Hot QCD matter in magnetic fields: phase transition and...

94
Hot QCD matter in magnetic fields: phase transition and permeability Gergely Endr˝ odi University of Bielefeld Theoretical Physics Colloquium 24. June 2016

Transcript of Hot QCD matter in magnetic fields: phase transition and...

Page 1: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Hot QCD matter in magnetic fields:phase transition and permeability

Gergely Endrodi

University of Bielefeld

Theoretical Physics Colloquium24. June 2016

Page 2: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Preface:QCD phases and equation of state

Page 3: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

The phases of QCD

I phases of QCD characterized by approx. order parametersI quark condensate ψψ (chiral symmetry breaking)I Polyakov loop P (deconfinement)

Borsanyi et al. ’10

! !!!!!!!!

!!!!!! ! !!!

""

""""

"

""

"""""" "

!!!!!!!

!!!!! !

! ! ! !

##

##

#

#

##!!""!!

ContinuumNt"16Nt"12Nt"10Nt"8

100 120 140 160 180 200 220

0.2

0.4

0.6

0.8

1.0

T !MeV"

#l,s

! !!!!!!!!!!!!!!!!!!!!!!!!!!!

""""""""""""""""""

!!!!!!!!!!!!!!!!!!

# # ####### ##### #

##!!""!!

Nt"16Nt"12Nt"10Nt"8

Continuum

100 150 200 250 300 3500.0

0.2

0.4

0.6

0.8

1.0

T !MeV"

RenormalizedPolyakovloop

I crossover Aoki et al. ’06 Bhattacharya et al. ’14

I Tc ↔ inflection point Bazavov et al. ’18

1 / 29

Page 4: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

The phases of QCD

I phases of QCD characterized by approx. order parametersI quark condensate ψψ (chiral symmetry breaking)I Polyakov loop P (deconfinement) Borsanyi et al. ’10

! !!!!!!!!

!!!!!! ! !!!

""

""""

"

""

"""""" "

!!!!!!!

!!!!! !

! ! ! !

##

##

#

#

##!!""!!

ContinuumNt"16Nt"12Nt"10Nt"8

100 120 140 160 180 200 220

0.2

0.4

0.6

0.8

1.0

T !MeV"

#l,s

! !!!!!!!!!!!!!!!!!!!!!!!!!!!

""""""""""""""""""

!!!!!!!!!!!!!!!!!!

# # ####### ##### #

##!!""!!

Nt"16Nt"12Nt"10Nt"8

Continuum

100 150 200 250 300 3500.0

0.2

0.4

0.6

0.8

1.0

T !MeV"RenormalizedPolyakovloop

I crossover Aoki et al. ’06 Bhattacharya et al. ’14

I Tc ↔ inflection point Bazavov et al. ’18

1 / 29

Page 5: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

The phases of QCD

I phases of QCD characterized by approx. order parametersI quark condensate ψψ (chiral symmetry breaking)I Polyakov loop P (deconfinement) Borsanyi et al. ’10

! !!!!!!!!

!!!!!! ! !!!

""

""""

"

""

"""""" "

!!!!!!!

!!!!! !

! ! ! !

##

##

#

#

##!!""!!

ContinuumNt"16Nt"12Nt"10Nt"8

100 120 140 160 180 200 220

0.2

0.4

0.6

0.8

1.0

T !MeV"

#l,s

! !!!!!!!!!!!!!!!!!!!!!!!!!!!

""""""""""""""""""

!!!!!!!!!!!!!!!!!!

# # ####### ##### #

##!!""!!

Nt"16Nt"12Nt"10Nt"8

Continuum

100 150 200 250 300 3500.0

0.2

0.4

0.6

0.8

1.0

T !MeV"RenormalizedPolyakovloop

I crossover Aoki et al. ’06 Bhattacharya et al. ’14

I Tc ↔ inflection point Bazavov et al. ’18

1 / 29

Page 6: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

The phases of QCD

I phases of QCD characterized by approx. order parametersI quark condensate ψψ (chiral symmetry breaking)I Polyakov loop P (deconfinement) Borsanyi et al. ’10

! !!!!!!!!

!!!!!! ! !!!

""

""""

"

""

"""""" "

!!!!!!!

!!!!! !

! ! ! !

##

##

#

#

##!!""!!

ContinuumNt"16Nt"12Nt"10Nt"8

100 120 140 160 180 200 220

0.2

0.4

0.6

0.8

1.0

T !MeV"

#l,s

! !!!!!!!!!!!!!!!!!!!!!!!!!!!

""""""""""""""""""

!!!!!!!!!!!!!!!!!!

# # ####### ##### #

##!!""!!

Nt"16Nt"12Nt"10Nt"8

Continuum

100 150 200 250 300 3500.0

0.2

0.4

0.6

0.8

1.0

T !MeV"RenormalizedPolyakovloop

I crossover Aoki et al. ’06 Bhattacharya et al. ’14

I Tc ↔ inflection point Bazavov et al. ’18

1 / 29

Page 7: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Equation of state of QCD

I equilibrium description ε(p) of QCD matterI encoded in, for example, p(T )

(ε-3p)/T4

p/T4

s/4T4

0

1

2

3

4

130 170 210 250 290 330 370

T [MeV]

stout HISQ

Bazavov et al. ’14 Borsanyi et al. ’13

2 / 29

Page 8: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Phase diagram

I approaches: effective theories, low-energy models, latticesimulations, perturbation theory

I tuning necessary for low-energy models

3 / 29

Page 9: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Phase diagram

I approaches: effective theories, low-energy models, latticesimulations, perturbation theory

I tuning necessary for low-energy models3 / 29

Page 10: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Permeability

I deviation to unity gives O(B2) contribution to EoS

4 / 29

Page 11: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Outline

I applicationsI phase diagram

I magnetic catalysis and inverse catalysisI new developments about the mass-dependenceI large B limitI PNJL model and improvement

I permeabilityI magnetic flux quantizationI current-current correlatorsI connection to HRG and perturbation theory

I summary

5 / 29

Page 12: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Applications

Page 13: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Magnetic fields

I off-central heavy-ion collisions Kharzeev, McLerran, Warringa ’07

impact: chiral magnetic effect, anisotropies, elliptic flow . . .Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14

I magnetars Duncan, Thompson ’92

impact: equation of state, mass-radius relation Ferrer et al ’10gravitational collapse/merger Anderson et al ’08

I in the early universe, generated through phase transition inelectroweak epoch Vachaspati ’91 Enqvist, Olesen ’93

I strength: B ≈ 1015 T ≈ 1020Bearth ≈ 5m2π

competition between strong force and electromagnetism

6 / 29

Page 14: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Magnetic fields

I off-central heavy-ion collisions Kharzeev, McLerran, Warringa ’07

impact: chiral magnetic effect, anisotropies, elliptic flow . . .Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14

I magnetars Duncan, Thompson ’92

impact: equation of state, mass-radius relation Ferrer et al ’10gravitational collapse/merger Anderson et al ’08

I in the early universe, generated through phase transition inelectroweak epoch Vachaspati ’91 Enqvist, Olesen ’93

I strength: B ≈ 1015 T ≈ 1020Bearth ≈ 5m2π

competition between strong force and electromagnetism

6 / 29

Page 15: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Magnetic fields

I off-central heavy-ion collisions Kharzeev, McLerran, Warringa ’07

impact: chiral magnetic effect, anisotropies, elliptic flow . . .Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14

I magnetars Duncan, Thompson ’92

impact: equation of state, mass-radius relation Ferrer et al ’10gravitational collapse/merger Anderson et al ’08

I in the early universe, generated through phase transition inelectroweak epoch Vachaspati ’91 Enqvist, Olesen ’93

I strength: B ≈ 1015 T ≈ 1020Bearth ≈ 5m2π

competition between strong force and electromagnetism

6 / 29

Page 16: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Magnetic fields

I off-central heavy-ion collisions Kharzeev, McLerran, Warringa ’07

impact: chiral magnetic effect, anisotropies, elliptic flow . . .Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14

I magnetars Duncan, Thompson ’92

impact: equation of state, mass-radius relation Ferrer et al ’10gravitational collapse/merger Anderson et al ’08

I in the early universe, generated through phase transition inelectroweak epoch Vachaspati ’91 Enqvist, Olesen ’93

I strength: B ≈ 1015 T ≈ 1020Bearth ≈ 5m2π

competition between strong force and electromagnetism

6 / 29

Page 17: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Phase diagram – pedagogical review

Page 18: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Magnetic catalysis, free quarks

I chiral condensate ↔ spectral density around 0 Banks,Casher ’80

ψψ ∼ tr ( /D + m)−1 m→0−−−→ ρ(0)

I for free quarks, ρ is determined by Landau levels:

I lowest Landau level has vanishing eigenvalueI Landau levels have degeneracy ∝ B

I ρ(0) is enhanced by B

I magnetic catalysis: ψψ is enhanced by BGusynin, Miransky, Shovkovy ’96 Shovkovy ’13

7 / 29

Page 19: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Magnetic catalysis, free quarks

I chiral condensate ↔ spectral density around 0 Banks,Casher ’80

ψψ ∼ tr ( /D + m)−1 m→0−−−→ ρ(0)

I for free quarks, ρ is determined by Landau levels:

I lowest Landau level has vanishing eigenvalueI Landau levels have degeneracy ∝ BI ρ(0) is enhanced by B

I magnetic catalysis: ψψ is enhanced by BGusynin, Miransky, Shovkovy ’96 Shovkovy ’13

7 / 29

Page 20: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Magnetic catalysis, free quarks

I chiral condensate ↔ spectral density around 0 Banks,Casher ’80

ψψ ∼ tr ( /D + m)−1 m→0−−−→ ρ(0)

I for free quarks, ρ is determined by Landau levels:

I lowest Landau level has vanishing eigenvalueI Landau levels have degeneracy ∝ BI ρ(0) is enhanced by B

I magnetic catalysis: ψψ is enhanced by BGusynin, Miransky, Shovkovy ’96 Shovkovy ’13

7 / 29

Page 21: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Magnetic catalysis, full QCD

I in full QCD, gluons also affect ρ

I emergence of a gap that pushes low modes towards zeroBruckmann, Endrodi, Giordano et al. ’17

⇒ ρ(0) is enhanced by B

I side remark: free case solution on the lattice ↔ Hofstadter’sbutterfly (solid state physics model) Hofstadter ’76

8 / 29

Page 22: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Magnetic catalysis, full QCD

I in full QCD, gluons also affect ρI emergence of a gap that pushes low modes towards zero

Bruckmann, Endrodi, Giordano et al. ’17

⇒ ρ(0) is enhanced by B

I side remark: free case solution on the lattice ↔ Hofstadter’sbutterfly (solid state physics model) Hofstadter ’76

8 / 29

Page 23: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Magnetic catalysis, full QCD

I in full QCD, gluons also affect ρI emergence of a gap that pushes low modes towards zero

Bruckmann, Endrodi, Giordano et al. ’17

⇒ ρ(0) is enhanced by B

I side remark: free case solution on the lattice ↔ Hofstadter’sbutterfly (solid state physics model) Hofstadter ’76

8 / 29

Page 24: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Magnetic catalysis, full QCD

I in full QCD, gluons also affect ρI emergence of a gap that pushes low modes towards zero

Bruckmann, Endrodi, Giordano et al. ’17

⇒ ρ(0) is enhanced by B

I side remark: free case solution on the lattice ↔ Hofstadter’sbutterfly (solid state physics model) Hofstadter ’76

8 / 29

Page 25: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Sea quarks in a magnetic field

I effect of B in full QCD Bruckmann, Endrodi, Kovacs ’13

I direct (valence) effect B ↔ qf

I indirect (sea) effect B ↔ qf ↔ g⟨ψψ(B)

⟩∝∫DAµ e−Sg det( /D(B,A) + m)︸ ︷︷ ︸

sea

Tr[( /D(B,A) + m)−1

]︸ ︷︷ ︸

valence

I most important feature of gauge configurations: Polyakov loop

I P anticorrelates withcondensate

I sea effect reduces⟨ψψ⟩

9 / 29

Page 26: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Sea quarks in a magnetic field

I effect of B in full QCD Bruckmann, Endrodi, Kovacs ’13

I direct (valence) effect B ↔ qf

I indirect (sea) effect B ↔ qf ↔ g⟨ψψ(B)

⟩∝∫DAµ e−Sg det( /D(B,A) + m)︸ ︷︷ ︸

sea

Tr[( /D(B,A) + m)−1

]︸ ︷︷ ︸

valenceI most important feature of gauge configurations: Polyakov loop

I P anticorrelates withcondensate

I sea effect reduces⟨ψψ⟩

9 / 29

Page 27: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Sea quarks in a magnetic field

I effect of B in full QCD Bruckmann, Endrodi, Kovacs ’13

I direct (valence) effect B ↔ qf

I indirect (sea) effect B ↔ qf ↔ g⟨ψψ(B)

⟩∝∫DAµ e−Sg det( /D(B,A) + m)︸ ︷︷ ︸

sea

Tr[( /D(B,A) + m)−1

]︸ ︷︷ ︸

valenceI most important feature of gauge configurations: Polyakov loop

I P anticorrelates withcondensate

I sea effect reduces⟨ψψ⟩

9 / 29

Page 28: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Sea quarks in a magnetic field

I effect of B in full QCD Bruckmann, Endrodi, Kovacs ’13

I direct (valence) effect B ↔ qf

I indirect (sea) effect B ↔ qf ↔ g⟨ψψ(B)

⟩∝∫DAµ e−Sg det( /D(B,A) + m)︸ ︷︷ ︸

sea

Tr[( /D(B,A) + m)−1

]︸ ︷︷ ︸

valenceI most important feature of gauge configurations: Polyakov loop

I P anticorrelates withcondensate

I sea effect reduces⟨ψψ⟩

9 / 29

Page 29: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Phase diagram for B > 0

I physical mπ, staggered quarks, continuum limitBali, Bruckmann, Endrodi, Fodor, Katz et al. ’11 ’12

Endrodi ’15

I magnetic catalysis at low T (also at high T )

I inverse magnetic catalysis (IMC) in transition regionI Tc is reduced by B

10 / 29

Page 30: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Phase diagram for B > 0

I physical mπ, staggered quarks, continuum limitBali, Bruckmann, Endrodi, Fodor, Katz et al. ’11 ’12

Endrodi ’15

I magnetic catalysis at low T (also at high T )I inverse magnetic catalysis (IMC) in transition region

I Tc is reduced by B

10 / 29

Page 31: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Phase diagram for B > 0

I physical mπ, staggered quarks, continuum limitBali, Bruckmann, Endrodi, Fodor, Katz et al. ’11 ’12

Endrodi ’15

I magnetic catalysis at low T (also at high T )I inverse magnetic catalysis (IMC) in transition regionI Tc is reduced by B

10 / 29

Page 32: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Phase diagram for B > 0

I physical mπ, staggered quarks, continuum limitBali, Bruckmann, Endrodi, Fodor, Katz et al. ’11 ’12Endrodi ’15

I magnetic catalysis at low T (also at high T )I inverse magnetic catalysis (IMC) in transition regionI Tc is reduced by B

10 / 29

Page 33: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Quark mass dependence

Page 34: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

IMC ?= Tc(B) ↘

I early lattice simulations: D’Elia, Mukherjee, Sanfilippo, ’10heavier quarks + lattice artefacts = no IMC, Tc(B)↗

I recent update with improved action D’Elia et al. ’18

0 0.2 0.4 0.6 0.8 1

eB [GeV2]

150

160

170

180

190

200

210

220

Tc(B

)

mπ=343 MeV

mπ=440 MeV

mπ=664 MeV

I IMC 6= Tc(B)↘

I no IMC mπ & 500 MeVEndrodi, Giordano et al. ’19

−1

0

1

2

3

4

350 400 450 500 550 600 650 700 750

10 15 20 25 30

~

IMC MC

∆Σ

Mπ[MeV]

m/mphys

11 / 29

Page 35: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

IMC ?= Tc(B) ↘

I early lattice simulations: D’Elia, Mukherjee, Sanfilippo, ’10heavier quarks + lattice artefacts = no IMC, Tc(B)↗

I recent update with improved action D’Elia et al. ’18

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

mπ=

343 M

eV

eB= 0 GeV2

eB= 0.425 GeV2

eB= 0.85 GeV2

-0.05

-0.025

0

0.025

mπ=

440 M

eV

100 125 150 175 200 225 250 275T [MeV]

-0.02

-0.01

0

0.01

mπ=

664 M

eV

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

mπ=

343 M

eV

eB= 0 GeV2

eB= 0.425 GeV2

eB= 0.85 GeV2

-0.05

-0.025

0

0.025m

π=

440 M

eV

100 125 150 175 200 225 250 275T [MeV]

-0.02

-0.01

0

0.01

mπ=

664 M

eV

0 0.2 0.4 0.6 0.8 1

eB [GeV2]

150

160

170

180

190

200

210

220

Tc(B

)

mπ=343 MeV

mπ=440 MeV

mπ=664 MeV

I IMC 6= Tc(B)↘

I no IMC mπ & 500 MeVEndrodi, Giordano et al. ’19 −1

0

1

2

3

4

350 400 450 500 550 600 650 700 750

10 15 20 25 30

~

IMC MC

∆Σ

Mπ[MeV]

m/mphys

11 / 29

Page 36: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

IMC ?= Tc(B) ↘

I early lattice simulations: D’Elia, Mukherjee, Sanfilippo, ’10heavier quarks + lattice artefacts = no IMC, Tc(B)↗

I recent update with improved action D’Elia et al. ’18-0.08

-0.06

-0.04

-0.02

0

0.02

0.04m

π=

343 M

eV

eB= 0 GeV2

eB= 0.425 GeV2

eB= 0.85 GeV2

-0.05

-0.025

0

0.025

mπ=

440 M

eV

100 125 150 175 200 225 250 275T [MeV]

-0.02

-0.01

0

0.01

mπ=

664 M

eV

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

mπ=

343 M

eV

eB= 0 GeV2

eB= 0.425 GeV2

eB= 0.85 GeV2

-0.05

-0.025

0

0.025m

π=

440 M

eV

100 125 150 175 200 225 250 275T [MeV]

-0.02

-0.01

0

0.01

mπ=

664 M

eV

0 0.2 0.4 0.6 0.8 1

eB [GeV2]

150

160

170

180

190

200

210

220

Tc(B

)

mπ=343 MeV

mπ=440 MeV

mπ=664 MeV

I IMC 6= Tc(B)↘

I no IMC mπ & 500 MeVEndrodi, Giordano et al. ’19 −1

0

1

2

3

4

350 400 450 500 550 600 650 700 750

10 15 20 25 30

~

IMC MC

∆Σ

Mπ[MeV]

m/mphys

11 / 29

Page 37: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

IMC ?= Tc(B) ↘

I early lattice simulations: D’Elia, Mukherjee, Sanfilippo, ’10heavier quarks + lattice artefacts = no IMC, Tc(B)↗

I recent update with improved action D’Elia et al. ’18

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

mπ=

343 M

eV

eB= 0 GeV2

eB= 0.425 GeV2

eB= 0.85 GeV2

-0.05

-0.025

0

0.025

mπ=

440 M

eV

100 125 150 175 200 225 250 275T [MeV]

-0.02

-0.01

0

0.01

mπ=

664 M

eV

0 0.2 0.4 0.6 0.8 1

eB [GeV2]

150

160

170

180

190

200

210

220

Tc(B

)

mπ=343 MeV

mπ=440 MeV

mπ=664 MeV

I IMC 6= Tc(B)↘

I no IMC mπ & 500 MeVEndrodi, Giordano et al. ’19 −1

0

1

2

3

4

350 400 450 500 550 600 650 700 750

10 15 20 25 30

~

IMC MC

∆Σ

Mπ[MeV]

m/mphys

11 / 29

Page 38: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

IMC ?= Tc(B) ↘

I early lattice simulations: D’Elia, Mukherjee, Sanfilippo, ’10heavier quarks + lattice artefacts = no IMC, Tc(B)↗

I recent update with improved action D’Elia et al. ’18

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

mπ=

343 M

eV

eB= 0 GeV2

eB= 0.425 GeV2

eB= 0.85 GeV2

-0.05

-0.025

0

0.025

mπ=

440 M

eV

100 125 150 175 200 225 250 275T [MeV]

-0.02

-0.01

0

0.01

mπ=

664 M

eV

0 0.2 0.4 0.6 0.8 1

eB [GeV2]

150

160

170

180

190

200

210

220

Tc(B

)

mπ=343 MeV

mπ=440 MeV

mπ=664 MeV

I IMC 6= Tc(B)↘

I no IMC mπ & 500 MeVEndrodi, Giordano et al. ’19 −1

0

1

2

3

4

350 400 450 500 550 600 650 700 750

10 15 20 25 30

~

IMC MC

∆Σ

Mπ[MeV]

m/mphys

11 / 29

Page 39: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

IMC ?= Tc(B) ↘

I early lattice simulations: D’Elia, Mukherjee, Sanfilippo, ’10heavier quarks + lattice artefacts = no IMC, Tc(B)↗

I recent update with improved action D’Elia et al. ’18

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

mπ=

343 M

eV

eB= 0 GeV2

eB= 0.425 GeV2

eB= 0.85 GeV2

-0.05

-0.025

0

0.025

mπ=

440 M

eV

100 125 150 175 200 225 250 275T [MeV]

-0.02

-0.01

0

0.01

mπ=

664 M

eV

0 0.2 0.4 0.6 0.8 1

eB [GeV2]

150

160

170

180

190

200

210

220

Tc(B

)

mπ=343 MeV

mπ=440 MeV

mπ=664 MeV

I IMC 6= Tc(B)↘

I no IMC mπ & 500 MeVEndrodi, Giordano et al. ’19 −1

0

1

2

3

4

350 400 450 500 550 600 650 700 750

10 15 20 25 30

~

IMC MC

∆Σ

Mπ[MeV]

m/mphys

11 / 29

Page 40: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

IMC ?= Tc(B) ↘

I early lattice simulations: D’Elia, Mukherjee, Sanfilippo, ’10heavier quarks + lattice artefacts = no IMC, Tc(B)↗

I recent update with improved action D’Elia et al. ’18

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

mπ=

343 M

eV

eB= 0 GeV2

eB= 0.425 GeV2

eB= 0.85 GeV2

-0.05

-0.025

0

0.025

mπ=

440 M

eV

100 125 150 175 200 225 250 275T [MeV]

-0.02

-0.01

0

0.01

mπ=

664 M

eV

0 0.2 0.4 0.6 0.8 1

eB [GeV2]

150

160

170

180

190

200

210

220

Tc(B

)

mπ=343 MeV

mπ=440 MeV

mπ=664 MeV

I IMC 6= Tc(B)↘

I no IMC mπ & 500 MeVEndrodi, Giordano et al. ’19 −1

0

1

2

3

4

350 400 450 500 550 600 650 700 750

10 15 20 25 30~

IMC MC

∆Σ

Mπ[MeV]

m/mphys

11 / 29

Page 41: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Large B limit

I full QCD simulations only possible for eB � 1/a2

I calculate effective theory for eB � Λ2QCD,T 2

I B breaks rotational symmetryand effectively reduces dimensionality

I quarks decouple and gluons inherit spatial anisotropy:Miransky, Shovkovy ’02 Endrodi ’15

LQCDB→∞−−−−→ trB2

z + trB2x ,y +∞ · tr E2

z + tr E2x ,y

I anisotropic pure gauge theory, can be simulated on the latticewith a constrained algorithm Endrodi ’15

12 / 29

Page 42: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Large B limit

I full QCD simulations only possible for eB � 1/a2

I calculate effective theory for eB � Λ2QCD,T 2

I B breaks rotational symmetryand effectively reduces dimensionality

I quarks decouple and gluons inherit spatial anisotropy:Miransky, Shovkovy ’02 Endrodi ’15

LQCDB→∞−−−−→ trB2

z + trB2x ,y +∞ · tr E2

z + tr E2x ,y

I anisotropic pure gauge theory, can be simulated on the latticewith a constrained algorithm Endrodi ’15

12 / 29

Page 43: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Large B limit

I full QCD simulations only possible for eB � 1/a2

I calculate effective theory for eB � Λ2QCD,T 2

I B breaks rotational symmetryand effectively reduces dimensionality

I quarks decouple and gluons inherit spatial anisotropy:Miransky, Shovkovy ’02 Endrodi ’15

LQCDB→∞−−−−→ trB2

z + trB2x ,y +∞ · tr E2

z + tr E2x ,y

I anisotropic pure gauge theory, can be simulated on the latticewith a constrained algorithm Endrodi ’15

12 / 29

Page 44: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

First-order transition

I order parameter is the Polyakov loop Endrodi ’15

I Polyakov loop susceptibility peak height scales with VI histogram shows double peak-structure at Tc

I the transition is of first order

13 / 29

Page 45: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

First-order transition

I order parameter is the Polyakov loop Endrodi ’15

I Polyakov loop susceptibility peak height scales with VI histogram shows double peak-structure at Tc

I the transition is of first order

13 / 29

Page 46: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Phase diagram

I location of a critical point, estimated via the narrowing ofsusceptibility peaks in full QCD Endrodi ’15

I B →∞ limit is unaffected by quark masses⇒ consistent with mass-independence of Tc(B)↘

14 / 29

Page 47: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Phase diagram

I location of a critical point, estimated via the narrowing ofsusceptibility peaks in full QCD Endrodi ’15

I B →∞ limit is unaffected by quark masses⇒ consistent with mass-independence of Tc(B)↘

14 / 29

Page 48: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Model approaches

Page 49: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Low-energy models

I model calculations predict the opposite phase diagramAndersen, Naylor, Tranberg ’14

I no inverse magnetic catalysis for any TI Tc(B) increases

I one out of the many examples: the PNJL modelGatto, Ruggieri ’11

eB=19

eB=15

eB=10

eB=0

160 170 180 190 200 2100.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T HMeVL

S�S

0

C+ΧSB

D+ΧSR

TT

Χ

P

TB=0 =175 MeV

0 5 10 15 200.8

0.9

1.0

1.1

1.2

eB�mΠ2

TΧ,TPHM

eVL

15 / 29

Page 50: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Low-energy models

I model calculations predict the opposite phase diagramAndersen, Naylor, Tranberg ’14

I no inverse magnetic catalysis for any TI Tc(B) increases

I one out of the many examples: the PNJL modelGatto, Ruggieri ’11

eB=19

eB=15

eB=10

eB=0

160 170 180 190 200 2100.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T HMeVL

S�S

0

C+ΧSB

D+ΧSR

TT

Χ

P

TB=0 =175 MeV

0 5 10 15 200.8

0.9

1.0

1.1

1.2

eB�mΠ2

TΧ,TPHM

eVL

15 / 29

Page 51: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Improving the PNJL model

I parameter G (four-fermion coupling)I provide lattice input at T = 0, B > 0 to define physical G(B)

Endrodi, Marko ’19

I input = constituent quark mass (lattice: from baryon masses)

700

800

900

1000

1100

0 0.4 0.8800

900

1000

1100

1200

1300

0 0.4 0.8700

800

900

1000

0 0.4 0.8

800

900

1000

1100

1200

1300

0 0.4 0.81000

1100

1200

1300

1400

0 0.4 0.8

Mb[M

eV]

eB [GeV2]

p

Mb[M

eV]

eB [GeV2]

Σ+

Mb[M

eV]

eB [GeV2]

n

Mb[M

eV]

eB [GeV2]

Σ0

Mb[M

eV]

eB [GeV2]

Σ−

a=1.47GeV−1

1.09

0.778

0.632

0.499

cont. lim.

0

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Mf[M

eV]

eB [GeV2]

u, stat+syst errd, stat+syst err

s, stat+syst err

6

7

8

9

10

11

12

13

14

0 0.1 0.2 0.3 0.4 0.5 0.6

G[G

eV−2]

eB [GeV2]

I to achieve roughly B-independent constituent quark masses,G(B) needs to decrease

16 / 29

Page 52: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Improving the PNJL model

I parameter G (four-fermion coupling)I provide lattice input at T = 0, B > 0 to define physical G(B)

Endrodi, Marko ’19

I input = constituent quark mass (lattice: from baryon masses)

700

800

900

1000

1100

0 0.4 0.8800

900

1000

1100

1200

1300

0 0.4 0.8700

800

900

1000

0 0.4 0.8

800

900

1000

1100

1200

1300

0 0.4 0.81000

1100

1200

1300

1400

0 0.4 0.8

Mb[M

eV]

eB [GeV2]

p

Mb[M

eV]

eB [GeV2]

Σ+

Mb[M

eV]

eB [GeV2]

n

Mb[M

eV]

eB [GeV2]

Σ0

Mb[M

eV]

eB [GeV2]

Σ−

a=1.47GeV−1

1.09

0.778

0.632

0.499

cont. lim.

0

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Mf[M

eV]

eB [GeV2]

u, stat+syst errd, stat+syst err

s, stat+syst err

6

7

8

9

10

11

12

13

14

0 0.1 0.2 0.3 0.4 0.5 0.6

G[G

eV−2]

eB [GeV2]

I to achieve roughly B-independent constituent quark masses,G(B) needs to decrease

16 / 29

Page 53: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Improving the PNJL model

I parameter G (four-fermion coupling)I provide lattice input at T = 0, B > 0 to define physical G(B)

Endrodi, Marko ’19

I input = constituent quark mass (lattice: from baryon masses)

700

800

900

1000

1100

0 0.4 0.8800

900

1000

1100

1200

1300

0 0.4 0.8700

800

900

1000

0 0.4 0.8

800

900

1000

1100

1200

1300

0 0.4 0.81000

1100

1200

1300

1400

0 0.4 0.8

Mb[M

eV]

eB [GeV2]

p

Mb[M

eV]

eB [GeV2]

Σ+

Mb[M

eV]

eB [GeV2]

n

Mb[M

eV]

eB [GeV2]

Σ0

Mb[M

eV]

eB [GeV2]

Σ−

a=1.47GeV−1

1.09

0.778

0.632

0.499

cont. lim.

