ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7...

51
Karl-Heinz Kampert Taipei Colloq, 7.04.2015 The Most Energetic Particles in Nature Karl-Heinz Kampert University of Wuppertal ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloqui um, April 7, 2015 Area Grant

Transcript of ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7...

Page 1: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert Taipei Colloq, 7.04.2015

The Most Energetic Particles in Nature

Karl-Heinz Kampert University of Wuppertal

ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7, 2015

Area ∝ Grant

Page 2: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal Taipei Colloq, 7.04.20152

1 event per m2 and sec

γ≈ 2.7 - 3.0

„ankle“(1 per km2-year)

Energy Spectrum of Cosmic Rays

log(energy/eV)

log(

flux)

32 o

rder

s of

mag

n.32 orders of magnitude:

hair

Universe

„Knee“(1 per m2-year)

Page 3: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal Taipei Colloq, 7.04.20153

1 event per m2 and sec

γ≈ 2.7 - 3.0

„ankle“(1 per km2-year)

log(energy/eV)

log(

flux)

32 o

rder

s of

mag

n.

„Knee“(1 per m2-year)

Balloons

Satellite

Air ShowerExps

<5 m2

0.1 km2

<1 m2

3000 km2

Page 4: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert 4 Taipei Colloq, 7.04.2015

• Where do they come from?

• What are they made of ?

• How do their accelerators work?

• Is there a maximum limit to their energy ?

• What can they tell us aboutfundamental and particle physics?

Key Questions aboutUltra High-Energy Cosmic Rays

Page 5: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal 5 Taipei Colloq, 7.04.2015

courtesy R. Engel

Particle Energy (eV)

1310 1410 1510 1610 1710 1810 1910 2010

)1.

5 e

V-1

sr

-1 s

ec-2

J(E

) (m

2.5

Scal

ed fl

ux

E

1310

1410

1510

1610

1710

1810

1910

(GeV)ppsEquivalent c.m. energy 210 310 410 510 610

RHIC (p-p)-p)eHERA (

Tevatron (p-p)LHC (p-p)

ATICPROTONRUNJOB

KASCADE (QGSJET 01)KASCADE (SIBYLL 2.1)KASCADE-Grande (prel.)Tibet ASg (SIBYLL 2.1)

HiRes-MIAHiRes IHiRes IIAuger SD 2008

~E-2.7

~E-3.1

„Knee“

„Ankle“

Image of non-thermal Universe

„GZK?“

Features of CR spectrum

Page 6: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal 6 Taipei Colloq, 7.04.2015

courtesy R. Engel

Particle Energy (eV)

1310 1410 1510 1610 1710 1810 1910 2010

)1.

5 e

V-1

sr

-1 s

ec-2

J(E

) (m

2.5

Scal

ed fl

ux

E

1310

1410

1510

1610

1710

1810

1910

(GeV)ppsEquivalent c.m. energy 210 310 410 510 610

RHIC (p-p)-p)eHERA (

Tevatron (p-p)LHC (p-p)

ATICPROTONRUNJOB

KASCADE (QGSJET 01)KASCADE (SIBYLL 2.1)KASCADE-Grande (prel.)Tibet ASg (SIBYLL 2.1)

HiRes-MIAHiRes IHiRes IIAuger SD 2008

SNR?

Diffusion losses from Galaxis ?

pFe

....

SNR ?

Galactic CRs?

Features of CR spectrum

Fe-knee

p,He-knee

classicalankle model

AGN ?

Extragal. CRs?

extragal. component

p

magn. confinement ➠ Emax ~ Z

Page 7: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal 7 Taipei Colloq, 7.04.2015

courtesy R. Engel

Particle Energy (eV)

1310 1410 1510 1610 1710 1810 1910 2010

)1.

5 e

V-1

sr

-1 s

ec-2

J(E

) (m

2.5

Scal

ed fl

ux

E

1310

1410

1510

1610

1710

1810

1910

(GeV)ppsEquivalent c.m. energy 210 310 410 510 610

RHIC (p-p)-p)eHERA (

Tevatron (p-p)LHC (p-p)

ATICPROTONRUNJOB

KASCADE (QGSJET 01)KASCADE (SIBYLL 2.1)KASCADE-Grande (prel.)Tibet ASg (SIBYLL 2.1)

HiRes-MIAHiRes IHiRes IIAuger SD 2008

SNR?

Diffusion losses from Galaxis ?

SNR ?

Galactic CRs?

Features of CR spectrum

Fe-knee

p,He-knee

AGN ?

Extragal. CRs?

pFe

? extragal. component

magn. confinement ➠ Emax ~ Z

Page 8: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal Taipei Colloq, 7.04.2015

Lamor radii at 1020 eV compared to Milky-Way

E18 ≤ Z·BµG·Rkpc

Conjecture: Extragalactic

origin

Size × B-Field needsto be very large …

Interesting feature: Can do astronomy with cosmic rays !

1020 eV CRs in our Galaxy ?

8

Page 9: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal Taipei Colloq, 7.04.2015

Cosmic Magnetic Fields

Halo B?

Extra-galactic B < nG ?

γ, ν

weak deflection

RL = kpc Z-1 (E / EeV) (B / μG)-1

RL = Mpc Z-1 (E / EeV) (B / nG)-1

strong deflection

Milky wayB ~ μG

E > 1019eV

E < 1018eV

�(E,Z) ⇥ 0.8��

1020 eVE

⇥ ⇤L

10 Mpc

⇤Lcoh

1 Mpc

�B

1 nG

⇥· Z

UHECR Astronomy

Page 10: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal

Active Galactic Nuclei (AGN)

LHC

GRB

AGN-Jets

SNR

Colliding Galaxies

Potential Sources of 1020 eV particles

10 Taipei Colloq, 7.04.2015

Neutron Stars

white dwarfts

Active Galactic Nuclei ?

jets from radioInterplanetary

Space

Galact.disk

halo

eV proton

galaxies

GalacticClusters

Size

Mag

net

ic F

ield

stre

ng

th (G

auß

)

1AU

SNR

1012

10 6

1

10 –6

1km 10 6 km 1pc 1kpc 1Mpc

IGM

10 20

{

LHC

GRB ?Emax ~ βs·z·B·L

Fe

Hillas Diagramm

Realistic constraints more severe

• small acceleration efficiency • synchrotron & adiabatic losses • interactions in source region

Page 11: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal Taipei Colloq, 7.04.2015

Cas A(3.4 kpc)

Cygnus A (250 Mpc)

Fornax A (20 Mpc)

NRAO/AUI

1.4 , 5, & 8.4 GHz

Supernova RemnantsAccreting

Supermassive Black Holes

E < 1016 eV

E ~ 1020 eV ?

Radio Images of Cosmic Accelerators

Page 12: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal

The Cosmic Zevatron

12 Taipei Colloq, 7.04.2015

courtesy R. Engel

Particle Energy (eV)

1310 1410 1510 1610 1710 1810 1910 2010

)1.

5 e

V-1

sr

-1 s

ec-2

J(E

) (m

2.5

Scal

ed fl

ux

E

1310

1410

1510

1610

1710

1810

1910

(GeV)ppsEquivalent c.m. energy 210 310 410 510 610

RHIC (p-p)-p)eHERA (

Tevatron (p-p)LHC (p-p)

ATICPROTONRUNJOB

KASCADE (QGSJET 01)KASCADE (SIBYLL 2.1)KASCADE-Grande (prel.)Tibet ASg (SIBYLL 2.1)

HiRes-MIAHiRes IHiRes IIAuger SD 2008

SNR?

How much would LHC need to grow to accelerate 1020 eV?

LHC p-energy

1020 eV protons in LHC would requiresize of Earth orbit around Sun

Page 13: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

VOLUME 10, NUMBER 4 PHYSICAL RK VIEW LKTTKRS 15 I'EBRUARY 196)

cleon-nucleon scattering see, for example, M. L. Gold-berger, Q. T. Grisaqu, S. %'. MacDow'ell, and D. Y.Kong, Phys. Rev. 120, 2250 (1960). Other methods ofcalculating phase shifts in terms of scalar and vectorparticle exchanges have been considered by a numberof authors. See, for example, R. Bryan, C. Dismukes,and W. Ramsay (to be published).3R. Blankenbecler and M. L. Goldberger, Phys.

Rev. 126, 766 (1962); G. F. Che~ and S. C. Frautschi,

Phys. Rev. Letters 7, 394 (1961);S. Frautschi,M. