Improvement of Thermoelectric Energy Conversion -2

23
Nano-micron scale control grain boundary grain alignment Nano-micron scale control grain boundary grain alignment Nano Nano - - micro micro grain boundary grain boundary grain alignment grain alignment Improvement of Thermoelectric Energy Conversion by Hyper-structural Control Atomic-nano scale control electrical conductivity phonon scattering Atomic-nano scale control electrical conductivity phonon scattering σ・α2 Figure of merit: Z = κ σ・α2 Figure of merit: Z = κ σ: Electrical conductivity α: Seebeck cofficient κ: Thermal conductivity 200 600 1000 1400 Temperature / K 10 -3 10 -2 10 -5 10 -4 Figure-of-merit, Z/K -1 n-Bi 2 Te 3 n-SiGe N-FeSi Al-doped ZnO Li doped NiO -SiC SrPbO 3 NaCo 2 O 4 -poly Sr-Ca 2 Co 2 O 5 -poly ZT=1 200 600 1000 1400 Temperature / K 10 -3 10 -2 10 -5 10 -4 Figure-of-merit, Z/K -1 n-Bi 2 Te 3 n-SiGe N-FeSi Al-doped ZnO Li doped NiO -SiC SrPbO 3 NaCo 2 O 4 -poly Sr-Ca 2 Co 2 O 5 -poly ZT=1

Transcript of Improvement of Thermoelectric Energy Conversion -2

Page 1: Improvement of Thermoelectric Energy Conversion -2

Nano-micron scale controlgrain boundary

grain alignment

Nano-micron scale controlgrain boundary

grain alignment

NanoNanoNano---micron scale controlmicron scale controlmicron scale controlgrain boundarygrain boundarygrain boundary

grain alignmentgrain alignmentgrain alignment

Improvement of Thermoelectric Energy Conversion by Hyper-structural Control

Atomic-nano scale controlelectrical conductivityphonon scattering

Atomic-nano scale controlelectrical conductivityphonon scattering

σ・α2Figure of merit: Z =

κ

σ・α2Figure of merit: Z =

κ

σ:Electrical conductivityα:Seebeck cofficientκ:Thermal conductivity

200 600 1000 1400Temperature / K

10-3

10-2

10-5

10-4

Fig

ure

-of-

mer

it,

Z/K

-1

n-Bi2Te3

n-SiGe

N-FeSi

Al-doped

ZnO

Li doped NiO

-SiC

SrPbO3

NaCo2O

4-poly

Sr-Ca2Co2O5 -poly

ZT=1

200 600 1000 1400Temperature / K

10-3

10-2

10-5

10-4

Fig

ure

-of-

mer

it,

Z/K

-1

n-Bi2Te3

n-SiGe

N-FeSi

Al-doped

ZnO

Li doped NiO

-SiC

SrPbO3

NaCo2O

4-poly

Sr-Ca2Co2O5 -poly

ZT=1

Page 2: Improvement of Thermoelectric Energy Conversion -2

Thermoelectric power generation by n-p junction type cell module

Thermoelectric moduleheater

cooling stage

Thermoelectric ceramic module

Thermoelectric moduleheater

cooling stage

Thermoelectric ceramic module

Page 3: Improvement of Thermoelectric Energy Conversion -2

Demonstration of the concept of an interactive material working as a device for NOx decomposition without any external energy or fuel by using the converted energy from exhaust gas heat to supply the electrical current to the electrochemical cell.

An example of Highly Interactive Materials--- deNOx without external energy supplying ---

Heat source

De-NOx Electro-chemical Cell

Thermoelectricmodulel

Heat source

De-NOx Electro-chemical Cell

Thermoelectricmodulel

Page 4: Improvement of Thermoelectric Energy Conversion -2

1.For the first time an Electrochemical cells with multi layers electro-catalytic electrode for high selectivity of NOx decomposition and with a low value of cell operating current and power was designed.

2. Nano-structure control of electro-catalytic electrode was effective to dramatic improvement of de-NOx property of the cell. NOx-PM simultaneous purifying was realized by using oxygen radical reaction.