0

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Mf[M

eV]

eB [GeV2]

u, stat+syst errd, stat+syst err

s, stat+syst err

6

7

8

9

10

11

12

13

14

0 0.1 0.2 0.3 0.4 0.5 0.6

G[G

eV−2]

eB [GeV2]

I to achieve roughly B-independent constituent quark masses,G(B) needs to decrease

16 / 29

Page 54: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Improving the PNJL model

I parameter G (four-fermion coupling)I provide lattice input at T = 0, B > 0 to define physical G(B)

Endrodi, Marko ’19

I input = constituent quark mass (lattice: from baryon masses)

700

800

900

1000

1100

0 0.4 0.8800

900

1000

1100

1200

1300

0 0.4 0.8700

800

900

1000

0 0.4 0.8

800

900

1000

1100

1200

1300

0 0.4 0.81000

1100

1200

1300

1400

0 0.4 0.8

Mb[M

eV]

eB [GeV2]

p

Mb[M

eV]

eB [GeV2]

Σ+

Mb[M

eV]

eB [GeV2]

n

Mb[M

eV]

eB [GeV2]

Σ0

Mb[M

eV]

eB [GeV2]

Σ−

a=1.47GeV−1

1.09

0.778

0.632

0.499

cont. lim.

0

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Mf[M

eV]

eB [GeV2]

u, stat+syst errd, stat+syst err

s, stat+syst err

6

7

8

9

10

11

12

13

14

0 0.1 0.2 0.3 0.4 0.5 0.6

G[G

eV−2]

eB [GeV2]

I to achieve roughly B-independent constituent quark masses,G(B) needs to decrease

16 / 29

Page 55: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Improving the PNJL model

I parameter G (four-fermion coupling)I provide lattice input at T = 0, B > 0 to define physical G(B)

Endrodi, Marko ’19

I input = constituent quark mass (lattice: from baryon masses)

700

800

900

1000

1100

0 0.4 0.8800

900

1000

1100

1200

1300

0 0.4 0.8700

800

900

1000

0 0.4 0.8

800

900

1000

1100

1200

1300

0 0.4 0.81000

1100

1200

1300

1400

0 0.4 0.8

Mb[M

eV]

eB [GeV2]

p

Mb[M

eV]

eB [GeV2]

Σ+

Mb[M

eV]

eB [GeV2]

n

Mb[M

eV]

eB [GeV2]

Σ0

Mb[M

eV]

eB [GeV2]

Σ−

a=1.47GeV−1

1.09

0.778

0.632

0.499

cont. lim.

0

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Mf[M

eV]

eB [GeV2]

u, stat+syst errd, stat+syst err

s, stat+syst err

6

7

8

9

10

11

12

13

14

0 0.1 0.2 0.3 0.4 0.5 0.6

G[G

eV−2]

eB [GeV2]

I to achieve roughly B-independent constituent quark masses,G(B) needs to decrease

16 / 29

Page 56: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Improving the PNJL model

I compare standard and improved PNJL model

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0 0.1 0.2 0.3 0.4 0.5 0.6

Tc/T

c(B

=0)

eB [GeV2]

lattice resultlattice-improved PNJL

standard PNJL

I inverse catalysis emerges in transition region

I Tc(B) decreasesI perfect agreement with lattice results

17 / 29

Page 57: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Improving the PNJL model

I compare standard and improved PNJL model

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.14 0.16 0.18 0.2 0.22 0.24 0.26

〈ψψ〉[

GeV

3]

T [GeV]

lattice-improved PNJLstandard PNJL

eB [GeV2] = 0.0000.1030.2170.3320.4460.561

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0 0.1 0.2 0.3 0.4 0.5 0.6

Tc/T

c(B

=0)

eB [GeV2]

lattice resultlattice-improved PNJL

standard PNJL

I inverse catalysis emerges in transition region

I Tc(B) decreasesI perfect agreement with lattice results

17 / 29

Page 58: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Improving the PNJL model

I compare standard and improved PNJL model

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.14 0.16 0.18 0.2 0.22 0.24 0.26

〈ψψ〉[

GeV

3]

T [GeV]

lattice-improved PNJLstandard PNJL

eB [GeV2] = 0.0000.1030.2170.3320.4460.561

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0 0.1 0.2 0.3 0.4 0.5 0.6

Tc/T

c(B

=0)

eB [GeV2]

lattice resultlattice-improved PNJL

standard PNJL

I inverse catalysis emerges in transition regionI Tc(B) decreases

I perfect agreement with lattice results

17 / 29

Page 59: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Improving the PNJL model

I compare standard and improved PNJL model

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.14 0.16 0.18 0.2 0.22 0.24 0.26

〈ψψ〉[

GeV

3]

T [GeV]

lattice-improved PNJLstandard PNJL

eB [GeV2] = 0.0000.1030.2170.3320.4460.561

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0 0.1 0.2 0.3 0.4 0.5 0.6

Tc/T

c(B

=0)

eB [GeV2]

lattice resultlattice-improved PNJL

standard PNJL

I inverse catalysis emerges in transition regionI Tc(B) decreasesI perfect agreement with lattice results

17 / 29

Page 60: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Phase diagram – summary

I phase diagram for strongbackground magnetic fields

I Tc(B) similar for heavier quarksIMC only present for light quarks

0 0.2 0.4 0.6 0.8 1

eB [GeV2]

