Improving MC@NLO simulationsmschoenherr/talks/20120227... · 2019. 1. 21. · 1 1=p 2? +1= R p?!1!...

14
Improving MC@NLO simulations S. H¨ oche, F. Krauss, M. Sch¨ onherr , F. Siegert Institute for Particle Physics Phenomenology 22/11/2011 Marek Sch¨ onherr IPPP Durham Improving MC@NLO simulations 1

Transcript of Improving MC@NLO simulationsmschoenherr/talks/20120227... · 2019. 1. 21. · 1 1=p 2? +1= R p?!1!...

  • Improving MC@NLO simulations

    S. Höche, F. Krauss, M. Schönherr, F. Siegert

    Institute for Particle Physics Phenomenology

    22/11/2011

    Marek Schönherr IPPP Durham

    Improving MC@NLO simulations 1

  • Choice of exponentiated phase space

    from Stefan’s talk: limit phase space for exponentiation by α

    Sherpa

    NLO

    α = 1α = 0.3α = 0.1α = 0.03α = 0.01α = 0.003α = 0.001

    10−6

    10−5

    10−4

    10−3

    10−2

    10−1Transverse momentum of Higgs boson in pp → h+ X

    dσ/dph ⊥[pb/GeV

    ]

    10 1 10 2 10 30.5

    11.5

    22.5

    3

    ph⊥ [GeV]

    Ratio

    Sherpa

    NLO

    α = 1α = 0.3α = 0.1

    α = 0.03α = 0.01α = 0.003α = 0.001

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.1Rapidity separation betw. Higgs and leading jet in pp → h+ X

    dσ/d

    ∆y(h,

    1stjet)

    [pb]

    -4 -3 -2 -1 0 1 2 3 40.5

    1

    1.5

    2

    ∆y(h, 1st jet)

    Ratio

    however, α no sensible parameter w.r.t. exponentiation region→ restricts emissions to small opening angle wrt. beam→ bias towards hard collinear emissions

    Marek Schönherr IPPP Durham

    Improving MC@NLO simulations 2

    Höche et.al. arXiv:1111.1220

  • Choice of exponentiated phase space

    0 0.2 0.4 0.6 0.8 10

    0.2

    0.4

    0.6

    0.8

    1Phase space boundaries in II dipoles, η = 10 . . . 0.01

    xi,ab

    ṽi Real emission phase space

    ṽi =pa · kpa · pb

    xi,ab = 1−(pa + pb) · kpa · pb

    • restriction in α permits very hard(xi,ab → 0), not too collinearradiation at larger ṽi

    • restriction in k2⊥ = Q2 ṽi

    1−xi,abxi,ab

    permits only very soft (xi,ab → 1)radiation at larger ṽi

    Marek Schönherr IPPP Durham

    Improving MC@NLO simulations 3

    Höche et.al. arXiv:1111.1220

  • Choice of exponentiated phase space

    〈O〉 =∫

    dΦB B̄(A)

    ∆(A)(t0, µ2Q)O(ΦB) +µ2Q∫t0

    dΦ1D(A)

    B∆(A)(t, µ2Q)O(ΦR)

    +

    ∫dΦR

    [R−D(A)

    ]O(ΦR)

    with

    B̄(A) = B + Ṽ + I(S) +

    ∫dΦ1

    [D(A) −D(S)

    ]• maintain D(A) = D(S) scheme• to recover physical resummation phase space→ limit phase space in PS evolution variable t = k2⊥ < kmax⊥ 2 = µ2Q

    D(A) = D(S) −→ D(S)Θ(kmax⊥ − k⊥)

    Marek Schönherr IPPP Durham

    Improving MC@NLO simulations 4

  • Choice of exponentiated phase space

    Assessment of uncertainties

    • limit discussion to gg → h because effects are largest and cleanest here(large NLO k-factor, very simple colour/dipole structure)→ large rate difference for S and H events

    • setup: k⊥-ordered parton shower based on Catani-Seymour dipoles→ highlights what happens at resummation scale kmax⊥

    • renormalisation scale µR = mh, µexpR =

    √1

    1/p2⊥+1/µ2R

    p⊥→∞−→ µR• vary resummation scale kmax⊥ , i.e. starting conditions of MC@NLO-shower• starting conditions of POWHEG-shower fixed at kmax⊥ =

    12

    √shad

    • effect of suppression function not investigated• introduces arbitrary free parameter (not fixed to be of order of mh)• uncertainties as large as with α variation→ investigated in Alioli et.al. JHEP04(2009)002

    ⇒ uncertainties in (N)LL-LO matching in MC@NLO and POWHEGMarek Schönherr IPPP Durham

    Improving MC@NLO simulations 5

  • Choice of exponentiated phase space

    Assessment of uncertainties

    • limit discussion to gg → h because effects are largest and cleanest here(large NLO k-factor, very simple colour/dipole structure)→ large rate difference for S and H events

    • setup: k⊥-ordered parton shower based on Catani-Seymour dipoles→ highlights what happens at resummation scale kmax⊥