3. An interactive ceramic reactor consisted of de-NOx cell with thermo-electric module revealed 20%NOx decomposition without external power supply.

Summary of electrochemical reactors for NOx /PM decomposition

Page 5: Improvement of Thermoelectric Energy Conversion -2

high efficiency on energy conversion and selective reactionhigh efficiency on energy conversion and selective reactionApplication of Advanced Ceramic Reactor

“Ceramic reactor”

Cell

moduleCube

ChemicalSyntheses

H2 Station

C H 4 →C O +H 2

O 2+N 2→N 2

O 2-2e

C H 4 →C O +H 2

O 2+N 2→N 2

O 2-2eNO x

→N 2+O 2OO 2

Environment Purifying

Fuel Cells

APU for Vehicles

Nanostructured electrochemical reactors for micro SOFCs

Nanotechnology

Page 6: Improvement of Thermoelectric Energy Conversion -2

1

Elec

tric

al E

ffici

ency

(%

)

20

40

50

30

10 100 1,000

SOFC

PAFC

SOFC+GT

PEFC

MCFC

R&D Target

MicroSOFC

Power Output (kW)

Lean-burn GE,Atkinson cycle GE

GasTurbineGas

Engine

Power output vs Electrical Efficiency

Page 7: Improvement of Thermoelectric Energy Conversion -2

APU applications for automobile

Delphi Gen1204kg, 155L

Delphi Gen33.6kW,70kg, 63LStartup 75min

Webasto

DevelopersSOFC-APU

Technical Hurdle ;

Rapid Startup

Heavy Duty Truck (Diesel ICE 3 – 6 kW)

Refrigerator Van (10 - 20 kW)

Passenger Car (Alternative Generator 3-10kW)

Applications

Future

NearFuture

Target (goal)Volume 5L Startup 5-15min

Key feature ; Compactness and Cost

Page 8: Improvement of Thermoelectric Energy Conversion -2

Micro Tubular SOFC in the World

Adelan (UK)

ALPPS(Austria)

Primary Idea of Micro tubular SOFC ; Kendall / Sammes (UK)

EU: Original Idea

Adaptive Materials (US)

Mesoscopic Devices (US)

NanoDynamics (US)

US: Advanced Package for Military Applications

NanoDynamics (US)

ND50H; V=7L, W=5kg, Startup 15min

P=75W, 250WStartup10-15min, LPG Fuel, T=700C

TOTO (Japan)

AIST (Japan)

JAPAN: Advanced Core Modules

Page 9: Improvement of Thermoelectric Energy Conversion -2

Research objective of the Advanced Ceramic Reactor

Solutions1)Rapid startup and stop → Small size unit cells

2)Reduced temperature operations → from >800C to 500-600C

3)Innovative low cost → Improve powerdensity per unit volume

Concept of “Ceramic reactor”

1) sub-millimeter tube unit cells

(0.5W/cm2@650C or under)

→ For rapid startup, Enhance electrode areas

2) Parallel integrated cell (pile of unit cells, 2kW/L)

3) Advanced ceramic processing and materials (nano -micro structure control)

Porous Cathode

Accumulation of high performance tubular SOFCs

Weak points of conventional SOFC

1)Startup-stop issue

2)High temperature operation (durability)

3)Cost reduction

Page 10: Improvement of Thermoelectric Energy Conversion -2

1cm

Porous Cathode

PorousAnode

DenseElectrolyte1cm

Porous Cathode

PorousAnode

DenseElectrolyte

Micro Tubular Cells

seal

seal

Anode current collector

Anode Anode current current collectorcollector

seal

seal

Anode current collector

Cells integrated Cube

Interface construction

Fuel

Air

Fuel

Air

Ceramic Reactor Module

Interface construction円 小型 今回の

筒 チューブ ターゲット

0

5

Cub

e po

wer

den

sity

(kW

/ L)

Tubu

lar S

OFC

Smal

l Tub

e C

ell Micro Tube

CeramicReactor

(Our Target)

20

15

10

Cell diameter (mm)10 1 0.1

Development of Advanced Ceramic Reactor

Fuel(H2 etc.)Micro tube

Cube matrix

Air(O2) CGO/ScSZElectrolyte

Porous cathode(LSCF)

Anode(Ni-CGO)

Page 11: Improvement of Thermoelectric Energy Conversion -2

Scheme of the research project3. Evaluation of prototype

module and application of advanced ceramic reactors

AIST, FCRA, Connecticut University, Toho Gas,CRIEPI, Denso Corporation

1. Development of highly active materials at low temperature operation

Mie University, Hosokawa Powder Technology Research Institute,Kyocera Corporation

The Advanced Ceramic Reactor Project(NEDO)July 2005 –March 2010Total budget; 2.1 Billion Yen

2. Development of the three dimensional fabricating

process of reactorsprocess of reactors

Natl.Inst.Advanced Industrial Science and Technl.(AIST),Fine Ceramics Research Association (FCRA:NGK,NGKNTK),Nagoya University, Japan Fine Ceramics Center, Toho Gas Co., Ltd.,Central Research Institute of Electric Power Industry(CRIEPI)

Core research site for the development offabricating technology

Page 12: Improvement of Thermoelectric Energy Conversion -2

composite

hybrid

fine dispersion

nano meter -micron meter

scale

control of shape, size distribution and composition

CompositeHybridization

Hyper-structural and compositional control of electrodes and interfaces

Nanoparticle synthesis

network and distributionof pores and

matrix

Schema of the material development for electrodes and electrolytes

Selected Results 1. Development of highly active materials at low temperature operation

>Ni-SDC cermet anode fabricated from NiO-SDC composite powder

Hosokawa Powder Technology Research Institute

Page 13: Improvement of Thermoelectric Energy Conversion -2

Ni-SDC anode supported cell with thin SDCelectrolyte achieved high electrical performanceat lower operation temperature (≦650ºC).

1um

1um 1um

Ni-GDC cermet anode fabricated from NiO-GDC composite powderNi-GDC cermet anode fabricated from NiO-GDC composite powder

Ni Ce

Morphology of cermet anodeNi-GDC/GDC/LSCF

anode supported cell

φ80mm

LSCF cathode

GDC electrolyte

10μmNi-GDC anode

1um

1um 1um

Ni-GDC cermet anode fabricated from NiO-GDC composite powderNi-GDC cermet anode fabricated from NiO-GDC composite powderNiNiNiNi-Ni--GDC -GDC GDC GDC GDC GDC cermetGDC cermetcermetcermetcermetcermet anode fabricated from NiOcermetanode fabricated from NiOanode fabricated from NiOanode fabricated from NiOanode fabricated from NiOanode fabricated from NiO-anode fabricated from NiO-GDC composite powder-GDC composite powderGDC composite powderGDC composite powderGDC composite powderGDC composite powderGDC composite powderGDC composite powderGDC composite powderNi-GDC cermet anode fabricated from NiO-GDC composite powder

Ni Ce

Morphology of cermet anodeNi-GDC/GDC/LSCF

anode supported cell

φ80mm

LSCF cathode

GDC electrolyte

10μm10μm10μmNi-GDC anode

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.5 1 1.5 2 2.5 3

C urrent density (A/cm 2)

Cell Voltage (V)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

power density (W/cm2)

650℃測定600℃測定550℃測定PD-650PD-600PD-550

Ni-G DC /G D C /LSC Fの発電性能

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.5 1 1.5 2 2.5 3

C urrent density (A/cm 2)

Cell Voltage (V)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

power density (W/cm2)

650℃測定600℃測定550℃測定PD-650PD-600PD-550

Ni-G DC /G D C /LSC Fの発電性能

Page 14: Improvement of Thermoelectric Energy Conversion -2

Fabrication of micro-tubular GDC cell and cell characterization

Selected Results 2. Development of the three dimensional fabricating process of reactors

AIST

Cell Preparation0.8-1.8 mmΦ

NiO-GDC anode

tube

Dip-coating of electrolyte

Co-fired at 1450 C for 6h

Dip-coating of cathode

Sintered at 1000 C for 1 h.

0.8mm diameter anode tube

Anode tube

Electrolyte

Cathode

1.6mm diameter

0.8mm diameter

Micro SOFC

Anode tube

Electrolyte

Cathode

1.6mm diameter

0.8mm diameter

Micro SOFC

0 1 2 3 45

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Po

we

r d

en

sity, W

/c

m2

Current density, A/cm2

570

550

500

450

NiO-GDC/GDC(20µm)/LSCF-GDC

0 1 2 3 45

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Po

we

r d

en

sity, W

/c

m2

Current density, A/cm2

570

550

500

450

NiO-GDC/GDC(20µm)/LSCF-GDC

The micro SOFC fabricated as a tubular structure of 1 cm in length and 0.8-1.6 mm in diameter and revealed power densities of 1 W/cm2 at 570゚C, was obtained ---This value is on the world’s highest level in SOFCs with ceria based electrolytes ---

Page 15: Improvement of Thermoelectric Energy Conversion -2

Integration technology ofcompact power modules

fuel

Air

1cm

Improvement offabrication technology for the stacked Modules(Cube)

Cell – stack – module fabrication

Developing Micro tubular IT-SOFC< 2.0mmΦ

AIST/FCRA(NGKNTK)

Page 16: Improvement of Thermoelectric Energy Conversion -2

Successful Development of a Small, High-Performance Micro Fuel Cell Bundle- Realizes more than two watts of output power in a unit size of a sugar cube

(one cubic centimeter) below 600℃ (2W/cm3 @550℃)

0 1 2 3 4 5 60.4

0.6

0.8

1.0

0.0

0.5

1.0

1.5

2.0

2.5

電力

, W

電圧

, V

電流, ACurrent (A)

Volta

ge(V

)

Pow

er(W

)

0 1 2 3 4 5 60.4

0.6

0.8

1.0

0.0

0.5

1.0

1.5

2.0

2.5

電力

, W

電圧

, V

電流, ACurrent (A)

Volta

ge(V

)

Pow

er(W

)

Successful development of a small high power solid oxide fuel cell (SOFC) cubic bundle integrated very fine ceramic tubes in a volume of a sugar cube. The SOFC bundle generates the world’s highest output power density (two watts per

cubic centimeter) at an operating temperature of below 600 C, previously considered not possible for SOFCs that are normally operated at high temperatures.

Page 17: Improvement of Thermoelectric Energy Conversion -2

LSM honeycomb

1616cells/cm2

GDC

NiO/GDC

LSM

GDC

NiO/GDC

100μm 10μm

0.7mm 0.7mm

Fabrication of Micro honeycomb SOFC

Page 18: Improvement of Thermoelectric Energy Conversion -2

0

100

200

300

400

500

0 200 400 600

Time (sec)

Tem

p (C

)

-0.2

0.2

0.4

0.6

0.8

0

1

1.2

OC

V (

V)

Temp

OCV

N2 in

H2 in

5minstart

0 0.02 0.04

1

0.5

0

@ 450C

Voltage (

V)

Current density (A/cm2)

cyclic testing

(over 100 times)

LSM /ScSZ/NiO -G D C

Tim e (sec)

Voltage (V)

500 2000 25000

0.2

0.4

0.6

0.8

1

0 1000 1500

Redox test@ 700C

air inH 2 offN 2 in

N 2 in

H 2 in

100m A/cm 2100m A/cm 2

LSM /ScSZ/NiO -G D C

Tim e (sec)

Voltage (V)

500 2000 25000

0.2

0.4

0.6

0.8

1

0 1000 1500

Redox test@ 700C

air inH 2 offN 2 in

N 2 in

H 2 in

100m A/cm 2100m A/cm 2

Tim e (sec)

Voltage (V)

500 2000 25000

0.2

0.4

0.6

0.8

1

0 1000 1500

Redox test@ 700C

air inH 2 offN 2 in

N 2 in

H 2 in

100m A/cm 2100m A/cm 2

導電部材(SUS)

カソード側

アノード側

接続例stacking

Cathode side

Anode side

connector導電部材(SUS)

カソード側

アノード側

接続例stacking

Cathode side

Anode side

connector

0 0.05 0.1 0.150

1

2

0

0.5

1

1.5

Current density (A/cm2)

Vo

ltag

e (V

)

Vo

lum

etri

c p

ow

er d

ensi

ty (

W/c

m3)

@ 600C

Honeycomb stack

Honeycomb cell

ハニカムスタック評価結果例

Page 19: Improvement of Thermoelectric Energy Conversion -2

Inter connector materials JFCC

Flexible sealing sheet(insulating)

Ag-Si-Ge alloy

Conductive sheet

Porous electrodes

sheet

3種類のシール材を用いた導電パスの構築

キューブ チューブ

インターフェース材料

導電シート材 絶縁シート材

導電パス構築

e-e-e-

e-e-e-O2-

O2-

空気極

固体電解質

燃料極

導電/絶縁シート材

3種類のシール材を用いた導電パスの構築

キューブ チューブ

インターフェース材料

導電シート材 絶縁シート材

導電パス構築

e-e-e-

e-e-e-O2-

O2-

空気極

固体電解質

燃料極

導電/絶縁シート材

Current-path design Interface materials

Cube

Conductive sheet Insulating sheet

Conductive/ Insulating sheet

TubeCurrent path

ElectrolyteAnode Cathode

Page 20: Improvement of Thermoelectric Energy Conversion -2

Prototype bundle

Air

Fuel

Fig. Photograph of the prototype bundle composed of 36 Ni-GDC single cells.

Prototype bundlePrototype bundlePrototype bundlePrototype bundlePrototype bundlePrototype bundlePrototype bundlePrototype bundlePrototype bundleModelSize(with manifold) : 30 x 30 x 110 mm Size(electrode) : 30 x 30 x 30 mm Tubes : 36 Ni-GDC tubescurrent collector : Alloy plate + Ag mesh

50 mm30 mm

30 mm

Fuel : H2 900 ml/min, N2 900 ml/min

I / AThe performances of prototype bundle @500oC.

00.20.40.60.8

11.2

0 5 10 15 20 25 30

E / V

04812162024

Pow

er /

W14.2 W

3. Evaluation of prototype module and application of advanced ceramic reactors Selected Results

Max.40W@600C

Page 21: Improvement of Thermoelectric Energy Conversion -2

Application of advanced ceramic reactors

Domestic stationary power sources

Systemconcept

kW SystemPackage

Analysis and evaluation of materials, cells, stacks and prototype modules to demonstrate utilities of the reactors

by TOHO gas

Test module

Demonstration of prototype module as APU unit for Automobile

Battery

Ceramic Reactor

AlternatorFuel Tank Engine

High performance compact APU

Micro SOFC module>rapid start-up/shut-down, fuel

Alternator

by DENSO

Page 22: Improvement of Thermoelectric Energy Conversion -2

Mock-up model(200W class)

Portable power sources(clean & quiet)

Page 23: Improvement of Thermoelectric Energy Conversion -2

>Advanced ceramic reactor project aims to develop - materials for electrolytes and electrodes of electrochemical reactors that

can be used at lower operation temperature and - a manufacturing process technology for integrating and arranging

structure of the materials in the micro level

>Goals are to develop a prototype micro-SOFC module that generates more than 2kW/L of power density at 650 ゚C or lower, with a rapid startup-shutdown performance for application to APU and cogeneration power unit and others.

>Micro tubular SOFCs with 0.8-1.6 mm diameter have been successfully fabricated. Advanced ceramic processing method developed in this project enabled to realize that the single tubular SOFC with ceria based electrolyte showed cell performance of over 1W/cm2 at 570゚C.

*over 3W/cm3 @550゚C by a sugar cube like cell-stack**Honeycomb SOFC (over 250 cells/cm3 ) and successful stacking process

>The new micro tubular SOFCs will be applied to build a compact power device with robustness by working in an accumulated cube-type stack.

>>> test module / prototype - by 2010.3

Summary of Micro SOFC development