150

160

170

180

190

200

210

220

Tc(B

)

mπ=343 MeV

mπ=440 MeV

mπ=664 MeV

I PNJL model can be improvedusing only T = 0 lattice input

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0 0.1 0.2 0.3 0.4 0.5 0.6

Tc/T

c(B

=0)

eB [GeV2]

lattice resultlattice-improved PNJL

standard PNJL

18 / 29

Page 61: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Phase diagram – summary

I phase diagram for strongbackground magnetic fields

I Tc(B) similar for heavier quarksIMC only present for light quarks

0 0.2 0.4 0.6 0.8 1

eB [GeV2]

150

160

170

180

190

200

210

220

Tc(B

)

mπ=343 MeV

mπ=440 MeV

mπ=664 MeV

I PNJL model can be improvedusing only T = 0 lattice input

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0 0.1 0.2 0.3 0.4 0.5 0.6

Tc/T

c(B

=0)

eB [GeV2]

lattice resultlattice-improved PNJL

standard PNJL

18 / 29

Page 62: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Phase diagram – summary

I phase diagram for strongbackground magnetic fields

I Tc(B) similar for heavier quarksIMC only present for light quarks

0 0.2 0.4 0.6 0.8 1

eB [GeV2]

150

160

170

180

190

200

210

220

Tc(B

)

mπ=343 MeV

mπ=440 MeV

mπ=664 MeV

I PNJL model can be improvedusing only T = 0 lattice input

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0 0.1 0.2 0.3 0.4 0.5 0.6

Tc/T

c(B

=0)

eB [GeV2]

lattice resultlattice-improved PNJL

standard PNJL

18 / 29

Page 63: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Equation of state –a new method to calculate the permeability

Page 64: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Susceptibility and permeability

I leading-order dependence of matter free energy density on B

χ = − ∂2f∂(eB)2

∣∣∣∣∣B=0

from this the O(B2) equation of state can be reconstructedI total free energy

f tot = −χ · (eB)2

2 + B2

2 = B2

2µI permeability Landau-Lifschitz Vol 8.

µ = 11− e2χ

I µ > 1 (χ > 0) : paramagnetismµ < 1 (χ < 0) : diamagnetism

19 / 29

Page 65: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Magnetic susceptibility – expectations

I in the vacuum µ = 1, so χ = 0I spins align with B, so free quarks are paramagneticI orbital angular momentum anti-aligns with B (Lenz’s law), so

free pions are diamagnetic

20 / 29

Page 66: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Flux quantization problem

Page 67: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Magnetic field on the torus

torus T2

with surface area LxLy

D’Elia, Negro ’11

I phase factor along path: ϕC = exp(iq∮C dxµAµ)

I Stokes:ϕC = exp(iq

∫∫A dσB) = exp(iqB · A)

but alsoϕC = exp(−iq

∫∫T2−A dσB) = exp(−iqB · (LxLy − A))

I consistent if ’t Hooft ’79 Hashimi, Wiese ’08

exp(iqBLxLy ) = 1 → qBLxLy = 2π · Nb, Nb ∈ Z21 / 29

Page 68: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Flux quantization

I flux quantization in finite volume

eB = 6π · NbLxLy

, Nb = 0, 1, . . .

⇒ χ via differentiation wrt. B is ill-definedI workarounds:

I calculate f (Nb) in a sufficiently large volume and differentiatenumerically Bonati et al. ’13 Bali et al. ’14E computationally expensive

I replace constant B by ‘half-half setup’ with zero flux,differentiation is allowed Levkova, DeTar ’13E introduces large finite size effects

I relate χ to pressure differences Bali et al. ’13E needs anisotropic lattices

I new method: express χ as an operator in the thermodynamiclimit Bali, Endrodi, Piemonte ’20

22 / 29

Page 69: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

New method: sketch

Page 70: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Current-current correlator method

I vector potential interacts with current

i∫

d4x Aµ jµ, jµ =∑

fqf ψγµψ

I susceptibility at finite p1

B(x1) = cos(p1x1) · B,

A2(x1) = sin(p1x1)p1

· B

χ(p1) = − ∂2f∂(eB)2

∣∣∣∣∣B=0

= −TV

∫d4x d4y sin(p1x1) sin(p1y1)

p21

〈j2(x)j2(y)〉

I use trigonometric identities + translational invariance + trick

23 / 29

Page 71: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Current-current correlator method

I vector potential interacts with current

i∫

d4x Aµ jµ, jµ =∑

fqf ψγµψ

I susceptibility at finite p1

B(x1) = cos(p1x1) · B,

A2(x1) = sin(p1x1)p1

· B

χ(p1) = − ∂2f∂(eB)2

∣∣∣∣∣B=0

= −TV

∫d4x d4y sin(p1x1) sin(p1y1)

p21

〈j2(x)j2(y)〉

I use trigonometric identities + translational invariance + trick

23 / 29

Page 72: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Current-current correlator method

I vector potential interacts with current

i∫

d4x Aµ jµ, jµ =∑

fqf ψγµψ

I susceptibility at finite p1

B(x1) = cos(p1x1) · B, A2(x1) = sin(p1x1)p1

· B

χ(p1) = − ∂2f∂(eB)2

∣∣∣∣∣B=0

= −TV

∫d4x d4y sin(p1x1) sin(p1y1)

p21

〈j2(x)j2(y)〉

I use trigonometric identities + translational invariance + trick

23 / 29

Page 73: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Current-current correlator method

I vector potential interacts with current

i∫

d4x Aµ jµ, jµ =∑

fqf ψγµψ

I susceptibility at finite p1

B(x1) = cos(p1x1) · B, A2(x1) = sin(p1x1)p1

· B

χ(p1) = − ∂2f∂(eB)2

∣∣∣∣∣B=0

= −TV

∫d4x d4y sin(p1x1) sin(p1y1)

p21

〈j2(x)j2(y)〉

I use trigonometric identities + translational invariance + trick

23 / 29

Page 74: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Current-current correlator method

I vector potential interacts with current

i∫

d4x Aµ jµ, jµ =∑

fqf ψγµψ

I susceptibility at finite p1

B(x1) = cos(p1x1) · B, A2(x1) = sin(p1x1)p1

· B

χ(p1) = − ∂2f∂(eB)2

∣∣∣∣∣B=0

= −TV

∫d4x d4y sin(p1x1) sin(p1y1)

p21

〈j2(x)j2(y)〉

I use trigonometric identities + translational invariance + trick

23 / 29

Page 75: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Current-current correlator method

I oscillatory susceptibility

χ(p1) =∫

dx11− cos(p1x1)

p21

G(x1), G(x1) =∫

dx2dx3dx4 〈j2(x)j2(0)〉

I cusp of kernel at x1 = L/2 is unproblematic

24 / 29

Page 76: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Current-current correlator method

I oscillatory susceptibility

χ(p1) =∫

dx11− cos(p1x1)

p21

G(x1), G(x1) =∫

dx2dx3dx4 〈j2(x)j2(0)〉

I p1 → 0 in the infinite volume

χ =∫ L

0dx1

G(x1)2 · x2

1

I cusp of kernel at x1 = L/2 is unproblematic

24 / 29

Page 77: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Current-current correlator method

I oscillatory susceptibility

χ(p1) =∫

dx11− cos(p1x1)

p21

G(x1), G(x1) =∫

dx2dx3dx4 〈j2(x)j2(0)〉

I p1∼→ 0 in finite volume

χ =∫ L

0dx1

G(x1)2 ·

{x2

1 , x1 ≤ L/2(x1 − L)2, x1 > L/2

I cusp of kernel at x1 = L/2 is unproblematic

24 / 29

Page 78: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Current-current correlator method

I oscillatory susceptibility

χ(p1) =∫

dx11− cos(p1x1)

p21

G(x1), G(x1) =∫

dx2dx3dx4 〈j2(x)j2(0)〉

I p1∼→ 0 in finite volume

χ =∫ L

0dx1

G(x1)2 ·

{x2

1 , x1 ≤ L/2(x1 − L)2, x1 > L/2

I cusp of kernel at x1 = L/2 is unproblematic 24 / 29

Page 79: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Correlators

I correlator

and its convolution with the kernels

I finite volume effects indeed small

I note: χ(p) analogous to vacuum polarization form factorrelevant for muon g − 2 calculations at T = 0 Bali, Endrodi ’15

25 / 29

Page 80: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Correlators

I correlator and its convolution with the kernels

I finite volume effects indeed small

I note: χ(p) analogous to vacuum polarization form factorrelevant for muon g − 2 calculations at T = 0 Bali, Endrodi ’15

25 / 29

Page 81: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Correlators

I correlator and its convolution with the kernels

I finite volume effects indeed small

I note: χ(p) analogous to vacuum polarization form factorrelevant for muon g − 2 calculations at T = 0 Bali, Endrodi ’15

25 / 29

Page 82: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Correlators

I correlator and its convolution with the kernels

I finite volume effects indeed smallI note: χ(p) analogous to vacuum polarization form factor

relevant for muon g − 2 calculations at T = 0 Bali, Endrodi ’15

25 / 29

Page 83: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Results

Page 84: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Zero temperature

I susceptibility contains additive divergence ∝ log adue to charge renormalization Schwinger ’51 Bali et al. ’14

I renormalize as χ(T ) = χb(T )− χb(T = 0)

I different methods in the literature agree with each other

26 / 29

Page 85: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Zero temperature

I susceptibility contains additive divergence ∝ log adue to charge renormalization Schwinger ’51 Bali et al. ’14

I renormalize as χ(T ) = χb(T )− χb(T = 0)

I different methods in the literature agree with each other

26 / 29

Page 86: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Zero temperature

I susceptibility contains additive divergence ∝ log adue to charge renormalization Schwinger ’51 Bali et al. ’14

I renormalize as χ(T ) = χb(T )− χb(T = 0)I different methods in the literature agree with each other

26 / 29

Page 87: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Nonzero temperature

I continuum extrapolation using four lattice spacings

I comparison to HRG model (low T ) Endrodi ’13and to perturbation theory (high T ) Bali et al. ’14

I taste splitting lattice artefacts severe at low T ; carefulcontinuum extrapolation required Bali, Endrodi, Piemonte ’20

27 / 29

Page 88: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Nonzero temperature

I continuum extrapolation using four lattice spacings

I comparison to HRG model (low T ) Endrodi ’13and to perturbation theory (high T ) Bali et al. ’14

I taste splitting lattice artefacts severe at low T ; carefulcontinuum extrapolation required Bali, Endrodi, Piemonte ’20

27 / 29

Page 89: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Nonzero temperature

I continuum extrapolation using four lattice spacings

I comparison to HRG model (low T ) Endrodi ’13and to perturbation theory (high T ) Bali et al. ’14

I taste splitting lattice artefacts severe at low T ; carefulcontinuum extrapolation required Bali, Endrodi, Piemonte ’20

27 / 29

Page 90: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Permeability

I permeability µ = (1− e2χ)−1

I parameterization as python script, to be used in modelshttps://arxiv.org/src/2004.08778v2/anc/param_EoS.py

contains all other observables in the EoS

28 / 29

Page 91: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Permeability

I permeability µ = (1− e2χ)−1

I parameterization as python script, to be used in modelshttps://arxiv.org/src/2004.08778v2/anc/param_EoS.py

contains all other observables in the EoS28 / 29

Page 92: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Permeability – summary

I avoid flux quantization issue;susceptibility as smooth limit infinite volumes

I zero-temperature subtraction ofadditive divergences

I pions are diamagnetic, QGP isparamagnetic

29 / 29

Page 93: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Permeability – summary

I avoid flux quantization issue;susceptibility as smooth limit infinite volumes

I zero-temperature subtraction ofadditive divergences

I pions are diamagnetic, QGP isparamagnetic

29 / 29

Page 94: Hot QCD matter in magnetic fields: phase transition and ...shovkovy.faculty.asu.edu/colloquium/slides/Colloquium...Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 Imagnetars

Permeability – summary

I avoid flux quantization issue;susceptibility as smooth limit infinite volumes

I zero-temperature subtraction ofadditive divergences

I pions are diamagnetic, QGP isparamagnetic

29 / 29