    • renormalisation scale µR = mh, µexpR =

    √1

    1/p2⊥+1/µ2R

    p⊥→∞−→ µR• vary resummation scale kmax⊥ , i.e. starting conditions of MC@NLO-shower• starting conditions of POWHEG-shower fixed at kmax⊥ =

    12

    √shad

    • effect of suppression function not investigated• introduces arbitrary free parameter (not fixed to be of order of mh)• uncertainties as large as with α variation→ investigated in Alioli et.al. JHEP04(2009)002

    ⇒ uncertainties in (N)LL-LO matching in MC@NLO and POWHEGMarek Schönherr IPPP Durham

    Improving MC@NLO simulations 6

  • Choice of exponentiated phase space

    Assessment of uncertainties

    • limit discussion to gg → h because effects are largest and cleanest here(large NLO k-factor, very simple colour/dipole structure)→ large rate difference for S and H events

    • setup: k⊥-ordered parton shower based on Catani-Seymour dipoles→ highlights what happens at resummation scale kmax⊥

    • renormalisation scale µR = mh, µexpR =

    √1

    1/p2⊥+1/µ2R

    p⊥→∞−→ µR• vary resummation scale kmax⊥ , i.e. starting conditions of MC@NLO-shower• starting conditions of POWHEG-shower fixed at kmax⊥ =

    12

    √shad

    • effect of suppression function not investigated• introduces arbitrary free parameter (not fixed to be of order of mh)• uncertainties as large as with α variation→ investigated in Alioli et.al. JHEP04(2009)002

    ⇒ uncertainties in (N)LL-LO matching in MC@NLO and POWHEGMarek Schönherr IPPP Durham

    Improving MC@NLO simulations 7

  • Choice of splitting kernel – D(A)/B

    traditional MC@NLO and POWHEG choices of splitting kernels

    NLO

    Powheg

    MC@NLO kmax⊥ =12 mh

    MC@NLO kmax⊥ = mhMC@NLO kmax⊥ = 2mh

    10−7

    10−6

    10−5

    10−4

    10−3

    10−2

    10−1Transverse momentum of Higgs boson in pp → h+ X

    dσ/dph ⊥[pb/GeV

    ]

    10 1 10 2 10 3

    1

    2

    3

    ph⊥ [GeV]

    Ratio

    NLO

    Powheg

    MC@NLO kmax⊥ =12 mh

    MC@NLO kmax⊥ = mhMC@NLO kmax⊥ = 2mh

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06Transverse momentum of Higgs boson in pp → h+ X

    dσ/dph ⊥[pb/GeV

    ]

    0 5 10 15 20 25

    0.6

    0.8

    1

    1.2

    1.4

    ph⊥ [GeV]

    Ratio

    I large uncertainties when varying kmax⊥I driven by diff. in normalisation of S- and H-events and size of ln2(k2⊥/µ2Q)I shape difference driven by unitarity constraint

    Marek Schönherr IPPP Durham

    Improving MC@NLO simulations 8

  • Choice of splitting kernel – D(A)/B

    traditional MC@NLO and POWHEG choices of splitting kernels

    NLO

    Powheg

    MC@NLO kmax⊥ =12 mh

    MC@NLO kmax⊥ = mhMC@NLO kmax⊥ = 2mh

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    Rapidity separation betw. Higgs and leading jet in pp → h+ X

    dσ/d

    ∆y(h,

    1stjet)

    [pb]

    -4 -3 -2 -1 0 1 2 3 4

    1

    2

    3

    ∆y(h, 1st jet)

    Ratio

    NLO

    Powheg

    MC@NLO kmax⊥ =12 mh

    MC@NLO kmax⊥ = mhMC@NLO kmax⊥ = 2mh

    10−6

    10−5

    10−4

    10−3

    10−2Transverse momentum of leading jet in pp → h+ X

    dσ/dp⊥(jet

    1)[pb/GeV

    ]

    0 100 200 300 400 500

    1

    2

    3

    p⊥(jet 1) [GeV]

    Ratio

    I uncertainty on jet rates with p⊥ ∼ 100GeV: 2.5I no dip in ∆y → originates in HERWIG’s radiation pattern

    Marek Schönherr IPPP Durham

    Improving MC@NLO simulations 9

  • Choice of splitting kernel – D(A)/B̄(A)

    here: change splitting kernels K −→ (1 + αs · const.) K

    NLO

    Powheg

    MC@NLO kmax⊥ =12 mh

    MC@NLO kmax⊥ = mhMC@NLO kmax⊥ = 2mh

    10−7

    10−6

    10−5

    10−4

    10−3

    10−2

    10−1Transverse momentum of Higgs boson in pp → h+ X

    dσ/dph ⊥[pb/GeV

    ]

    10 1 10 2 10 30.6

    0.8

    1

    1.2

    1.4

    ph⊥ [GeV]

