figure 100

–40°C 52°φm gCL = 20 pF, See Figure 100

85°C 46°

Page 11: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

11POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

HIGH-BIAS MODE

operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TATLC271M

UNITPARAMETER TEST CONDITIONS TA MIN TYP MAXUNIT

SR Sl i iR 10 kΩ

V 1 V

25°C 3.6

SR Sl i iR 10 kΩ

VI(PP) = 1 V –55°C 4.7

SR Slew rate at unity gainRL = 10 kΩ,CL = 20 pF

I(PP)125°C 2.3

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 2 5 V

25°C 2.9V/µs

See Figure 98VI(PP) = 2.5 V –55°C 3.7I(PP)

125°C 2

Vn Equivalent input noise voltagef = 1 kHz, RS = 20 Ω,

25°C 25 nV/√HzVn Equivalent input noise voltagef 1 kHz,See Figure 99

RS 20 Ω,25°C 25 nV/√Hz

B M i i b d id hV V C 20 pF

25°C 320

kHBOM Maximum output-swing bandwidthVO = VOH,RL = 10 kΩ,

CL = 20 pF,See Figure 98

–55°C 400 kHzOM p gRL = 10 kΩ, See Figure 98

125°C 230

B U i i b d id hV 10 mV C 20 pF

25°C 1.7

MHB1 Unity-gain bandwidthVI = 10 mV,See Figure 100

CL = 20 pF,–55°C 2.9 MHz1 y g

See Figure 100125°C 1.1

Ph iVI = 10 mV f = B1

25°C 46°

φm Phase marginVI = 10 mV,CL = 20 pF,

f = B1,See Figure 100 –55°C 49°φm g CL = 20 pF, See Figure 100

125°C 41°

operating characteristics at specified free-air temperature, V DD = 10 V

PARAMETER TEST CONDITIONS TATLC271M

UNITPARAMETER TEST CONDITIONS TA MIN TYP MAXUNIT

SR Sl i iR 10 kΩ

V 1 V

25°C 5.3

V/SR Sl i iR 10 kΩ

VI(PP) = 1 V –55°C 7.1

V/SR Slew rate at unity gainRL = 10 kΩ,CL = 20 pF

I(PP)125°C 3.1

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 5 5 V

25°C 4.6V/µs

See Figure 98VI(PP) = 5.5 V –55°C 6.1I(PP)

125°C 2.7

Vn Equivalent input noise voltagef = 1 kHz, RS = 20 Ω,

25°C 25 nV/√HzVn Equivalent input noise voltagef 1 kHz,See Figure 99

RS 20 Ω,25°C 25 nV/√Hz

B M i i b d id hV V C 20 pF

25°C 200

kHBOM Maximum output-swing bandwidthVO = VOH,RL = 10 kΩ,

CL = 20 pF,See Figure 98

–55°C 280 kHzOM p gRL = 10 kΩ, See Figure 98

125°C 110

B U i i b d id hV 10 mV C 20 pF

25°C 2.2

MHB1 Unity-gain bandwidthVI = 10 mV,See Figure 100

CL = 20 pF,–55°C 3.4 MHz1 y g

See Figure 100125°C 1.6

Ph if = B1 VI = 10 mV

25°C 49°

φm Phase marginf = B1,CL = 20 pF,

VI = 10 mV,See Figure 100 –55°C 52°φm g CL = 20 pF, See Figure 100

125°C 44°

Page 12: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)

Table of Graphs

FIGURE

VIO Input offset voltage Distribution 2, 3

αVIO Temperature coefficient Distribution 4, 5

V Hi h l l lvs High-level output current 6, 7

VOH High-level output voltagevs High level output currentvs Supply voltage

6, 78OH g p g pp y g

vs Free-air temperature 9

V L l l l

vs Common-mode input voltage 10, 11

VOL Low-level output voltage

vs Common-mode input voltagevs Differential input voltage

10, 1112VOL Low-level output voltage vs Differential input voltage

vs Free-air temperature1213p

vs Low-level output current 14, 15

A L i l diff i l l lifi ivs Supply voltage 16

AVD Large-signal differential voltage amplificationvs Supply voltagevs Free-air temperature

1617VD g g g p p

vs Frequency 28, 29

IIB Input bias current vs Free-air temperature 18

IIO Input offset current vs Free-air temperature 18

VIC Common-mode input voltage vs Supply voltage 19

IDD Supply currentvs Supply voltage 20

IDD Supply currentvs Supply voltagevs Free-air temperature

2021

SR Slew ratevs Supply voltage 22

SR Slew ratevs Supply voltagevs Free-air temperature

2223

Bias-select current vs Supply voltage 24

VO(PP) Maximum peak-to-peak output voltage vs Frequency 25

B1 Unity-gain bandwidthvs Free-air temperature 26

B1 Unity-gain bandwidthvs Free air temperaturevs Supply voltage

2627

AVD Large-signal differential voltage amplification vs Frequency 28, 29

Ph ivs Supply voltage 30

φm Phase marginvs Supply voltagevs Free-air temperature

3031φm g p

vs Load capacitance 32

Vn Equivalent input noise voltage vs Frequency 33

Phase shift vs Frequency 28, 29

Page 13: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

13POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE) †

Figure 2

Figure 4

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

– 50

Per

cent

age

of U

nits

– %

VIO – Input Offset Voltage – mV5

60

– 4 – 3 – 2 – 1 0 1 2 3 4

10

20

30

40

50

DISTRIBUTION OF TLC271INPUT OFFSET VOLTAGE

TA = 25°CP Package

ÎÎÎÎÎÎÎÎÎÎÎÎ753 Amplifiers Tested From 6 Wafer LotsVDD = 5 V

50

40

30

20

10

86420– 2– 4– 6– 8

60

10αVIO – Temperature Coefficient – µV/°C

Per

cent

age

of U

nits

– %

0– 10

DISTRIBUTION OF TLC271INPUT OFFSET VOLTAGE

TEMPERATURE COEFFICIENT

P PackageTA = 25°C to 125°CVDD = 5 VÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

324 Amplifiers Tested From 8 Wafer Lots

Outliers:ÎÎÎÎÎÎÎÎÎÎ

(1) 20.5 µV/°C

Figure 3

50

40

30

20

10

43210– 1– 2– 3– 4

60

5P

erce

ntag

e of

Uni

ts –

%0– 5

DISTRIBUTION OF TLC271INPUT OFFSET VOLTAGE

VIO – Input Offset Voltage – mV

P Package

TA = 25°CVDD = 10 V

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

753 Amplifiers Tested From 6 Wafer Lots

Figure 5

– 100

Per

cent

age

of U

nits

– %

10

60

– 8 – 6 – 4 – 2 0 2 4 6 8

10

20

30

40

50

DISTRIBUTION OF TLC271INPUT OFFSET VOLTAGE

TEMPERATURE COEFFICIENT

TA = 25°C to 125°C

Outliers:P Package

ÎÎÎÎÎÎÎÎÎÎ

(1) 21.2 µV/°C

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

324 Amplifiers Tested From 8 Wafer lotsVDD = 10 V

αVIO – Temperature Coefficient – µV/°C

Page 14: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE) †

Figure 6

Figure 8

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

00

VO

H –

Hig

h-Le

vel O

utpu

t Vol

tage

– V

IOH – High-Level Output Current – mA– 10

5

– 2 – 4 – 6 – 8

1

2

3

4TA = 25°CVID = 100 mV

VDD = 5 V

VDD = 4 V

VDD = 3 V

HIGH-LEVEL OUTPUT VOLTAGEvs

HIGH-LEVEL OUTPUT CURRENT

ÁÁÁÁÁÁ

V OH

0VDD – Supply Voltage – V

162 4 6 8 10 12 14

14

12

10

8

6

4

2

16

0

VID = 100 mVRL = 10 kΩTA = 25°C

HIGH-LEVEL OUTPUT VOLTAGEvs

SUPPLY VOLTAGE

VO

H –

Hig

h-Le

vel O

utpu

t Vol

tage

– V

ÁÁÁÁV O

H

Figure 7

00

IOH – High-Level Output Current – mA

– 40

16

– 10 – 20 – 30

2

4

6

8

10

12

14

VDD = 16 V

ÎÎÎÎÎÎÎÎÎÎ

VDD = 10 V

VID = 100 mVTA = 25°C

HIGH-LEVEL OUTPUT VOLTAGEvs

HIGH-LEVEL OUTPUT CURRENT

VO

H –

Hig

h-Le

vel O

utpu

t Vol

tage

– V

ÁÁÁÁÁÁÁÁÁ

V OH

– 5 – 15 – 25 – 35

Figure 9

– 1.7

– 1.8

– 1.9

– 2

– 2.1

– 2.2

– 2.3

1007550200– 25– 50

VDD – 1.6

125TA – Free-Air Temperature – °C

– 2.4– 75

IOH = –5 mAVID = 100 mA

VDD = 5 V

VDD = 10 V

HIGH-LEVEL OUTPUT VOLTAGEvs

FREE-AIR TEMPERATURE

VO

H –

Hig

h-Le

vel O

utpu

t Vol

tage

– V

ÁÁÁÁV O

H

Page 15: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

15POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE) †

Figure 10

Figure 12

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

0300

VO

L –

Low

-Lev

el O

utpu

t Vol

tage

– m

V

VIC – Common-Mode Input Voltage – V4

700

1 2 3

400

500

600

TA = 25°CIOL = 5 mAVDD = 5 V

VID = –1 V

LOW-LEVEL OUTPUT VOLTAGEvs

COMMON-MODE INPUT VOLTAGE

650

550

450

350ÁÁÁÁ

VO

L

ÎÎÎÎÎÎÎÎÎÎ

VID = –100 mV

0VID – Differential Input Voltage – V

– 10– 2 – 4 – 6 – 8

800

700

600

500

400

300

200

100

0

IOL = 5 mAVIC = VID/2TA = 25°C

VDD = 10 V

LOW-LEVEL OUTPUT VOLTAGEvs

DIFFERENTIAL INPUT VOLTAGE

VO

L –

Low

-Lev

el O

utpu

t Vol

tage

– m

V

ÁÁÁÁÁÁ

VO

L

– 1 – 3 – 5 – 7 – 9

ÎÎÎÎÎVDD = 5 V

Figure 11

2500

VIC – Common-Mode Input Voltage – V

300

350

400

450

500

2 4 6 8 10

VDD = 10 VIOL = 5 mATA = 25°C

VID = –1 V

VID = –2.5 V

VID = –100 mV

LOW-LEVEL OUTPUT VOLTAGEvs

COMMON-MODE INPUT VOLTAGE

1 3 5 7 9V

OL

– Lo

w-L

evel

Out

put V

olta

ge –

mV

ÁÁÁÁ

VO

L

Figure 13

– 750

TA – Free-Air Temperature – °C125

900

– 50 – 25 0 25 50 75 100

100

200

300

400

500

600

700

800VIC = 0.5 VVID = –1 VIOL = 5 mA

LOW-LEVEL OUTPUT VOLTAGEvs

FREE-AIR TEMPERATURE

VO

L –

Low

-Lev

el O

utpu

t Vol

tage

– m

V

ÁÁÁÁÁÁ

VO

L

ÎÎÎÎÎÎÎÎ

VDD = 10 V

ÎÎÎÎÎÎÎÎÎÎ

VDD = 5 V

Page 16: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE) †

Figure 14

Figure 16

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LOW-LEVEL OUTPUT VOLTAGEvs

LOW-LEVEL OUTPUT CURRENT

0IOL – Low-Level Output Current – mA

1

80

1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9VID = –1 VVIC = 0.5 VTA = 25°C

VDD = 5 V

VO

L –

Low

-Lev

el O

utpu

t Vol

tage

– m

V

ÁÁÁÁÁÁÁÁÁ

VO

L

ÎÎÎÎÎÎÎÎ

VDD = 3 V

ÎÎÎÎVDD = 4 V

0

AV

D –

Diff

eren

tial V

olta

ge A

mpl

ifica

tion

– V

/mV

60

160

2 4 6 8 10 12 14

10

20

30

40

50

VDD – Supply Voltage – V

85°C

125°C

TA = – 55°CÎÎÎÎÎÎÎÎRL = 10 kΩ

LARGE-SIGNALDIFFERENTIAL VOLTAGE AMPLIFICATION

vsSUPPLY VOLTAGE

ÁÁÁÁA

VD

ÎÎÎÎÎÎ

0°C

ÎÎÎÎÎÎ

25°C

Figure 15

0IOL – Low-Level Output Current – mA

3

300

5 10 15 20 25

0.5

1

1.5

2

2.5 TA = 25°CVIC = 0.5 VVID = –1 V

VDD = 10 V

VDD = 16 V

LOW-LEVEL OUTPUT VOLTAGEvs

LOW-LEVEL OUTPUT CURRENT

VO

L –

Low

-Lev

el O

utpu

t Vol

tage

– m

V

ÁÁÁÁÁÁÁÁÁ

V OL

Figure 17

– 75TA – Free-Air Temperature – °C

50

1250

– 50 – 25 0 25 50 75 100

5

10

15

20

25

30

35

40

45

VDD = 5 V

VDD = 10 V

LARGE-SIGNALDIFFERENTIAL VOLTAGE AMPLIFICATION

vsFREE-AIR TEMPERATURE

AV

D –

Lar

ge-S

igna

l Diff

eren

tial

ÁÁ

AV

DVo

ltage

Am

plifi

catio

n –

V/m

V

ÎÎÎÎRL = 10 kΩ

Page 17: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

17POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE) †

Figure 18

Figure 20

NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

0.1125

10000

45 65 85 105

1

10

100

1000

25TA – Free-Air Temperature – °C

INPUT BIAS CURRENT AND INPUT OFFSETCURRENT

vsFREE-AIR TEMPERATURE

ÁÁÁÁÁÁÁÁÁÁÁÁ

VDD = 10 VVIC = 5 VSee Note A

ÎÎÎÎÎÎ

IIB

ÎÎÎÎÎÎ

IIO

IIB a

nd II

O –

Inpu

t Bia

s an

dIBI

I IO

Inpu

t Offs

et C

urre

nts

– nA

0

IDD

– S

uppl

y C

urre

nt –

mA

VDD – Supply Voltage – V

2.5

160

2 4 6 8 10 12 14

0.5

1

1.5

2 TA =–55°C

25°C

70°C

125°C

SUPPLY CURRENTvs

SUPPLY VOLTAGE

ÁÁÁÁÁÁ

DD

I

ÎÎÎÎÎÎ

0°C

ÎÎÎÎÎÎÎÎ

VO = VDD/2No Load

Figure 19

0VDD – Supply Voltage – V

16

160

2 4 6 8 10 12 14

2

4

6

8

10

12

14TA = 25°C

COMMON-MODE INPUT VOLTAGE(POSITIVE LIMIT)

vsSUPPLY VOLTAGE

Com

mon

-Mod

e In

put V

olta

ge –

VV

IC

Figure 21

– 75TA – Free-Air Temperature – °C

2

1250

0.5

1

1.5

– 50 – 25 0 25 50 75 100

VDD = 10 V

VDD = 5 V

SUPPLY CURRENTvs

FREE-AIR TEMPERATURE

IDD

– S

uppl

y C

urre

nt –

mA

ÁÁÁÁÁÁ

DD

I

ÎÎÎÎÎÎÎÎ

VO = VDD/2No Load

Page 18: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE) †

Figure 22

Figure 24

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TA = 25°CSee Figure 98

AV = 1VI(PP) = 1 VRL = 10 kΩCL = 20 pF

8

7

6

5

4

3

2

1

14121086420

16VDD – Supply Voltage – V

SR

– S

lew

Rat

e –

V/ u

s

0

SLEW RATEvs

SUPPLY VOLTAGE

VI(SEL) = 0TA = 25°C

– 2.4

– 1.8

– 1.2

– 0.6

14121086420

16

– 3

VDD – Supply Voltage – V0

BIAS-SELECT CURRENTvs

SUPPLY VOLTAGE

– 2.7

– 2.1

– 1.5

– 0.9

– 0.3

Bia

s-S

elec

t Cur

rent

– u

aA

µ

Figure 23

VDD = 10 V

VI(PP) = 1 VVDD = 5 V

RL = 10 kΩAV = 1

See Figure 99CL = 20 pF

–750

1

2

3

4

5

6

7

8

1007550250–25–50 125TA – Free-Air Temperature – °C

SLEW RATEvs

FREE-AIR TEMPERATURE

SR

– S

lew

Rat

e –

V/ u

s sµ

ÎÎÎÎÎÎÎÎ

VDD = 10 VÎÎÎÎÎÎÎÎÎÎ

VI(PP) = 5.5 V

ÎÎÎÎÎÎÎÎÎÎ

VI(PP) = 1 V

ÎÎÎÎÎÎÎÎ

VDD = 5 V

ÎÎÎÎÎÎÎÎÎÎ

VI(PP) = 2.5 V

Figure 25

ÎÎÎÎVDD = 5 V

1000100

9

8

7

6

5

4

3

2

1

010000

10

f – Frequency – kHz10

MAXIMUM PEAK-TO-PEAK OUTPUTVOLTAGE

vsFREQUENCY

ÎÎÎÎÎÎÎÎÎÎ

TA = 125°CÎÎÎÎÎÎÎÎÎÎ

TA = 25°CÎÎÎÎÎÎÎÎÎÎ

TA = 55°C

ÎÎÎÎÎÎÎÎ

VDD = 10 V

ÎÎÎÎÎÎÎÎ

RL = 10 kΩÎÎÎÎÎÎÎÎÎÎ

See Figure 98– M

axim

um P

eak-

to-P

eak

Out

put V

olta

ge –

VV O

(PP

)

Page 19: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

19POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE) †

Figure 26

Phase Shift

AVD

VDD = 5 VRL = 10 kΩTA = 25°C

Pha

se S

hift

106

105

104

103

102

101

1

1 M100 k10 k1 k1000.1

10 Mf – Frequency – Hz

10

LARGE-SIGNAL DIFFERENTIAL VOLTAGEAMPLIFICATION AND PHASE SHIFT

vsFREQUENCY

107

150°

120°

90°

60°

30°

180°

AV

D –

Lar

ge-S

igna

l Diff

eren

tial

ÁÁÁÁÁÁ

AV

DVo

ltage

Am

plifi

catio

n

Figure 28

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

See Figure 100CL = 20 pFVI = 10 mVVDD = 5 V

2.5

2

1.5

1007550250– 25– 501

125

3

TA – Free-Air Temperature – °C

B1

– U

nity

-Gai

n B

andw

idth

– M

Hz

– 75

UNITY-GAIN BANDWIDTHvs

FREE-AIR TEMPERATURE

B1

Figure 27

VI = 10 mVCL = 20 pFTA = 25°CSee Figure 100

2

1.5

14121086421

16

2.5

VDD – Supply Voltage – V0

UNITY-GAIN BANDWIDTHvs

SUPPLY VOLTAGE

B1

– U

nity

-Gai

n B

andw

idth

– M

Hz

B1

Page 20: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE) †

Phase Shift

AVD

TA = 25°CRL = 10 kΩVDD = 10 V

Pha

se S

hift

150°

120°

90°

60°

30°

180°

106

105

104

103

102

101

1

1 M100 k10 k1 k1000.1

10 Mf – Frequency – Hz

10

LARGE-SCALE DIFFERENTIAL VOLTAGEAMPLIFICATION AND PHASE SHIFT

vsFREQUENCY

107A

VD

– L

arge

-Sig

nal D

iffer

entia

l

ÁÁÁÁA

VD

Volta

ge A

mpl

ifica

tion

Figure 29

Figure 30

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

0

m –

Pha

se M

argi

n

VDD – Supply Voltage – V

53°

162 4 6 8 10 12 14

47°

49°

51°

CL = 20 pFTA = 25°C

VI = 10 mV

See Figure 100

PHASE MARGINvs

SUPPLY VOLTAGE

46°

45°

48°

50°

52°

ÁÁÁÁ

Figure 31

– 75

50°

12540°

– 50 – 25 0 25 50 75 100

42°

44°

46°

48°

VDD = 5 V

CL = 20 pFVI = 10 mV

See Figure 100

TA – Free-Air Temperature – °C

PHASE MARGINvs

FREE-AIR TEMPERATURE

m –

Pha

se M

argi

n

ÁÁ

Page 21: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

21POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE) †

Figure 32

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

0CL – Capacitive Load – pF

50°

10025°

20 40 60 80

30°

35°

40°

45°See Figure 100

VI = 10 mVTA = 25°C

VDD = 5 mV

PHASE MARGINvs

CAPACITIVE LOAD

m –

Pha

se M

argi

n

ÁÁÁÁ

Figure 33

VN

– E

quiv

alen

t Inp

ut N

oise

Vol

tage

– n

V/H

z1

f – Frequency – Hz

400

10000

100

200

300

10 100

EQUIVALENT NOISE VOLTAGEvs

FREQUENCY

Vn

ÁÁÁÁÁÁÁÁ

nV/

Hz

350

250

150

50

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VDD = 5 V

TA = 25°CRS = 20 Ω

See Figure 99

Page 22: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

MEDIUM-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

PARAMETER TEST CONDITIONS †TLC271C, TLC271AC, TLC271BC

UNITPARAMETER TEST CONDITIONS TA† VDD = 5 V VDD = 10 V UNITAMIN TYP MAX MIN TYP MAX

V I ff l

TLC271CV 1 4 V

25°C 1.1 10 1.1 10

VV I ff l

TLC271CVO = 1.4 V, Full range 12 12

VVIO Input offset voltage TLC271AC

VO = 1.4 V,VIC = 0 25°C 0.9 5 0.9 5

mVVIO Input offset voltage TLC271AC ICRS = 50 Ω,R 100 kΩ

Full range 6.5 6.5mV

TLC271BCRI = 100 kΩ 25°C 0.25 2 0.26 2

TLC271BCFull range 3 3

αVIOAverage temperature coefficient of input offset voltage

25°C to70°C 1.7 2.1 µV/°C

IIO Input offset current (see Note 4)VO = VDD/2, 25°C 0.1 0.1

pAIIO Input offset current (see Note 4) O DD ,VIC = VDD/2 70°C 7 300 7 300

pA

IIB Input bias current (see Note 4)VO = VDD/2, 25°C 0.6 0.7

pAIIB Input bias current (see Note 4) O DD ,VIC = VDD/2 70°C 40 600 50 600

pA

VICRCommon-mode input

25°C–0.2

to4

–0.3to

4.2

–0.2to9

–0.3to

9.2V

VICRp

voltage range (see Note 5)

Full range–0.2

to3.5

–0.2to

8.5V

V Hi h l l lVID = 100 mV

25°C 3.2 3.9 8 8.7

VVOH High-level output voltageVID = 100 mV,RL = 100 kΩ

0°C 3 3.9 7.8 8.7 VOH g p gRL = 100 kΩ

70°C 3 4 7.8 8.7

V L l l lVID = 100 mV

25°C 0 50 0 50

VVOL Low-level output voltageVID = –100 mV,IOL = 0

0°C 0 50 0 50 mVOL p gIOL = 0

70°C 0 50 0 50

ALarge signal differential RL = 100 kΩ

25°C 25 170 25 275

V/ VAVDLarge-signal differentialvoltage amplification

RL = 100 kΩ,See Note 6

0°C 15 200 15 320 V/mVVD voltage amplification See Note 670°C 15 140 15 230

CMRR C d j i i V V i

25°C 65 91 65 94

dBCMRR Common-mode rejection ratio VIC = VICRmin 0°C 60 91 60 94 dBj IC ICR70°C 60 92 60 94

kSupply voltage rejection ratio VDD = 5 V to 10 V

25°C 70 93 70 93

dBkSVRSupply-voltage rejection ratio(∆VDD/∆VIO)

VDD = 5 V to 10 VVO = 1.4 V

0°C 60 92 60 92 dBSVR (∆VDD/∆VIO) VO = 1.4 V70°C 60 94 60 94

II(SEL) Input current (BIAS SELECT) VI(SEL) = VDD/2 25°C –130 –160 nA

I S lVO = VDD/2, 25°C 105 280 143 300

AIDD Supply currentVO VDD/2,VIC = VDD/2,N l d

0°C 125 320 173 400 µADD pp y IC DDNo load 70°C 85 220 110 280

µ

† Full range is 0°C to 70°C.NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

Page 23: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

23POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

MEDIUM-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

PARAMETER TEST CONDITIONS †TLC271I, TLC271AI, TLC271BI

UNITPARAMETER TEST CONDITIONS TA† VDD = 5 V VDD = 10 V UNITAMIN TYP MAX MIN TYP MAX

V I ff l

TLC271IV 1 4 V

25°C 1.1 10 1.1 10

VV I ff l

TLC271IVO = 1.4 V, Full range 13 13

VVIO Input offset voltage TLC271AI

VO = 1.4 V,VIC = 0 V, 25°C 0.9 5 0.9 5

mVVIO Input offset voltage TLC271AI IC ,RS = 50 Ω,R 100 kΩ

Full range 7 7mV

TLC271BIRL = 100 kΩ 25°C 0.25 2 0.26 2

TLC271BIFull range 3.5 3.5

αVIOAverage temperature coefficient of input offset voltage

25°C to85°C 1.7 2.1 µV/°C

IIO Input offset current (see Note 4)VO = VDD/2, 25°C 0.1 0.1

pAIIO Input offset current (see Note 4) O DD ,VIC = VDD/2 85°C 24 1000 26 1000

pA

IIB Input bias current (see Note 4)VO = VDD/2, 25°C 0.6 0.7

pAIIB Input bias current (see Note 4) O DD ,VIC = VDD/2 85°C 200 2000 220 2000

pA

VICRCommon-mode input

25°C–0.2

to4

–0.3to

4.2

–0.2to9

–0.3to

9.2V

VICRp

voltage range (see Note 5)

Full range–0.2

to3.5

–0.2to

8.5V

V Hi h l l lVID = 100 mV

25°C 3.2 3.9 8 8.7

VVOH High-level output voltageVID = 100 mV,RL = 100 kΩ

–40°C 3 3.9 7.8 8.7 VOH g p gRL = 100 kΩ

85°C 3 4 7.8 8.7

V L l l lVID = 100 mV

25°C 0 50 0 50

VVOL Low-level output voltageVID = –100 mV,IOL = 0

–40°C 0 50 0 50 mVOL p gIOL = 0

85°C 0 50 0 50

ALarge signal differential RL = 100 kΩ

25°C 25 170 25 275

V/ VAVDLarge-signal differentialvoltage amplification

RL = 100 kΩ,See Note 6

–40°C 15 270 15 390 V/mVVD voltage amplification See Note 685°C 15 130 15 220

CMRR C d j i i V V i

25°C 65 91 65 94

dBCMRR Common-mode rejection ratio VIC = VICRmin –40°C 60 90 60 93 dBj IC ICR85°C 60 90 60 94

kSupply voltage rejection ratio VDD = 5 V to 10 V

25°C 70 93 70 93

dBkSVRSupply-voltage rejection ratio(∆VDD/∆VIO)

VDD = 5 V to 10 VVO = 1.4 V

–40°C 60 91 60 91 dBSVR (∆VDD/∆VIO) VO = 1.4 V85°C 60 94 60 94

II(SEL) Input current (BIAS SELECT) VI(SEL) = VDD/2 25°C –130 –160 nA

I S lVO = VDD/2, 25°C 105 280 143 300

AIDD Supply currentVO VDD/2,VIC = VDD/2,N l d

–40°C 158 400 225 450 µADD pp y IC DDNo load 85°C 80 200 103 260

µ

† Full range is –40°C to 85°C.NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

Page 24: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

MEDIUM-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

PARAMETERTEST †

TLC271M

UNITPARAMETERTEST

CONDITIONSTA† VDD = 5 V VDD = 10 V UNITCONDITIONS A

MIN TYP MAX MIN TYP MAX

VIO Input offset voltage

VO = 1.4 V,VIC = 0 V,

25°C 1.1 10 1.1 10 mV

VIO Input offset voltageRS = 50 Ω,RL = 100 kΩ Full range 12 12

αVIOAverage temperature coefficient of input offset voltage

25°C to 125°C 1.7 2.1 µV/°C

IIO Input offset current (see Note 4)VO = VDD/2, 25°C 0.1 0.1 pA

IIO Input offset current (see Note 4) O DD ,VIC = VDD/2 125°C 1.4 15 1.8 15 nA

IIB Input bias current (see Note 4)VO = VDD/2, 25°C 0.6 0.7 pA

IIB Input bias current (see Note 4) O DD ,VIC = VDD/2 125°C 9 35 10 35 nA

VICRCommon-mode input

25°C0to4

–0.3to

4.2

0to9

–0.3to

9.2V

VICRp

voltage range (see Note 5)

Full range0to

3.5

0to

8.5V

V Hi h l l lVID = 100 mV

25°C 3.2 3.9 8 8.7

VVOH High-level output voltageVID = 100 mV,RL = 100 kΩ

–55°C 3 3.9 7.8 8.6 VOH g p gRL = 100 kΩ

125°C 3 4 7.8 8.6

V L l l lVID = 100 mV

25°C 0 50 0 50

VVOL Low-level output voltageVID = –100 mV,IOL = 0

–55°C 0 50 0 50 mVOL p gIOL = 0

125°C 0 50 0 50

ALarge signal differential RL = 10 kΩ

25°C 25 170 25 275

V/ VAVDLarge-signal differentialvoltage amplification

RL = 10 kΩSee Note 6

–55°C 15 290 15 420 V/mVVD voltage amplification See Note 6125°C 15 120 15 190

CMRR C d j i i V V i

25°C 65 91 65 94

dBCMRR Common-mode rejection ratio VIC = VICRmin –55°C 60 89 60 93 dBj IC ICR125°C 60 91 60 93

kSupply voltage rejection ratio VDD = 5 V to 10 V

25°C 70 93 70 93

dBkSVRSupply-voltage rejection ratio(∆VDD/∆VIO)

VDD = 5 V to 10 VVO = 1.4 V

–55°C 60 91 60 91 dBSVR (∆VDD/∆VIO) VO = 1.4 V125°C 60 94 60 94

II(SEL) Input current (BIAS SELECT) VI(SEL) = VDD/2 25°C –130 –160 nA

I S lVO = VDD/2, 25°C 105 280 143 300

AIDD Supply currentVO VDD/2,VIC = VDD/2,N l d

–55°C 170 440 245 500 µADD pp y IC DDNo load 125°C 70 180 90 240

µ

† Full range is –55°C to 125°C.NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

Page 25: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

25POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

MEDIUM-BIAS MODE

operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TA

TLC271C, TLC271AC,TLC271BC UNITA

MIN TYP MAXUNIT

SR Sl i iR 100 kΩ

V 1 V

25°C 0.43

V/SR Sl i iR 100 kΩ

VI(PP) = 1 V 0°C 0.46

V/SR Slew rate at unity gainRL = 100 kΩ,CL = 20 pF

I(PP)70°C 0.36

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 2 5 V

25°C 0.40V/µs

See Figure 98VI(PP) = 2.5 V 0°C 0.43I(PP)

70°C 0.34

Vn Equivalent input noise voltagef = 1 kHz,See Figure 99

RS = 20 Ω,25°C 32 nV/√Hz

B M i i b d id hV V C 20 pF

25°C 55

kHBOM Maximum output-swing bandwidthVO = VOH,RL = 100 kΩ

CL = 20 pF,See Figure 98

0°C 60 kHzOM p gRL = 100 kΩ, See Figure 98

70°C 50

B U i i b d id hV 10 mV C 20 pF

25°C 525

kHB1 Unity-gain bandwidthVI = 10 mV,See Figure 100

CL = 20 pF,0°C 600 kHz1 y g

See Figure 10070°C 400

Ph iV 10 mV f B

25°C 40°

φm Phase marginVI = 10 mV,CL = 20 pF

f = B1,See Figure 100

0°C 41°φm gCL = 20 pF, See Figure 100

70°C 39°

operating characteristics at specified free-air temperature, V DD = 10 V

PARAMETER TEST CONDITIONS TA

TLC271C, TLC271AC,TLC271BC UNITA

MIN TYP MAXUNIT

SR Sl i iR 100 kΩ

V 1 V

25°C 0.62

V/SR Sl i iR 100 kΩ

VI(PP) = 1 V 0°C 0.67

V/SR Slew rate at unity gainRL = 100 kΩ,CL = 20 pF

I(PP)70°C 0.51

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 5 5 V

25°C 0.56V/µs

See Figure 98VI(PP) = 5.5 V 0°C 0.61I(PP)

70°C 0.46

Vn Equivalent input noise voltagef = 1 kHz,See Figure 99

RS = 20 Ω,25°C 32 nV/√Hz

B M i i b d id hV V C 20 pF

25°C 35

kHBOM Maximum output-swing bandwidthVO = VOH,RL = 100 kΩ

CL = 20 pF,See Figure 98

0°C 40 kHzOM p gRL = 100 kΩ, See Figure 98

70°C 30

B U i i b d id hV 10 mV C 20 pF

25°C 635

kHB1 Unity-gain bandwidthVI = 10 mV,See Figure 100

CL = 20 pF,0°C 710 kHz1 y g

See Figure 10070°C 510

Ph iV 10 mV f B

25°C 43°

φm Phase marginVI = 10 mV,CL = 20 pF

f = B1,See Figure 100

0°C 44°φm gCL = 20 pF, See Figure 100

70°C 42°

Page 26: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

MEDIUM-BIAS MODE

operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TA

TLC271I, TLC271AI,TLC271BI UNITA

MIN TYP MAXUNIT

SR Sl i iR 100 kΩ

V 1 V

25°C 0.43

V/SR Sl i iR 100 kΩ

VI(PP) = 1 V –40°C 0.51

V/SR Slew rate at unity gainRL = 100 kΩ,CL = 20 pF

I(PP)85°C 0.35

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 2 5 V

25°C 0.40V/µs

See Figure 98VI(PP) = 2.5 V –40°C 0.48I(PP)

85°C 0.32

Vn Equivalent input noise voltagef = 1 kHz,See Figure 99

RS = 20 Ω,25°C 32 nV/√Hz

B M i i b d id hV V C 20 pF

25°C 55

kHBOM Maximum output-swing bandwidthVO = VOH,RL = 100 kΩ

CL = 20 pF,See Figure 98

–40°C 75 kHzOM p gRL = 100 kΩ, See Figure 98

85°C 45

B U i i b d id hV 10 mV C 20 pF

25°C 525

MHB1 Unity-gain bandwidthVI = 10 mV,See Figure 100

CL = 20 pF,–40°C 770 MHz1 y g

See Figure 10085°C 370

Ph iV 10 mV f B

25°C 40°

φm Phase marginVI = 10 mV,CL = 20 pF

f = B1,See Figure 100

–40°C 43°φm gCL = 20 pF, See Figure 100

85°C 38°

operating characteristics at specified free-air temperature, V DD = 10 V

PARAMETER TEST CONDITIONS TA

TLC271I, TLC271AI,TLC271BI UNITA

MIN TYP MAXUNIT

SR Sl i iR 100 kΩ

V 1 V

25°C 0.62

V/SR Sl i iR 100 kΩ

VI(PP) = 1 V –40°C 0.77

V/SR Slew rate at unity gainRL = 100 kΩ,CL = 20 pF

I(PP)85°C 0.47

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 5 5 V

25°C 0.56V/µs

See Figure 98VI(PP) = 5.5 V –40°C 0.70I(PP)

85°C 0.44

Vn Equivalent input noise voltagef = 1 kHz,See Figure 99

RS = 20 Ω,25°C 32 nV/√Hz

B M i i b d id hV V 3 C 20 pF

25°C 35

kHBOM Maximum output-swing bandwidthVO = VOH,3RL = 100 kΩ

CL = 20 pF,See Figure 98

–40°C 45 kHzOM p gRL = 100 kΩ, See Figure 98

85°C 25

B U i i b d id hV 10 mV C 20 pF

25°C 635

kHB1 Unity-gain bandwidthVI = 10 mV,See Figure 100

CL = 20 pF,–40°C 880 kHz1 y g

See Figure 10085°C 480

Ph iV 10 mV f B

25°C 43°

φm Phase marginVI = 10 mV,CL = 20 pF

f = B1,See Figure 100

–40°C 46°φm gCL = 20 pF, See Figure 100

85°C 41°

Page 27: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

27POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

MEDIUM-BIAS MODE

operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TATLC271M

UNITPARAMETER TEST CONDITIONS TA MIN TYP MAXUNIT

SR Sl i iR 100 kΩ

V 1 V

25°C 0.43

V/SR Sl i iR 100 kΩ

VI(PP) = 1 V –55°C 0.54

V/SR Slew rate at unity gainRL = 100 kΩ,CL = 20 pF

I(PP)125°C 0.29

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 2 5 V

25°C 0.40V/µs

See Figure 98VI(PP) = 2.5 V –55°C 0.50I(PP)

125°C 0.28

Vn Equivalent input noise voltagef = 1 kHz,See Figure 99

RS = 20 Ω,25°C 32 nV/√Hz

B M i i b d id hV V C 20 pF

25°C 55

kHBOM Maximum output-swing bandwidthVO = VOH,RL = 100 kΩ

CL = 20 pF,See Figure 98

–55°C 80 kHzOM p gRL = 100 kΩ, See Figure 98

125°C 40

B U i i b d id hV 10 mV C 20 pF

25°C 525

kHB1 Unity-gain bandwidthVI = 10 mV,See Figure 100

CL = 20 pF,–55°C 850 kHz1 y g

See Figure 100125°C 330

Ph iV 10 mV f B

25°C 40°

φm Phase marginVI = 10 mV,CL = 20 pF

f = B1,See Figure 100

–55°C 43°φm gCL = 20 pF, See Figure 100

125°C 36°

operating characteristics at specified free-air temperature, V DD = 10 V

PARAMETER TEST CONDITIONS TATLC271M

UNITPARAMETER TEST CONDITIONS TA MIN TYP MAXUNIT

SR Sl i iR 100 kΩ

V 1 V

25°C 0.62

V/SR Sl i iR 100 kΩ

VI(PP) = 1 V –55°C 0.81

V/SR Slew rate at unity gainRL = 100 kΩ,CL = 20 pF

I(PP)125°C 0.38

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 5 5 V

25°C 0.56V/µs

See Figure 98VI(PP) = 5.5 V –55°C 0.73I(PP)

125°C 0.35

Vn Equivalent input noise voltagef = 1 kHz,See Figure 99

RS = 20 Ω,25°C 32 nV/√Hz

B M i i b d id hV V C 20 pF

25°C 35

kHBOM Maximum output-swing bandwidthVO = VOH,RL = 100 kΩ

CL = 20 pF,See Figure 98

–55°C 50 kHzOM p gRL = 100 kΩ, See Figure 98

125°C 20

B U i i b d id hV 10 mV C 20 pF

25°C 635

kHB1 Unity-gain bandwidthVI = 10 mV,See Figure 100

CL = 20 pF,–55°C 960 kHz1 y g

See Figure 100125°C 440

Ph iV 10 mV f B

25°C 43°

φm Phase marginVI = 10 mV,CL = 20 pF

f = B1,See Figure 100

–55°C 47°φm gCL = 20 pF, See Figure 100

125°C 39°

Page 28: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)

Table of Graphs

FIGURE

VIO Input offset voltage Distribution 34, 35

αVIO Temperature coefficient Distribution 36, 37

V Hi h l l lvs High-level output current 38, 39

VOH High-level output voltagevs High level output currentvs Supply voltage

38, 3940OH g p g pp y g

vs Free-air temperature 41

V L l l l

vs Common-mode input voltage 42, 43

VOL Low-level output voltage

vs Common-mode input voltagevs Differential input voltage

42, 4344VOL Low-level output voltage vs Differential input voltage

vs Free-air temperature4445p

vs Low-level output current 46, 47

A L i l diff i l l lifi ivs Supply voltage 48

AVD Large-signal differential voltage amplificationvs Supply voltagevs Free-air temperature

4849VD g g g p p

vs Frequency 60, 61

IIB Input bias current vs Free-air temperature 50

IIO Input offset current vs Free-air temperature 50

VI Maximum Input voltage vs Supply voltage 51

IDD Supply currentvs Supply voltage 52

IDD Supply currentvs Supply voltagevs Free-air temperature

5253

SR Slew ratevs Supply voltage 54

SR Slew ratevs Supply voltagevs Free-air temperature

5455

Bias-select current vs Supply voltage 56

VO(PP) Maximum peak-to-peak output voltage vs Frequency 57

B1 Unity-gain bandwidthvs Free-air temperature 58

B1 Unity-gain bandwidthvs Free air temperaturevs Supply voltage

5859

Ph ivs Supply voltage 62

φm Phase marginvs Supply voltagevs Free-air temperature

6263φm g p

vs Load capacitance 64

Vn Equivalent input noise voltage vs Frequency 65

Phase shift vs Frequency 60, 61

Page 29: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

29POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE) †

Figure 34

Figure 36

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

–50

Per

cent

age

of U

nits

– %

VIO – Input Offset Voltage – mV5–4 –3 –2 –1 0 1 2 3 4

10

20

30

40

50

60

DISTRIBUTION OF TLC271INPUT OFFSET VOLTAGE

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÎÎÎÎÎÎÎÎ

VDD = 5 V

ÎÎÎÎÎÎÎÎ

TA = 25°CÎÎÎÎÎÎÎÎN Package

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

612 Amplifiers Tested From 6 Wafer Lots

DISTRIBUTION OF TLC271INPUT OFFSET VOLTAGE

TEMPERATURE COEFFICIENT60

50

40

30

20

10

0– 10 – 8 10

αVIO – Temperature Coefficient – µV/°C

Per

cent

age

of U

nits

– %

– 6 – 4 – 2 0 2 4 6 8

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

224 Amplifiers Tested From 6 Water Lots

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

VDD = 5 VTA = 25°C to 125°CP PackageOutliers:(1) 33.0 µV/°C

Figure 35

60

50

40

30

20

10

43210–1–2–3–4 5VIO – Input Offset Voltage – mV

Per

cent

age

of U

nits

– %

0–5

DISTRIBUTION OF TLC271INPUT OFFSET VOLTAGE

ÎÎÎÎÎÎÎÎÎÎÎÎ612 Amplifiers Tested From 6 Wafer LotsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÎÎÎÎÎÎÎÎÎÎ

VDD = 5 VÎÎÎÎÎÎÎÎÎÎ

TA = 25°C

ÎÎÎÎÎN Package

Figure 37

DISTRIBUTION OF TLC271INPUT OFFSET VOLTAGE

TEMPERATURE COEFFICIENT

20

60

50

40

30

10

0– 10 – 8 – 6 – 4 – 2 0 2 4 6 8 10

αVIO – Temperature Coefficient – µV/°C

Per

cent

age

of U

nits

– %

ÎÎÎÎÎÎÎÎÎÎÎ224 Amplifiers Tested From 6 Water LotsÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

VDD = 10 VTA = 25°C to 125°CP PackageOutliers:(1) 34.6 µV/°C

Page 30: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE) †

Figure 38

Figure 40

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

00

VO

H –

Hig

h-Le

vel O

utpu

t Vol

tage

– V

IOH – High-Level Output Current – mA– 10

5

– 2 – 4 – 6 – 8

1

2

3

4

TA = 25°CVID = 100 mV

VDD = 5 V

VDD = 4 V

VDD = 3 V

HIGH-LEVEL OUTPUT VOLTAGEvs

HIGH-LEVEL OUTPUT CURRENT

ÁÁÁÁ

V OH

0VDD – Supply Voltage – V

162 4 6 8 10 12 14

14

12

10

8

6

4

2

16

0

VID = 100 mVRL = 10 kΩTA = 25°C

HIGH-LEVEL OUTPUT VOLTAGEvs

SUPPLY VOLTAGE

VO

H –

Hig

h-Le

vel O

utpu

t Vol

tage

– V

ÁÁÁÁÁÁ

V OH

Figure 39

00

IOH – High-Level Output Current – mA– 40

16

– 10 – 20 – 30

2

4

6

8

10

12

14

VDD = 16 V

VDD = 10 V

VID = 100 mVTA = 25°C

HIGH-LEVEL OUTPUT VOLTAGEvs

HIGH-LEVEL OUTPUT CURRENT

– 35– 25– 15– 5

VO

H –

Hig

h-Le

vel O

utpu

t Vol

tage

– V

ÁÁÁÁ

V OH

Figure 41

– 1.7

– 1.8

– 1.9

– 2

– 2.1

– 2.2

– 2.3

1007550200– 25– 50

VDD – 1.6

125TA – Free-Air Temperature – °C

– 2.4– 75

IOH = –5 mAVID = 100 mA

VDD = 5 V

VDD = 10 V

HIGH-LEVEL OUTPUT VOLTAGEvs

FREE-AIR TEMPERATURE

VO

H –

Hig

h-Le

vel O

utpu

t Vol

tage

– V

ÁÁÁÁÁÁ

V OH

Page 31: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

31POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE) †

Figure 42

Figure 44

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

0300

VIC – Common-Mode Input Voltage – V4

700

1 2 3

400

500

600

TA = 25°CIOL = 5 mAVDD = 5 V

LOW-LEVEL OUTPUT VOLTAGEvs

COMMON-MODE INPUT VOLTAGE

650

550

450

350VO

L –

Low

-Lev

el O

utpu

t Vol

tage

– m

V

ÁÁÁÁ

VO

L ÎÎÎÎÎÎÎÎ

VID = –1 V

ÎÎÎÎÎÎÎÎÎÎ

VID = –100 mV

0VID – Differential Input Voltage – V

– 10– 2 – 4 – 6 – 8

800

700

600

500

400

300

200

100

0

VDD = 5 V

VDD = 10 V

LOW-LEVEL OUTPUT VOLTAGEvs

DIFFERENTIAL INPUT VOLTAGE

VO

L –

Low

-Lev

el O

utpu

t Vol

tage

– m

V

ÁÁÁÁV

OL

– 1 – 3 – 5 – 7 – 9

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

IOL = 5 mAVIC = |VID/2|TA = 25°C

Figure 43

2500

VIC – Common-Mode Input Voltage – V

300

350

400

450

500

2 4 6 8 10

VDD = 10 VIOL= 5 mA

TA = 25°C

VID = –1 V

VID = –2.5 V

VID = –100 mV

LOW-LEVEL OUTPUT VOLTAGEvs

COMMON-MODE INPUT VOLTAGE

VO

L –

Low

-Lev

el O

utpu

t Vol

tage

– m

V

ÁÁÁÁ

VO

L97531

Figure 45

– 750

TA – Free-Air Temperature – °C125

900

– 50 – 25 0 25 50 75 100

100

200

300

400

500

600

700

800VIC = 0.5 VVID = –1 VIOL = 5 mA

VDD = 5 V

VDD = 10 V

LOW-LEVEL OUTPUT VOLTAGEvs

FREE-AIR TEMPERATURE

VO

L –

Low

-Lev

el O

utpu

t Vol

tage

– m

V

ÁÁÁÁV

OL

Page 32: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE) †

Figure 46

Figure 48

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

0IOL – Low-Level Output Current – mA

1

80

1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

VID = –1 VVIC = 0.5 VTA = 25°C

VDD = 3 V

VDD = 4 V

VDD = 5 V

LOW-LEVEL OUTPUT VOLTAGEvs

LOW-LEVEL OUTPUT CURRENT

VO

L –

Low

-Lev

el O

utpu

t Vol

tage

– V

ÁÁÁÁÁÁÁÁÁ

V OL

0VDD – Supply Voltage – V

500

160

2 4 6 8 10 12 14

50

100

150

200

250

300

350

400

450TA = –55°C

–40°C

0°C

25°C

70°C

85°C

LARGE-SIGNALDIFFERENTIAL VOLTAGE AMPLIFICATION

vsSUPPLY VOLTAGE

ÎÎÎÎÎÎÎÎÎÎ

TA = 125°C

ÎÎÎÎÎÎÎÎ

RL = 100 kΩ

AV

D –

Lar

ge-S

igna

l Diff

eren

tial

ÁÁÁÁ

AV

DVo

ltage

Am

plifi

catio

n –

V/m

V

Figure 47

0IOL – Low-Level Output Current – mA

3

300

5 10 15 20 25

0.5

1

1.5

2

2.5 TA = 25°CVIC = 0.5 VVID = –1 V

LOW-LEVEL OUTPUT VOLTAGEvs

LOW-LEVEL OUTPUT CURRENT

VO

L –

Low

-Lev

el O

utpu

t Vol

tage

– V

ÁÁÁÁÁÁÁÁÁ

V OL

ÎÎÎÎÎÎÎÎ

VDD = 16 V

ÎÎÎÎÎÎÎÎÎÎ

VDD = 10 V

Figure 49

LARGE-SIGNALDIFFERENTIAL VOLTAGE AMPLIFICATION

vsFREE-AIR TEMPERATURE

450

400

350

300

250

200

150

100

50

1007550250–25–500

125

500

TA – Free-Air Temperature – °C–75

ÎÎÎÎÎÎÎÎÎÎ

VDD = 5 V

ÎÎÎÎÎÎÎÎ

VDD = 10 V

ÎÎÎÎÎÎÎÎÎÎ

RL = 100 kΩ

AV

D –

Lar

ge-S

igna

l Diff

eren

tial

ÁÁÁÁ

AV

DVo

ltage

Am

plifi

catio

n –

V/m

V

Page 33: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

33POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE) †

Figure 50

Figure 52

NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

0.1125

10000

45 65 85 105

1

10

100

1000

25

TA – Free-Air Temperature – °C

INPUT BIAS CURRENT AND INPUT OFFSETCURRENT

vsFREE-AIR TEMPERATURE

11595755535

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VDD = 10 VVIC = 5 VSee Note A

ÎÎIIB

ÎÎÎÎÎÎ

IIO

IIB a

nd II

O –

Inpu

t Bia

s an

dIBI

I IO

Inpu

t Offs

et C

urre

nts

– pA

IDD

– S

uppl

y C

urre

nt –

mA

VDD – Supply Voltage – V

VO = VDD/2No Load TA = –55°C

0°C

25°C

70°C

125°C

0

400

160

2 4 6 8 10 12 14

50

100

150

200

250

300

350

–40°C

SUPPLY CURRENTvs

SUPPLY VOLTAGE

ÁÁÁÁ

I DD

Figure 51

MAXIMUM INPUT VOLTAGEvs

SUPPLY VOLTAGE

0

VDD – Supply Voltage – V

16

160

2 4 6 8 10 12 14

2

4

6

8

10

12

14

ÎÎÎÎÎÎÎÎ

TA = 25°C

VI –

Max

imum

Inpu

t Vol

tage

– V

VI

Figure 53

–75TA – Free-Air Temperature – °C

250

1250

–50 –25 0 25 50 75 100

25

50

75

100

125

150

175

200

225

SUPPLY CURRENTvs

FREE-AIR TEMPERATURE

IDD

– S

uppl

y C

urre

nt –

mA

ÁÁÁÁ

I DD

ÁÁÁÁÁÁÁÁNo Load

VO = VDD/2

ÎÎÎÎÎÎÎÎÎÎ

VDD = 10 V

ÎÎÎÎÎÎÎÎ

VDD = 5 V

Page 34: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE) †

Figure 54

Figure 56

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

0

SR

– S

lew

Rat

e –

V/

VDD – Supply Voltage – V

0.9

160.3

2 4 6 8 10 12 14

0.4

0.5

0.6

0.7

0.8

SLEW RATEvs

SUPPLY VOLTAGE

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CL = 20 pFRL = 100 kΩVI(PP) = 1 VAV = 1

See Figure 99TA = 25°C

0

Bia

s-S

elec

t Cur

rent

– n

A

VDD – Supply Voltage – V

–300

160

2 4 6 8 10 12 14

–30

–60

–90

–120

–150

–180

–210

–240

–270

BIAS-SELECT CURRENTvs

SUPPLY VOLTAGE

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VI(SEL) = 1/2 VDD

TA = 25°C

Figure 55

–75TA – Free-Air Temperature – °C

0.9

1250.2

–50 –25 0 25 50 75 100

0.3

0.4

0.5

0.6

0.7

0.8

SLEW RATEvs

FREE-AIR TEMPERATURE

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RL = 10 kΩAV = 1

See Figure 99CL = 20 pF

SR

– S

lew

Rat

e –

V/

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VI(PP) = 5.5 VVDD = 10 V

ÁÁÁÁÁÁÁÁÎÎÎÎÎÎÎÎÎÎ

VDD = 10 VVI(PP) = 1 V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÎÎÎÎÎÎÎÎÎÎVDD = 5 V

VI(PP) = 2.5 V

ÁÁÁÁÁÁÁÁÎÎÎÎÎÎÎÎ

VI(PP) = 1 VVDD = 5 V

Figure 57

1f – Frequency – kHz

10

10000

1

2

3

4

5

6

7

8

9

10 100

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGEvs

FREQUENCY

ÁÁÁÁÁÁÁÁÁÁÁÁ

RL = 100 kΩSee Figure 99

ÎÎÎÎÎVDD = 10 V

ÎÎÎÎÎÎÎÎÎÎ

VDD = 5 V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TA = –55°CTA = 25°CTA = 125°C

– M

axim

um P

eak-

to-P

eak

Out

put V

olta

ge –

VV O

(PP

)

Page 35: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

35POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE) †

Figure 58

Phase Shift

Pha

se S

hift

180°

30°

60°

90°

120°

150°

106

105

104

103

102

101

1

100 K101 k100100.1

1 Mf – Frequency – Hz

1

LARGE-SIGNAL DIFFERENTIAL VOLTAGEAMPLIFICATION AND PHASE SHIFT

vsFREQUENCY

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VDD = 5 VRL = 100 kΩTA = 25°C

107

ÎÎÎÎÎÎ

AVD

AV

D –

Lar

ge-S

igna

l Diff

eren

tial

ÁÁÁÁ

AV

DVo

ltage

Am

plifi

catio

n

Figure 60

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

800

700

600

500

400

1007550250–25–50300

125

900

TA – Free-Air Temperature – °C

B1

– U

nity

-Gai

n B

andw

idth

– M

Hz

–75

UNITY-GAIN BANDWIDTHvs

FREE-AIR TEMPERATURE

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSee Figure 101

CL = 20 pFVI = 10 mVVDD = 5 V

B1

Figure 59

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

UNITY-GAIN BANDWIDTHvs

SUPPLY VOLTAGE

750

700

650

600

550

500

450

1412108642400

16

800

VDD – Supply Voltage – V0

VI = 10 mVCL = 20 pFTA = 25°CSee Figure 101

B1

– U

nity

-Gai

n B

andw

idth

– M

Hz

B1

Page 36: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE) †

1f – Frequency – Hz

1 M0.1

10 100 1 k 10 k 100 k

1

101

102

103

104

105

106

150°

120°

90°

60°

30°

180°

Pha

se S

hift

ÎÎÎÎAVD

Phase Shift

LARGE-SIGNAL DIFFERENTIAL VOLTAGEAMPLIFICATION AND PHASE SHIFT

vsFREQUENCY

107 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TA = 25°CRL = 100 kΩÎÎÎÎÎVDD = 10 V

AV

D –

Lar

ge-S

igna

l Diff

eren

tial

ÁÁÁÁÁÁ

AV

DVo

ltage

Am

plifi

catio

n

Figure 61

Figure 62

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

038°

m –

Pha

se M

argi

n

VDD – Supply Voltage – V16

50°

2 4 6 8 10 12 14

40°

42°

44°

46°

48°See Figure 100TA = 25°CCL = 20 pFVI = 10 mV

PHASE MARGINvs

SUPPLY VOLTAGE

ÁÁÁÁ

Figure 63

–7535°

TA – Free-Air Temperature – °C125

45°

–50 –25 0 25 50 75 100

37°

39°

41°

43°

VDD = 5 VVI = 10 mVCL = 20 pFSee Figure 100

PHASE MARGINvs

FREE-AIR TEMPERATURE

m –

Pha

se M

argi

n

ÁÁ

Page 37: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

37POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE) †

Figure 64

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

028°

CL – Capacitive Load – pF100

44°

20 40 60 80

30°

32°

34°

36°

38°

40°

42°VDD = 5 VVI = 10 mVTA = 25°CSee Figure 100

PHASE MARGINvs

CAPACITIVE LOAD

m –

Pha

se M

argi

n

ÁÁÁÁ

Figure 65

10

Vn

– E

quiv

alen

t Inp

ut N

oise

Vol

tage

– n

V/H

z

f – Frequency – Hz1000

300

50

100

150

200

250

10 100

See Figure 99TA = 25°CRS = 20 ΩVDD = 5 V

EQUIVALENT INPUT NOISE VOLTAGEvs

FREQUENCY

Vn

ÁÁÁÁÁÁnV

/H

z

Page 38: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LOW-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

PARAMETERTEST †

TLC271C, TLC271AC, TLC271BC

UNITPARAMETERTEST

CONDITIONS TA† VDD = 5 V VDD = 10 V UNITCONDITIONS AMIN TYP MAX MIN TYP MAX

V I ff l

TLC271C

V 1 4 V

25°C 1.1 10 1.1 10

VV I ff l

TLC271C

VO = 1 4 VFull range 12 12

VVIO Input offset voltage TLC271AC

VO = 1.4 V,VIC = 0 V, 25°C 0.9 5 0.9 5

mVVIO Input offset voltage TLC271AC VIC 0 V,RS = 50 Ω,R 1 MΩ

Full range 6.5 6.5mV

TLC271BCRI = 1 MΩ

25°C 0.24 2 0.26 2TLC271BC

Full range 3 3

αVIOAverage temperature coefficient of in-put offset voltage

25°C to 70°C 1.1 1 µV/°C

IIO Input offset current (see Note 4)VO = VDD/2, 25°C 0.1 0.1

pAIIO Input offset current (see Note 4)VO VDD/2,VIC = VDD/2 70°C 7 300 8 300

pA

IIB Input bias current (see Note 4)VO = VDD/2, 25°C 0.6 0.7

pAIIB Input bias current (see Note 4)VO VDD/2,VIC = VDD/2 70°C 40 600 50 600

pA

VICRCommon-mode input

25°C–0.2

to4

–0.3to

4.2

–0.2to9

–0.3to

9.2V

VICRCommon mode inputvoltage range (see Note 5)

Full range–0.2

to3.5

–0.2to

8.5V

V Hi h l l lV 100 mV

25°C 3.2 4.1 8 8.9

VVOH High-level output voltageVID = 100 mV,RL= 1 MΩ 0°C 3 4.1 7.8 8.9 VOH g p gRL= 1 MΩ

70°C 3 4.2 7.8 8.9

V L l l lV 100 mV

25°C 0 50 0 50

VVOL Low-level output voltageVID = –100 mV,IOL = 0

0°C 0 50 0 50 mVOL p gIOL = 0

70°C 0 50 0 50

ALarge signal differential R 1 MΩ

25°C 50 520 50 870

V/ VAVDLarge-signal differentialvoltage amplification

RL= 1 MΩ,See Note 6

0°C 50 700 50 1030 V/mVVD voltage amplification See Note 670°C 50 380 50 660

CMRR C d j i i V V i

25°C 65 94 65 97

dBCMRR Common-mode rejection ratio VIC = VICRmin 0°C 60 95 60 97 dBj IC ICR70°C 60 95 60 97

kSupply voltage rejection ratio V 5 V to 10 V

25°C 70 97 70 97

dBkSVRSupply-voltage rejection ratio(∆VDD/∆VIO)

VDD = 5 V to 10 VVO = 1.4 V

0°C 60 97 60 97 dBSVR (∆VDD/∆VIO) VO = 1.4 V70°C 60 98 60 98

II(SEL) Input current (BIAS SELECT) VI(SEL) = VDD 25°C 65 95 nA

I S lVO = VDD/2, 25°C 10 17 14 23

AIDD Supply currentVO = VDD/2,VIC = VDD/2,N l d

0°C 12 21 18 33 µADD pp y IC DDNo load 70°C 8 14 11 20

µ

† Full range is 0°C to 70°C.NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

Page 39: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

39POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LOW-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

PARAMETERTEST †

TLC271I, TLC271AI, TLC271BI

UNITPARAMETERTEST

CONDITIONS TA† VDD = 5 V VDD = 10 V UNITCONDITIONS AMIN TYP MAX MIN TYP MAX

V I ff l

TLC271I

V 1 4 V

25°C 1.1 10 1.1 10

VV I ff l

TLC271I

VO = 1 4 VFull range 13 13

VVIO Input offset voltage TLC271AI

VO = 1.4 V,VIC = 0 V, 25°C 0.9 5 0.9 5

mVVIO Input offset voltage TLC271AI VIC 0 V,RS = 50 Ω,R 1 MΩ

Full range 7 7mV

TLC271BIRL = 1 MΩ

25°C 0.24 2 0.26 2TLC271BI

Full range 3.5 3.5

αVIOAverage temperature coefficient of input offset voltage

25°C to85°C 1.1 1 µV/°C

IIO Input offset current (see Note 4)VO = VDD/2, 25°C 0.1 0.1

pAIIO Input offset current (see Note 4)VO VDD/2,VIC = VDD/2 85°C 24 1000 26 1000

pA

IIB Input bias current (see Note 4)VO = VDD/2, 25°C 0.6 0.7

pAIIB Input bias current (see Note 4)VO VDD/2,VIC = VDD/2 85°C 200 2000 220 2000

pA

VICRCommon-mode input

25°C–0.2

to4

–0.3to

4.2

–0.2to9

–0.3to

9.2V

VICRCommon mode inputvoltage range (see Note 5)

Full range–0.2

to3.5

–0.2to

8.5V

V Hi h l l lV 100 mV

25°C 3 4.1 8 8.9

VVOH High-level output voltageVID = 100 mV,RL= 1 MΩ –40°C 3 4.1 7.8 8.9 VOH g p gRL= 1 MΩ

85°C 3 4.2 7.8 8.9

V L l l lV 100 mV

25°C 0 50 0 50

VVOL Low-level output voltageVID = –100 mV,IOL = 0

–40°C 0 50 0 50 mVOL p gIOL = 0

85°C 0 50 0 50

ALarge signal differential R 1 MΩ

25°C 50 520 50 870

V/ VAVDLarge-signal differentialvoltage amplification

RL= 1 MΩSee Note 6

–40°C 50 900 50 1550 V/mVVD voltage amplification See Note 685°C 50 330 50 585

CMRR C d j i i V V i

25°C 65 94 65 97

dBCMRR Common-mode rejection ratio VIC = VICRmin –40°C 60 95 60 97 dBj IC ICR85°C 60 95 60 98

kSupply voltage rejection ratio V 5 V to 10 V

25°C 70 97 70 97

dBkSVRSupply-voltage rejection ratio(∆VDD/∆VIO)

VDD = 5 V to 10 VVO = 1.4 V

–40°C 60 97 60 97 dBSVR (∆VDD/∆VIO) VO = 1.4 V85°C 60 98 60 98

II(SEL) Input current (BIAS SELECT) VI(SEL) = VDD 25°C 65 95 nA

I S lVO = VDD/2, 25°C 10 17 14 23

AIDD Supply currentVO = VDD/2,VIC = VDD/2,N l d

–40°C 16 27 25 43 µADD pp yNo load 85°C 17 13 10 18

µ

† Full range is –40 to 85°C.NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

Page 40: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LOW-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

PARAMETERTEST †

TLC271M

UNITPARAMETERTEST

CONDITIONS TA† VDD = 5 V VDD = 10 V UNITCONDITIONS AMIN TYP MAX MIN TYP MAX

VIO Input offset voltage

VO = 1.4 V,VIC = 0 V,

25°C 1.1 10 1.1 10

mVVIO Input offset voltageRS = 50 Ω,RL = 1 MΩ Full range 12 12

mV

αVIOAverage temperature coefficient of input offset voltage

25°C to125°C 1.4 1.4 µV/°C

IIO Input offset current (see Note 4)VO = VDD/2, 25°C 0.1 0.1 pA

IIO Input offset current (see Note 4)VO VDD/2,VIC = VDD/2 125°C 1.4 15 1.8 15 nA

IIB Input bias current (see Note 4)VO = VDD/2, 25°C 0.6 0.7 pA

IIB Input bias current (see Note 4)VO VDD/2,VIC = VDD/2 125°C 9 35 10 35 nA

VICRCommon-mode input

25°C0to4

–0.3to

4.2

0to9

–0.3to

9.2V

VICRCommon mode inputvoltage range (see Note 5)

Full range0to

3.5

0to

8.5V

V Hi h l l lV 100 mV

25°C 3.2 4.1 8 8.9

VVOH High-level output voltageVID = 100 mV,RL= 1 MΩ –55°C 3 4.1 7.8 8.8 VOH g p gRL= 1 MΩ

125°C 3 4.2 7.8 9

V L l l lV 100 mV

25°C 0 50 0 50

VVOL Low-level output voltageVID = –100 mV,IOL = 0

–55°C 0 50 0 50 mVOL p gIOL = 0

125°C 0 50 0 50

ALarge signal differential R 1 MΩ

25°C 50 520 50 870

V/ VAVDLarge-signal differentialvoltage amplification

RL= 1 MΩ,See Note 6

–55°C 25 1000 25 1775 V/mVVD voltage amplification See Note 6125°C 25 200 25 380

CMRR C d j i i V V i

25°C 65 94 65 97

dBCMRR Common-mode rejection ratio VIC = VICRmin –55°C 60 95 60 97 dBj IC ICR125°C 60 85 60 91

kSupply voltage rejection ratio V 5 V to 10 V

25°C 70 97 70 97

dBkSVRSupply-voltage rejection ratio(∆VDD/∆VIO)

VDD = 5 V to 10 VVO = 1.4 V

–55°C 60 97 60 97 dBSVR (∆VDD/∆VIO) VO = 1.4 V125°C 60 98 60 98

II(SEL) Input current (BIAS SELECT) VI(SEL) = VDD 25°C 65 95 nA

I S lVO = VDD/2, 25°C 10 17 14 23

AIDD Supply currentVO = VDD/2,VIC = VDD/2,N l d

–55°C 17 30 28 48 µADD pp yNo load 125°C 7 12 9 15

µ

† Full range is –55°C to 125°C.NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

Page 41: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

41POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LOW-BIAS MODE

operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TA

TLC271C, TLC271AC,TLC271BC UNITA

MIN TYP MAXUNIT

SR Sl i iR 1 MΩ

V 1 V

25°C 0.03

V/SR Sl i iR 1 MΩ

VI(PP) = 1 V 0°C 0.04

V/SR Slew rate at unity gainRL = 1 MΩ,CL = 20 pF

I(PP)70°C 0.03

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 2 5 V

25°C 0.03V/µs

See Figure 98VI(PP) = 2.5 V 0°C 0.03I(PP)

70°C 0.02

Vn Equivalent input noise voltagef = 1 kHz,See Figure 99

RS = 20 Ω,25°C 68 nV/√Hz

B M i i b d id hV V C 20 pF

25°C 5

kHBOM Maximum output-swing bandwidthVO = VOH,RL = 1 MΩ

CL = 20 pF,See Figure 98

0°C 6 kHzOM p gRL = 1 MΩ, See Figure 98

70°C 4.5

B U i i b d id hV 10 mV C 20 pF

25°C 85

kHB1 Unity-gain bandwidthVI = 10 mV,See Figure 100

CL = 20 pF,0°C 100 kHz1 y g

See Figure 10070°C 65

Ph iV 10 mV f B

25°C 34°

φm Phase marginVI = 10 mV,CL = 20 pF

f = B1,See Figure 100

0°C 36°φm gCL = 20 pF, See Figure 100

70°C 30°

operating characteristics at specified free-air temperature, V DD = 10 V

PARAMETER TEST CONDITIONS TA

TLC271C, TLC271AC,TLC271BC UNITA

MIN TYP MAXUNIT

SR Sl i iR 1 MΩ

V 1 V

25°C 0.05

V/SR Sl i iR 1 MΩ

VI(PP) = 1 V 0°C 0.05

V/SR Slew rate at unity gainRL = 1 MΩ,CL = 20 pF

I(PP)70°C 0.04

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 5 5 V

25°C 0.04V/µs

See Figure 98VI(PP) = 5.5 V 0°C 0.05I(PP)

70°C 0.04

Vn Equivalent input noise voltagef = 1 kHz,See Figure 99

RS = 20 Ω,25°C 68 nV/√Hz

B M i i b d id hV V C 20 pF

25°C 1

kHBOM Maximum output-swing bandwidthVO = VOH,RL = 1 MΩ

CL = 20 pF,See Figure 98

0°C 1.3 kHzOM p gRL = 1 MΩ, See Figure 98

70°C 0.9

B U i i b d id hVI = 10 mV C 20 pF

25°C 110

kHB1 Unity-gain bandwidthVI = 10 mV,

See Figure 100CL = 20 pF,

0°C 125 kHz1 y gSee Figure 100

70°C 90

Ph iV 10 mV f B

25°C 38°

φm Phase marginVI = 10 mV,CL = 20 pF

f = B1,See Figure 100

0°C 40°φm gCL = 20 pF, See Figure 100

70°C 34°

Page 42: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LOW-BIAS MODE

operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TA

TLC271I, TLC271AI,TLC271BI UNITA

MIN TYP MAXUNIT

SR Sl i iR 1 MΩ

V 1 V

25°C 0.03

V/SR Sl i iR 1 MΩ

VI(PP) = 1 V –40°C 0.04

V/SR Slew rate at unity gainRL = 1 MΩ,CL = 20 pF

I(PP)85°C 0.03

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 2 5 V

25°C 0.03V/µs

See Figure 98VI(PP) = 2.5 V –40°C 0.04I(PP)

85°C 0.02

Vn Equivalent input noise voltagef = 1 kHz,See Figure 99

RS = 20 Ω,25°C 68 nV/√Hz

B M i i b d id hV V C 20 pF

25°C 5

kHBOM Maximum output-swing bandwidthVO = VOH,RL = 1 MΩ

CL = 20 pF,See Figure 98

–40°C 7 kHzOM p gRL = 1 MΩ, See Figure 98

85°C 4

B U i i b d id hV 10 mV C 20 pF

25°C 85

MHB1 Unity-gain bandwidthVI = 10 mV,See Figure 100

CL = 20 pF,–40°C 130 MHz1 y g

See Figure 10085°C 55

Ph iV 10 mV f B

25°C 34°

φm Phase marginVI = 10 mV,CL = 20 pF

f = B1,See Figure 100

–40°C 38°φm gCL = 20 pF, See Figure 100

85°C 28°

operating characteristics at specified free-air temperature, V DD = 10 V

PARAMETER TEST CONDITIONS TA

TLC271C, TLC271AC,TLC271BC UNITA

MIN TYP MAXUNIT

SR Sl i iR 1 MΩ

V 1 V

25°C 0.05

V/SR Sl i iR 1 MΩ

VI(PP) = 1 V –40°C 0.06

V/SR Slew rate at unity gainRL = 1 MΩ,CL = 20 pF

I(PP)85°C 0.03

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 5 5 V

25°C 0.04V/µs

See Figure 98VI(PP) = 5.5 V –40°C 0.05I(PP)

85°C 0.03

Vn Equivalent input noise voltagef = 1 kHz,See Figure 99

RS = 20 Ω,25°C 68 nV/√Hz

V V C 20 pF25°C 1

BOM Maximum output-swing bandwidthVO = VOH,RL = 1 MΩ

CL = 20 pF,See Figure 98

–40°C 1.4 kHzRL = 1 MΩ, See Figure 98

85°C 0.8

V 10 mV C 20 pF25°C 110

B1 Unity-gain bandwidthVI = 10 mV,See Figure 100

CL = 20 pF,–40°C 155 MHz

See Figure 10085°C 80

V 10 mV l f B25°C 38°

φm Phase marginVI = 10 mV,lCL = 20 pF

f = B1,See Figure 100

–40°C 42°CL = 20 pF, See Figure 100

85°C 32°

Page 43: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

43POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LOW-BIAS MODE

operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TATLC271M

UNITPARAMETER TEST CONDITIONS TA MIN TYP MAXUNIT

SR Sl i iR 1 MΩ

V 1 V

25°C 0.03

V/SR Sl i iR 1 MΩ

VI(PP) = 1 V –55°C 0.04

V/SR Slew rate at unity gainRL = 1 MΩ,CL = 20 pF

I(PP)125°C 0.02

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 2 5 V

25°C 0.03V/µs

See Figure 98VI(PP) = 2.5 V –55°C 0.04I(PP)

125°C 0.02

Vn Equivalent input noise voltagef = 1 kHz,See Figure 99

RS = 20 Ω,25°C 68 nV/√Hz

B M i i b d id hV V C 20 pF

25°C 5

kHBOM Maximum output-swing bandwidthVO = VOH,RL = 1 MΩ

CL = 20 pF,See Figure 98

–55°C 8 kHzOM p gRL = 1 MΩ, See Figure 98

125°C 3

B U i i b d id hV 10 mV C 20 pF

25°C 85

kHB1 Unity-gain bandwidthVI = 10 mV,See Figure 100

CL = 20 pF,–55°C 140 kHz1 y g

See Figure 100125°C 45

Ph iV 10 mV f B

25°C 34°

φm Phase marginVI = 10 mV,CL = 20 pF

f = B1,See Figure 100

–55°C 39°φm gCL = 20 pF, See Figure 100

125°C 25°

operating characteristics at specified free-air temperature, V DD = 10 V

PARAMETER TEST CONDITIONS TATLC271M

UNITPARAMETER TEST CONDITIONS TA MIN TYP MAXUNIT

SR Sl i iR 1 MΩ

V 1 V

25°C 0.05

V/SR Sl i iR 1 MΩ

VI(PP) = 1 V –55°C 0.06

V/SR Slew rate at unity gainRL = 1 MΩ,CL = 20 pF

I(PP)125°C 0.03

V/µsSR Slew rate at unity gain CL = 20 pF,See Figure 98

V 5 5 V

25°C 0.04V/µs

See Figure 98VI(PP) = 5.5 V –55°C 0.06I(PP)

125°C 0.03

Vn Equivalent input noise voltagef = 1 kHz,See Figure 99

RS = 20 Ω,25°C 68 nV/√Hz

B M i i b d id hV V C 20 pF

25°C 1

kHBOM Maximum output-swing bandwidthVO = VOH,RL = 1 MΩ

CL = 20 pF,See Figure 98

–55°C 1.5 kHzOM p gRL = 1 MΩ, See Figure 98

125°C 0.7

B U i i b d id hV 10 mV C 20 pF

25°C 110

kHB1 Unity-gain bandwidthVI = 10 mV,See Figure 100

CL = 20 pF,–55°C 165 kHz1 y g

See Figure 100125°C 70

Ph iV 10 mV f B

25°C 38°

φm Phase marginVI = 10 mV,CL = 20 pF

f = B1,See Figure 100

–55°C 43°φm gCL = 20 pF, See Figure 100

125°C 29°

Page 44: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

44 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (LOW-BIAS MODE)

Table of Graphs

FIGURE

VIO Input offset voltage Distribution 66, 67

αVIO Temperature coefficient Distribution 68, 69

V Hi h l l lvs High-level output current 70, 71

VOH High-level output voltagevs High level output currentvs Supply voltage

70, 7172OH g p g pp y g

vs Free-air temperature 73

V L l l l

vs Common-mode input voltage 74, 75

VOL Low-level output voltage

vs Common-mode input voltagevs Differential input voltage

74, 7576VOL Low-level output voltage vs Differential input voltage

vs Free-air temperature7677p

vs Low-level output current 78, 79

A L i l diff i l l lifi ivs Supply voltage 80

AVD Large-signal differential voltage amplificationvs Supply voltagevs Free-air temperature

8081VD g g g p p

vs Frequency 92, 93

IIB Input bias current vs Free-air temperature 82

IIO Input offset current vs Free-air temperature 82

VI Maximum input voltage vs Supply voltage 83

IDD Supply currentvs Supply voltage 84

IDD Supply currentvs Supply voltagevs Free-air temperature

8485

SR Slew ratevs Supply voltage 86

SR Slew ratevs Supply voltagevs Free-air temperature

8687

Bias-select current vs Supply voltage 88

VO(PP) Maximum peak-to-peak output voltage vs Frequency 89

B1 Unity-gain bandwidthvs Free-air temperature 90

B1 Unity-gain bandwidthvs Free air temperaturevs Supply voltage

9091

Ph ivs Supply voltage 94

φm Phase marginvs Supply voltagevs Free-air temperature

9495φm g p

vs Load capacitance 96

Vn Equivalent input noise voltage vs Frequency 97

Phase shift vs Frequency 92, 93

Page 45: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

45POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (LOW-BIAS MODE) †

Figure 66

Figure 68

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

–50

Per

cent

age

of U

nits

– %

VIO – Input Offset Voltage – mV5

70

–4 –3 –2 –1 0 1 2 3 4

10

20

30

40

50

60

DISTRIBUTION OF TLC271INPUT OFFSET VOLTAGE

VDD = 5 VTA = 25°CP Package

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

905 Amplifiers Tested From 6 Wafer Lots

60

50

40

30

20

10

86420–2–4–6–8

70

10

Per

cent

age

of U

nits

– %

0–10

DISTRIBUTION OF TLC271INPUT OFFSET VOLTAGE

TEMPERATURE COEFFICIENT

αVIO – Temperature Coefficient – µV/°C

(1) 12.1 µV/°C(1) 19.2 µV/°COutliers:P PackageTA = 25°C to 125°CVDD = 5 V356 Amplifiers Tested From 8 Wafer Lots

Figure 67

60

50

40

30

20

10

43210–1–2–3–4

70

5VIO – Input Offset Voltage – mV

Per

cent

age

of U

nits

– %

0–5

DISTRIBUTION OF TLC271INPUT OFFSET VOLTAGE

P PackageTA = 25°CVDD = 10 V905 Amplifiers Tested From 6 Wafer Lots

Figure 69

–100

Per

cent

age

of U

nits

– %

αVIO – Temperature Coefficient – µV/°C10

70

–8 –6 –4 –2 0 2 4 6 8

10

20

30

40

50

60

DISTRIBUTION OF TLC271INPUT OFFSET VOLTAGE

TEMPERATURE COEFFICIENT

356 Amplifiers Tested From 8 Wafer LotsVDD = 10 V

P PackageOutliers:(1) 18.7 µV/°C(1) 11.6 µV/°C

ÎÎÎÎÎÎÎÎÎÎÎÎ

TA = 25°C to 125°C

Page 46: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

46 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (LOW-BIAS MODE) †

Figure 70

Figure 72

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

00

VO

H–

Hig

h-Le

vel O

utpu

t Vol

tage

– V

IOH – High-Level Output Current – mA–10

5

–2 –4 –6 –8

1

2

3

4

VDD = 5 V

VDD = 3 V

VDD = 4 V

HIGH-LEVEL OUTPUT VOLTAGEvs

HIGH-LEVEL OUTPUT CURRENT

ÁÁÁÁÁÁ

V OH

TA = 25°CVID = 100 mV

00

VDD – Supply Voltage – V16

16

2 4 6 8 10 12 14

2

4

6

8

10

12

14VID = 100 mVRL = 1 MΩTA = 25°C

HIGH-LEVEL OUTPUT VOLTAGEvs

SUPPLY VOLTAGE

VO

H–

Hig

h-Le

vel O

utpu

t Vol

tage

– V

ÁÁÁÁV O

H

Figure 71

00

IOH – High-Level Output Current – mA–40

16

–10 –20 –30

2

4

6

8

10

12

14 TA = 25°CVID = 100 mV

VDD = 16 V

VDD = 10 V

HIGH-LEVEL OUTPUT VOLTAGEvs

HIGH-LEVEL OUTPUT CURRENT

–35–25–15–5

VO

H–

Hig

h-Le

vel O

utpu

t Vol

tage

– V

ÁÁÁÁÁÁÁÁÁ

V OH

Figure 73

–75–2.4

TA – Free-Air Temperature – °C125

–1.6

–50 –25 0 25 50 75 100

–2.3

–2.2

–2.1

–2

–1.9

–1.8

–1.7

IOH = –5 mAVID = 100 mV

VDD = 5 V

VDD = 10 V

HIGH-LEVEL OUTPUT VOLTAGEvs

FREE-AIR TEMPERATURE

VO

H–

Hig

h-Le

vel O

utpu

t Vol

tage

– V

ÁÁÁÁÁÁV

OH

Page 47: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

47POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (LOW-BIAS MODE) †

Figure 74

Figure 76

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

0300

VO

L –

Low

-Lev

el O

utpu

t Vol

tage

– m

V

VIC – Common-Mode Input Voltage – V4

700

1 2 3

400

500

600

LOW-LEVEL OUTPUT VOLTAGEvs

COMMON-MODE INPUT VOLTAGE

650

550

450

350ÁÁÁÁ

VO

L

TA = 25°CIOL = 5 mAVDD = 5 V

VID = –1 V

ÎÎÎÎÎÎÎÎÎÎ

VID = –100 mV

LOW-LEVEL OUTPUT VOLTAGEvs

DIFFERENTIAL INPUT VOLTAGE

0

VID – Differential Input Voltage – V

–10–2 –4 –6 –8

800

700

600

500

400

300

200

100

0–1 –3 –5 –7 –9

VO

L –

Low

-Lev

el O

utpu

t Vol

tage

– m

V

ÁÁÁÁÁÁ

VO

L

IOL = 5 mAVIC = VID/2TA = 25°C

VDD = 10 V

ÎÎÎÎÎÎÎÎÎÎVDD = 5 V

Figure 75

2500

VIC – Common-Mode Input Voltage – V

300

350

400

450

500

2 4 6 8 10

LOW-LEVEL OUTPUT VOLTAGEvs

COMMON-MODE INPUT VOLTAGE

1 3 5 7 9V

OL

– Lo

w-L

evel

Out

put V

olta

ge –

mV

ÁÁÁÁ

VO

L

VDD = 10 VIOL = 5 mATA = 25°C

VID = –1 V

VID = –2.5 V

VID = –100 mV

Figure 77

–750

TA – Free-Air Temperature – °C125

900

–50 –25 0 25 50 75 100

100

200

300

400

500

600

700

800

LOW-LEVEL OUTPUT VOLTAGEvs

FREE-AIR TEMPERATURE

VO

L –

Low

-Lev

el O

utpu

t Vol

tage

– m

V

ÁÁÁÁÁÁ

VO

L

VIC = 0.5 VVID = –1 VIOL = 5 mA

ÎÎÎÎÎÎÎÎÎÎ

VDD = 10 V

ÎÎÎÎÎÎÎÎÎÎ

VDD = 5 V

Page 48: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

48 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (LOW-BIAS MODE) †

Figure 78

Figure 80

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

0

1

80

1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9VID = –1 VVIC = 0.5 V

TA = 25°C

VDD = 3 V

VDD = 4 V

VDD = 5 V

LOW-LEVEL OUTPUT VOLTAGEvs

LOW-LEVEL OUTPUT CURRENT

IOL – Low-Level Output Current – mA

VO

L –

Low

-Lev

el O

utpu

t Vol

tage

– V

ÁÁÁÁ

VO

L

0VDD – Supply Voltage – V

2000

160

2 4 6 8 10 12 14

200

400

600

800

1000

1200

1400

1600

1800TA = –55°C

– 40°C

TA = 0°C

ÎÎÎÎ

25°CÎÎÎÎÎÎ70°C

ÎÎÎÎÎÎ

85°C

125°C

LARGE-SIGNALDIFFERENTIAL VOLTAGE AMPLIFICATION

vsSUPPLY VOLTAGE

ÁÁÁÁÁÁ

AV

D –

Lar

ge-S

igna

l Diff

eren

tial

ÁÁÁÁ

AV

DVo

ltage

Am

plifi

catio

n –

V/m

V

ÎÎÎÎÎÎÎÎ

RL = 1 MΩ

Figure 79

0IOL – Low-Level Output Current – mA

3

300

5 10 15 20 25

0.5

1

1.5

2

2.5 TA = 25°CVIC = 0.5 VVID = –1 V

VDD = 10 V

VDD = 16 V

LOW-LEVER OUTPUT VOLTAGEvs

LOW-LEVEL OUTPUT CURRENT

VO

L –

Low

-Lev

el O

utpu

t Vol

tage

– V

ÁÁÁÁÁÁ

V OL

Figure 81

1007550250–25–500

125TA – Free-Air Temperature – °C

–75

VDD = 5 V

VDD = 10 V

1800

1600

1400

1200

1000

800

600

400

200

2000

LARGE-SIGNALDIFFERENTIAL VOLTAGE AMPLIFICATION

vsFREE-AIR TEMPERATURE

ÁÁÁÁÁÁÁÁÁ

AV

D –

Lar

ge-S

igna

l Diff

eren

tial

ÁÁÁÁ

AV

DVo

ltage

Am

plifi

catio

n –

V/m

V

ÎÎÎÎÎÎÎÎ

RL = 1 MΩ

Page 49: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

49POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (LOW-BIAS MODE) †

Figure 82

Figure 84

NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

0.1125

10000

45 65 85 105

1

10

100

1000

25

TA – Free-Air Temperature – °C

INPUT BIAS CURRENT AND INPUT OFFSETCURRENT

vsFREE-AIR TEMPERATURE

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VDD = 10 VVIC = 5 VSee Note A

35 55 75 95 115

ÎÎÎÎ

IIB

ÎÎÎÎ

IIO

IIB a

nd II

O –

Inpu

t Bia

s an

dIBI

I IO

Inpu

t Offs

et C

urre

nts

– pA

TA = –55°C

ÎÎÎÎ25°C

70°C

125°C

0

IDD

– S

uppl

y C

urre

nt –

mA

VDD – Supply Voltage – V

45

160

2 4 6 8 10 12 14

5

10

15

20

25

30

35

40

ÎÎΖ40°C

0°C

No LoadVO = VDD/2

SUPPLY CURRENTvs

SUPPLY VOLTAGE

ÁÁÁÁ

DD

IA

µ

Figure 83

0

VDD – Supply Voltage – V

16

160

2 4 6 8 10 12 14

2

4

6

8

10

12

14

MAXIMUM INPUT VOLTAGEvs

SUPPLY VOLTAGE

ÎÎÎÎÎÎÎÎ

TA = 25°C

VI –

Max

imum

Inpu

t Vol

tage

– V

VI

Figure 85

VO = VDD/2No Load

VDD = 10 V

VDD = 5 V

–75TA – Free-Air Temperature – °C

30

1250

–50 –25 0 25 50 75 100

5

10

15

20

25

SUPPLY CURRENTvs

FREE-AIR TEMPERATURE

IDD

– S

uppl

y C

urre

nt –

mA

ÁÁÁÁÁÁ

DD

IA

µ

Page 50: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (LOW-BIAS MODE) †

Figure 86

Figure 88

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SR

– S

lew

Rat

e –

V/s

CL = 20 pFRL = 1 MΩVI(PP) = 1 VAV = 1

See Figure 98TA= 25°C

0VDD – Supply Voltage – V

0.07

160.00

2 4 6 8 10 12 14

0.01

0.02

0.03

0.04

0.05

0.06

SLEW RATEvs

SUPPLY VOLTAGE

0

Bia

s-S

elec

t Cur

rent

– n

A

VDD – Supply Voltage – V

150

160

2 4 6 8 10 12 14

30

60

90

120

TA = 25°C

BIAS-SELECT CURRENTvs

SUPPLY VOLTAGE

135

105

75

45

15

ÎÎÎÎÎVI(SEL) = VDD

Figure 87

SLEW RATEvs

FREE-AIR TEMPERATURE

VI(PP) = 5.5 VVDD = 10 V

VDD = 5 VVI(PP) = 1 V

VDD = 5 VVI(PP) = 2.5 V

VDD = 10 VVI(PP) = 1 V

–75TA – Free-Air Temperature – °C

0.07

1250.00

–50 –25 0 25 50 75 100

0.01

0.02

0.03

0.04

0.05

0.06 CL = 20 pFRL = 1 MΩ

See Figure 98AV = 1

SR

– S

lew

Rat

e –

V/s

Figure 89

0.1f – Frequency – kHz

10

1000

1

2

3

4

5

6

7

8

9

1 10

VDD = 10 V

VDD = 5 V

ÁÁ

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGEvs

FREQUENCY

ÁÁÁÁÁÁÁÁÁÁSee Figure 98

RL = 1 MΩ

ÁÁÁÁÁÁÁÁÁÁÁÁ

TA = 125°CTA = 25°CTA = –55°C

– M

axim

um P

eak-

to-P

eak

Out

put V

olta

ge –

VV O

(PP

)

Page 51: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

51POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (LOW-BIAS MODE) †

Figure 90

1f – Frequency – Hz

1 M0.1

10 100 1 k 10 k 100 k

1

101

102

103

104

105

106

150°

120°

90°

60°

30°

180°

Pha

se S

hift

TA = 25°CRL = 1 MΩVDD = 5 V

ÎÎÎÎÎÎ

AVD

LARGE-SIGNAL DIFFERENTIAL VOLTAGEAMPLIFICATION AND PHASE SHIFT

vsFREQUENCY

107

ÎÎÎÎÎÎÎÎÎÎ

Phase Shift

AV

D –

Lar

ge-S

igna

l Diff

eren

tial

ÁÁÁÁÁÁ

AV

DVo

ltage

Am

plifi

catio

n

Figure 92

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

UNITY-GAIN BANDWIDTHvs

FREE-AIR TEMPERATURE

VDD = 5 VVI = 10 mVCL = 20 pFSee Figure 100

–75

B1

– U

nity

-Gai

n B

andw

idth

– k

Hz

TA – Free-Air Temperature – °C

150

12530

–50 –25 0 25 50 75 100

50

70

90

110

130

B1

Figure 91

0VDD – Supply Voltage – V

140

1650

2 4 6 8 10 12 14

60

70

80

90

100

110

120

130TA = 25°CCL = 20 pFVI = 10 mV

UNITY-GAIN BANDWIDTHvs

SUPPLY VOLTAGE

B1

– U

nity

-Gai

n B

andw

idth

– k

Hz

B1

ÎÎÎÎÎÎÎÎÎÎ

See Figure 100

Page 52: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

52 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (LOW-BIAS MODE) †

LARGE-SIGNAL DIFFERENTIAL VOLTAGEAMPLIFICATION AND PHASE SHIFT

vsFREQUENCY

VDD = 10 VRL = 1 MΩTA = 25°C

Pha

se S

hift

180°

30°

60°

90°

120°

150°

106

104

103

102

101

1

100 k10 k1 k100100.1

1 Mf – Frequency – Hz

1

105

107

ÎÎÎÎAVD

ÎÎÎÎÎÎÎÎÎÎ

Phase Shift

AV

D –

Lar

ge-S

igna

l Diff

eren

tial

ÁÁÁÁÁÁ

AV

DVo

ltage

Am

plifi

catio

n

Figure 93

Figure 94

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

PHASE MARGINvs

SUPPLY VOLTAGE

0

m –

Pha

se M

argi

n

VDD – Supply Voltage – V

42°

1630°

2 4 6 8 10 12 14

32°

34°

36°

38°

40°

See Figure 100

VI = 10 mV

TA = 25°CCL = 20 pF

ÁÁÁÁ

Figure 95

See Figure 100

VI = 10 mVCL = 20 pF

VDD = 5 mV

–75TA – Free-Air Temperature – °C

40°

12520°

–50 –25 0 25 50 75 100

24°

28°

32°

36°

PHASE MARGINvs

FREE-AIR TEMPERATURE

38°

34°

30°

26°

22°

m –

Pha

se M

argi

n

ÁÁÁÁ

Page 53: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

53POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS (LOW-BIAS MODE) †

Figure 96

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

VDD = 5 mV

TA = 25°CSee Figure 100

VI = 10 mV

0CL – Capacitive Load – pF

37°

10025°

20 40 60 80

27°

29°

31°

33°

35°

PHASE MARGINvs

CAPACITIVE LOAD

10 30 50 70 90

m –

Pha

se M

argi

n

ÁÁÁÁ

Figure 97

75

1V

N –

Equ

ival

ent I

nput

Noi

se V

olta

ge –

nV

/Hz

f – Frequency – Hz

200

10000

25

50

100

125

150

175

10 100

EQUIVALENT INPUT NOISE VOLTAGEvs

FREQUENCY

Vn

ÁÁÁÁÁÁn

V/

Hz ÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TA = 25°CRS = 20ΩVDD = 5 V

ÎÎÎÎÎÎSee Figure 99

Page 54: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

single-supply versus split-supply test circuits

Because the TLC271 is optimized for single-supply operation, circuit configurations used for the various testsoften present some inconvenience since the input signal, in many cases, must be offset from ground. Thisinconvenience can be avoided by testing the device with split supplies and the output load tied to the negativerail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit givesthe same result.

+

VDD

CL RL

VO

VI VI

VO

RLCL

+

VDD+

VDD–

(a) SINGLE SUPPLY (b) SPLIT SUPPLY

Figure 98. Unity-Gain Amplifier

VDD–

+

VDD+–

+

1/2 VDD

20 Ω

VO

2 kΩ

20 Ω

VDD–

20 Ω 20 Ω

2 kΩ

VO

(a) SINGLE SUPPLY (b) SPLIT SUPPLY

Figure 99. Noise-Test Circuit

100 ΩVDD

+

10 kΩ

VO

CL

1/2 VDD

VI VI

CL

100 Ω

VO

10 kΩ

+

VDD+

VDD–

(a) SINGLE SUPPLY (b) SPLIT SUPPLY

Figure 100. Gain-of-100 Inverting Amplifier

Page 55: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

55POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

input bias current

Because of the high input impedance of the TLC271 operational amplifiers, attempts to measure the input bias currentcan result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA,a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneousmeasurements:

1. Isolate the device from other potential leakage sources. Use a grounded shield around and between thedevice inputs (see Figure 101). Leakages that would otherwise flow to the inputs are shunted away.

2. Compensate for the leakage of the test socket by actually performing an input bias current test (using apicoammeter) with no device in the test socket. The actual input bias current can then be calculated bysubtracting the open-socket leakage readings from the readings obtained with a device in the test socket.

One word of caution: many automatic testers as well as some bench-top operational amplifier testers us theservo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage dropacross the series resistor is measured and the bias current is calculated). This method requires that a device beinserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not feasible using thismethod.

V = VIC

41

58

Figure 101. Isolation Metal Around Device inputs (JG and P packages)

low-level output voltage

To obtain low-supply-voltage operation, some compromise is necessary in the input stage. This compromiseresults in the device low-level output being dependent on both the common-mode input voltage level as wellas the differential input voltage level. When attempting to correlate low-level output readings with those quotedin the electrical specifications, these two conditions should be observed. If conditions other than these are tobe used, please refer to the Typical Characteristics section of this data sheet.

input offset voltage temperature coefficient

Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. Thisparameter is actually a calculation using input offset voltage measurements obtained at two differenttemperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the deviceand the test socket. This moisture results in leakage and contact resistance which can cause erroneous inputoffset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since themoisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that thesemeasurements be performed at temperatures above freezing to minimize error.

Page 56: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

56 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

full-power response

Full-power response, the frequency above which the amplifier slew rate limits the output voltage swing, is oftenspecified two ways: full-linear response and full-peak response. The full-linear response is generallymeasuredby monitoring the distortion level of the output while increasing the frequency of a sinusoidal inputsignal until the maximum frequency is found above which the output contains significant distortion. The full-peakresponse is defined as the maximum output frequency, without regard to distortion, above which fullpeak-to-peak output swing cannot be maintained.

Because there is no industry-wide accepted value for significant distortion, the full-peak response is specifiedin this data sheet and is measured using the circuit of Figure 98. The initial setup involves the use of a sinusoidalinput to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave isincreased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the sameamplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained(Figure 102). A square wave is used to allow a more accurate determination of the point at which the maximumpeak-to-peak output is reached.

(a) f = 100 Hz (b) B OM > f > 100 Hz (c) f = B OM (d) f > B OM

Figure 102. Full-Power-Response Output Signal

test time

Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume,short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFETdevices, and require longer test times than their bipolar and BiFET counterparts. The problem becomes morepronounced with reduced supply levels and lower temperatures.

APPLICATION INFORMATION

single-supply operation

While the TLC271 performs well using dual powersupplies (also called balanced or split supplies),the design is optimized for single-supplyoperation. This includes an input common modevoltage range that encompasses ground as wellas an output voltage range that pulls down toground. The supply voltage range extends downto 3 V (C-suffix types), thus allowing operationwith supply levels commonly available for TTL andHCMOS; however, for maximum dynamic range,16-V single-supply operation is recommended.

+

R4

VO

VDD

R2

R1

VI

VrefR3 C

0.01 µF

Vref VDDR3

R1 R3

VO (Vref VI)R4R2 Vref

Figure 103. Inverting Amplifier With VoltageReference

Page 57: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

57POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

single-supply operation (continued)

Many single-supply applications require that a voltage be applied to one input to establish a reference level thatis above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 103).The low input bias current consumption of the TLC271 permits the use of very large resistive values toimplement the voltage divider, thus minimizing power consumption.

The TLC271 works well in conjunction with digital logic; however, when powering both linear devices and digitallogic from the same power supply, the following precautions are recommended:

1. Power the linear devices from separate bypassed supply lines (see Figure 104); otherwise, the lineardevice supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic.

2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitivedecoupling is often adequate; however, RC decoupling may be necessary in high-frequency applications.

(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)

(a) COMMON SUPPLY RAILS

Logic

+ Logic LogicPowerSupply

SupplyPower

LogicLogic

+ Logic

OUT

OUT

Figure 104. Common Versus Separate Supply Rails

Page 58: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

58 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

input offset voltage nulling

The TLC271 offers external input offset null control. Nulling of the input off set voltage may be achieved byadjusting a 25-kΩ potentiometer connected between the offset null terminals with the wiper Connected asshown in Figure 105. The amount of nulling range varies with the bias selection. In the high-bias mode, thenulling range allows the maximum offset voltage specified to be trimmed to zero. In low-bias and medium-biasmodes, total nulling may not be possible.

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ25 kΩ

N2VDD N2

N125 kΩ

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

GND

(a) SINGLE SUPPLY (b) SPLIT SUPPLY

+

+

N1

OUTOUT

IN–

IN+

IN–

IN+

Figure 105. Input Offset Voltage Null Circuit

Page 59: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

59POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

bias selection

Bias selection is achieved by connecting the bias select pin to one of the three voltage levels (see Figure 106).For medium-bias applications, R is recommended that the bias select pin be connected to the mid-pointbetween the supply rails. This is a simple procedure in split-supply applications, since this point is ground. Insingle-supply applications, the medium-bias mode necessitates using a voltage divider as indicated. The useof large-value resistors in the voltage divider reduces the current drain of the divider from the supply line.However, large-value resistors used in conjunction with a large-value capacitor requires significant time tocharge up to the supply midpoint after the supply is switched on. A voltage other than the midpoint may be usedif it is within the voltages specified in the table of Figure 106.

0.01 µF

1 MΩ

VDD

Low

Medium

High

1 MΩ

To BIAS SELECT

BIAS MODEBIAS-SELECT VOLTAGE

(single supply)

Low

Medium

High

VDD1 V to VDD – 1 V

GND

Figure 106. Bias Selection for Single-Supply Applications

input characteristics

The TLC271 is specified with a minimum and a maximum input voltage that, if exceeded at either input, couldcause the device to malfunction. Exceeding this specified range is a common problem, especially insingle-supply operation. Note that the lower range limit includes the negative rail, while the upper range limitis specified at VDD – 1 V at TA = 25°C and at VDD – 1.5 V at all other temperatures.

The use of the polysilicon-gate process and the careful input circuit design gives the TLC271 very good inputoffset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOSdevices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopantimplanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates thepolarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offsetvoltage drift with time has been calculated to be typically 0.1 µV/month, including the first month of operation.

Because of the extremely high input impedance and resulting low bias current requirements, the TLC271 is wellsuited for low-level signal processing; however, leakage currents on printed circuit boards and sockets caneasily exceed bias current requirements and cause a degradation in device performance. It is good practice toinclude guard rings around inputs (similar to those of Figure 101 in the Parameter Measurement Informationsection). These guards should be driven from a low-impedance source at the same voltage level as thecommon-mode input (see Figure 107).

The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.

noise performanceThe noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stagedifferential amplifier. The low input bias current requirements of the TLC271 results in a very low noise current,which is insignificant in most applications. This feature makes the devices especially favorable over bipolardevices when using values of circuit impedance greater than 50 kΩ, since bipolar devices exhibit greater noisecurrents.

Page 60: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

60 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

noise performance (continued)

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

+

VI

VO VO

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

+

VOVI

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

+

VI

(a) NONINVERTING AMPLIFIER (b) INVERTING AMPLIFIER (c) UNITY-GAIN AMPLIFIER

Figure 107. Guard-Ring Schemes

feedback

Operational amplifier circuits almost alwaysemploy feedback, and since feedback is the firstprerequisite for oscillation, a little caution isappropriate. Most oscillation problems result fromdriving capacitive loads and ignoring stray inputcapacitance. A small-value capacitor connectedin parallel with the feedback resistor is an effectiveremedy (see Figure 108). The value of thiscapacitor is optimized empirically.

electrostatic discharge protection

The TLC271 incorporates an internal electrostatic-discharge (ESD) protection circuit that prevents functionalfailures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised,however, when handling these devices as exposure to ESD may result in the degradation of the deviceparametric performance. The protection circuit also causes the input bias currents to be temperature dependentand have the characteristics of a reverse-biased diode.

latch-up

Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC271 inputsand output were designed to withstand –100-mA surge currents without sustaining latchup; however,techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodesshould not by design be forward biased. Applied input and output voltage should not exceed the supply voltageby more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supplytransients should be shunted by the use of decoupling capacitors (0.1 µF typical) located across the supply railsas close to the device as possible.

The current path established if latch-up occurs is usually between the positive supply rail and ground and canbe triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supplyvoltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and theforward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance oflatch-up occurring increases with increasing temperature and supply voltages.

ÏÏÏÏÏÏÏÏÏÏÏÏ

+

Figure 108. Compensation for InputCapacitance

VO

Page 61: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

61POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

output characteristics

The output stage of the TLC271 is designed tosink and source relatively high amounts of current(see Typical Characteristics). If the output issubjected to a short-circuit condition, this highcurrent capability can cause device damageunder certain conditions. Output current capabilityincreases with supply voltage.

All operating characteristics of the TLC271 weremeasured using a 20-pF load. The devices drivehigher capacitive loads; however, as output loadcapacitance increases, the resulting responsepole occurs at lower frequencies, thereby causingringing, peaking, or even oscillation (see Figures110, 111, and 112). In many cases, adding somecompensation in the form of a series resistor in thefeedback loop alleviates the problem.

(a) CL = 20 pF, RL = NO LOAD (b) CL = 130 pF, RL = NO LOAD (c) CL = 150 pF, RL = NO LOAD

Figure 110. Effect of Capacitive Loads in High-Bias Mode

(c) CL = 190 pF, RL = NO LOAD(b) CL = 170 pF, RL = NO LOAD(a) CL = 20 pF, RL = NO LOAD

Figure 111. Effect of Capacitive Loads in Medium-Bias Mode

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

+

2.5 V

VO

CL

– 2.5 V

VI TA = 25°Cf = 1 kHzVI(PP) = 1 V

Figure 109. Test Circuit for OutputCharacteristics

Page 62: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

62 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

output characteristics (continued)

(a) CL = 20 pF, RL = NO LOAD (b) CL = 260 pF, RL = NO LOAD (c) C L = 310 pF, RL = NO LOAD

Figure 112. Effect of Capacitive Loads in Low-Bias Mode

Although the TLC271 possesses excellent high-level output voltage and current capability, methods areavailable for boosting this capability, if needed. The simplest method involves the use of a pullup resistor (RP)connected from the output to the positive supply rail (see Figure 113). There are two disadvantages to the useof this circuit. First, the NMOS pulldown transistor, N4 (see equivalent schematic) must sink a comparativelylarge amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance betweenapproximately 60 Ω and 180 Ω, depending on how hard the operational amplifier input is driven. With very lowvalues of RP, a voltage offset from 0 V at the output occurs. Secondly, pullup resistor RP acts as a drain loadto N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying theoutput current.

RPVDD–VO

IF IL IP

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

VI

VDD

RP

VO

R2

R1 RL

IP

IF

IL

IP = Pullup current required by the operational amplifier(typically 500 µA)

+

Figure 113. Resistive Pullup to Increase V OH

Page 63: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

63POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

output characteristics (continued)

5 V

BIAS SELECT

0.016 µF

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

Low Pass

High Pass

Band PassR = 5 kΩ(3/d-1)(see Note A)

0.016 µF

BIAS SELECT

5 V

10 kΩ

10 kΩ

10 kΩ 5 V

BIAS SELECT

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

VI

5 kΩ

10 kΩ

10 kΩ

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

+

TLC271 –

+

TLC271 –

+

TLC271

NOTE A: d = damping factor, I/O

Figure 114. State-Variable Filter

BIASSELECT

R1, 100 kΩ

9 V

100 kΩ

C = 0.1 µF

R3, 47 kΩ

10 kΩ

10 kΩ

BIAS SELECT

VO (see Note B)

9 V

VO (see Note A)

R2

9 V

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

FO 1

4C(R2)R1R3

+

TLC271 –

+

TLC271

NOTES: A. VO(PP) = 8 VB. VO(PP) = 4 V

Figure 115. Single-Supply Function Generator

Page 64: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

64 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION (HIGH-BIAS MODE)

100 kΩ10 kΩ

5 V

–5 V

VI–

5 V

VI+

–5 V

5 V

10 kΩ 95 kΩ

10 kΩ

BIASSELECT

BIAS SELECT

BIASSELECT

VO

R1, 10 kΩ(see Note A)

–5 V

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

+

TLC271

+

TLC271

+

TLC271

NOTE A: CMRR ad jus tment mus t be non induc t i ve .

Figure 116 . Low-Power Ins t rumenta t ion Ampl i f i e r

fNOTCH1

2RC

BIAS SELECT

5 V

VI

VOR10 MΩ

2C540 pF

10 MΩR

C270 pF

C270 pF

5 MΩR/2

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

+

TLC271

Figure 117. Single-Supply Twin-T Notch Filter

Page 65: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

65POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION (HIGH-BIAS MODE)

VI(see Note A)

1.2 kΩ

4.7 kΩ

0.1 µF

22 kΩ

47 kΩ

0.01 µF

TIS 193

15 Ω

0.47 µF100 kΩ

1 kΩ

BIAS SELECT

20 kΩTL431TIP31

10 kΩ

250 µF,25 V VO

(see Note B)

110 Ω

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

+

TLC271

NOTES: A. VI = 3.5 to 15 VB. VO = 2.0 V, 0 to 1 A

+

Figure 118. Logic-Array Power Supply

BIASSELECT

100 kΩ

VO

12 V

N.O.Reset

0.5 µFMylar

H.P.5082-2835

12 V

BIASSELECT

VI ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

+

TLC271ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

+

TLC271

Figure 119. Positive-Peak Detector

Page 66: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

66 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION (MEDIUM-BIAS MODE)

NOTES: A. VO(PP) = 2 V

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

fo 1

2 R1R2C1C2

R268 kΩ

2.2 nFC2

VO

1N4148

470 kΩ

100 kΩ

C12.2 nF

R168 kΩ

47 kΩ

BIASSELECT

2.5 V

100 kΩ1 µF

100 kΩ

5 V

+

TLC271

B.

Figure 120. Wein Oscillator

2.5 VSELECTBIAS

0.22 µF

100 kΩ

100 kΩ

5 V

0.1 µF

10 kΩ

1 MΩ

0.01 µF1 MΩ

VI

VO

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

+

TLC271

Figure 121. Single-Supply AC Amplifier

Page 67: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

67POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION (MEDIUM-BIAS MODE)

SELECTBIAS

2.5 V100 kΩ

1 µF

100 kΩ

100 kΩ

Gain Control1 MΩ

1 kΩ

10 kΩ

5 V

1 µF(see Note A)

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

+

TLC271

NOTE A: Low to medium impedance dynamic mike

– +

– +0.1 µF

+ –

Figure 122. Microphone Preamplifier

SELECTBIAS

VDD/2

VDD

10 MΩ

VO

VREF

150 pF

100 kΩ

15 nF

SELECTBIAS

VDD/2

VDD

1 kΩÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

+

TLC271 –

+

TLC271

NOTES: A. NOTES: VDD = 4 V to 15 VB. Vref = 0 V to VDD–2 V

Figure 123. Photo-Diode Amplifier With Ambient Light Rejection

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

+

TLC271

2N3821

IS5 V

2.5 V

BIASSELECT

R

VI

ISVIR

NOTES: A. VI = 0 V TO 3 V

B.

Figure 124. Precision Low-Current Sink

Page 68: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWEROPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

68 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION (LOW-BIAS MODE)

TLC4066

VDD

BIAS SELECT

VI

90 kΩ

9 kΩ

X1

11

B

VDD

VI

S1

S2

C

A

C

A2

X22

B

1 kΩ

AnalogSwitch

ÏÏÏÏÏÏÏÏÏÏÏÏ

+

TLC271

AV

Select S 1 S2

10 100

NOTE A: VDD = 5 V to 12 V

Figure 125. Amplifier With Digital Gain Selection

5 V

500 kΩ

500 kΩ

5 V

500 kΩ

0.1 µF

500 kΩ

VO2

VO1

BIASSELECT

BIAS SELECTÏÏÏÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

+

TLC271

+

TLC271

Figure 126. Multivibrator

Page 69: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

TLC271, TLC271A, TLC271BLinCMOS PROGAMMABLE LOW-POWER

OPERATIONAL AMPLIFIERS

SLOS090B – NOVEMBER 1987 – REVISED AUGUST 1996

69POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION (LOW-BIAS MODE)

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

10 kΩ

VO

100 kΩ

BIAS SELECT20 kΩ

VI

+

TLC271

VDD

NOTE A: VDD = 5 V to 16 V

Figure 127. Full-Wave Rectifier

Set100 kΩ

VDD

BIASSELECT

10 kΩ

100 kΩReset

33 Ω

ÏÏÏÏÏÏÏÏÏÏÏÏ

+

–TLC271

NOTE A: VDD = 5 V to 16 V

Figure 128. Set/Reset Flip-Flop

BIAS SELECT

5 V

0.016 µF

10 kΩ10 kΩ

VO0.016 µF

Vi

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

+

TLC271

NOTE A: Normalized to FC = 1 kHz and RL = 10 kΩ

Figure 129. Two-Pole Low-Pass Butterworth Filter

Page 70: Input Offset Voltage DriftTypically D, JG, OR P PACKAGE 0 ... · Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz φm Phase

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductorproduct or service without notice, and advises its customers to obtain the latest version of relevant informationto verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable atthe time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques areutilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of eachdevice is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, orsevere property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTEDTO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHERCRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TIproducts in such applications requires the written approval of an appropriate TI officer. Questions concerningpotential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operatingsafeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, orinfringement of patents or services described herein. Nor does TI warrant or represent that any license, eitherexpress or implied, is granted under any patent right, copyright, mask work right, or other intellectual propertyright of TI covering or relating to any combination, machine, or process in which such semiconductor productsor services might be or are used.

Copyright 1996, Texas Instruments Incorporated