    Ratio

    NLO

    Powheg

    MC@NLO kmax⊥ =12 mh

    MC@NLO kmax⊥ = mhMC@NLO kmax⊥ = 2mh

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06Transverse momentum of Higgs boson in pp → h+ X

    dσ/dph ⊥[pb/GeV

    ]

    0 5 10 15 20 25

    0.6

    0.8

    1

    1.2

    1.4

    ph⊥ [GeV]

    Ratio

    I uncertainties much lower, smooth transition at µ2QI much closer to NLO fixed order result for “hard”emissionsI price of spuriously large LL prefactor → Sudakov peak differs

    Marek Schönherr IPPP Durham

    Improving MC@NLO simulations 10

  • Choice of splitting kernel – D(A)/B̄(A)

    here: change splitting kernels K −→ (1 + αs · const.) K

    NLO

    Powheg

    MC@NLO kmax⊥ =12 mh

    MC@NLO kmax⊥ = mhMC@NLO kmax⊥ = 2mh

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    Rapidity separation betw. Higgs and leading jet in pp → h+ X

    dσ/d

    ∆y(h,

    1stjet)

    [pb]

    -4 -3 -2 -1 0 1 2 3 4

    0.6

    0.8

    1

    1.2

    1.4

    ∆y(h, 1st jet)

    Ratio

    NLO

    Powheg

    MC@NLO kmax⊥ =12 mh

    MC@NLO kmax⊥ = mhMC@NLO kmax⊥ = 2mh

    10−6

    10−5

    10−4

    10−3

    10−2Transverse momentum of leading jet in pp → h+ X

    dσ/dp⊥(jet

    1)[pb/GeV

    ]

    0 100 200 300 400 500

    0.6

    0.8

    1

    1.2

    1.4

    p⊥(jet 1) [GeV]

    Ratio

    I uncertainties much lower, smooth transition at µ2QI much closer to NLO fixed order result for “hard”emissionsI price of spuriously large LL prefactor

    Marek Schönherr IPPP Durham

    Improving MC@NLO simulations 11

  • Choice of higher order correction – B̄(A)/B ·Hhere: modify H-term with arbitrary higher order corrections H→ B̄(A)B H

    NLO

    Powheg

    MC@NLO kmax⊥ =12 mh

    MC@NLO kmax⊥ = mhMC@NLO kmax⊥ = 2mh

    10−7

    10−6

    10−5

    10−4

    10−3

    10−2

    10−1Transverse momentum of Higgs boson in pp → h+ X

    dσ/dph ⊥[pb/GeV

    ]

    10 1 10 2 10 3

    1

    2

    3

    ph⊥ [GeV]

    Ratio

    NLO

    Powheg

    MC@NLO kmax⊥ =12 mh

    MC@NLO kmax⊥ = mhMC@NLO kmax⊥ = 2mh

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06Transverse momentum of Higgs boson in pp → h+ X

    dσ/dph ⊥[pb/GeV

    ]

    0 5 10 15 20 25

    0.6

    0.8

    1

    1.2

    1.4

    ph⊥ [GeV]

    Ratio

    I PS resummation left void of higher order termsI equivalent to MENLOPS prescription in Höche et.al. JHEP04(2011)024I uncontrolled O(α2s) terms in H-events

    Marek Schönherr IPPP Durham

    Improving MC@NLO simulations 12

  • Choice of higher order correction – B̄(A)/B ·Hhere: modify H-term with arbitrary higher order corrections H→ B̄(A)B H

    NLO

    Powheg

    MC@NLO kmax⊥ =12 mh

    MC@NLO kmax⊥ = mhMC@NLO kmax⊥ = 2mh

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    Rapidity separation betw. Higgs and leading jet in pp → h+ X

    dσ/d

    ∆y(h,

    1stjet)

    [pb]

    -4 -3 -2 -1 0 1 2 3 4

    1

    2

    3

    ∆y(h, 1st jet)

    Ratio

    NLO

    Powheg

    MC@NLO kmax⊥ =12 mh

    MC@NLO kmax⊥ = mhMC@NLO kmax⊥ = 2mh

    10−6

    10−5

    10−4

    10−3

    10−2Transverse momentum of leading jet in pp → h+ X

    dσ/dp⊥(jet

    1)[pb/GeV

    ]

    0 100 200 300 400 500

    1

    2

    3

    p⊥(jet 1) [GeV]

    Ratio

    I PS resummation left void of higher order termsI equivalent to MENLOPS prescription in Höche et.al. JHEP04(2011)024I uncontrolled O(α2s) terms in H-events

    Marek Schönherr IPPP Durham

    Improving MC@NLO simulations 13

  • Conclusions

    • uncertainties studied occur in every process and are inherent to methods→ gg → h just presents a clean environment

    • exploit freedom left at the respective level of accuracy→ each with merrits and drawbacks

    • choices constrained by adding higher order calculations• (N)NLL resummation• NNLO corrections• NLO⊗NLO merging with Qcut < µ2Q

    Marek Schönherr IPPP Durham

    Improving MC@NLO simulations 14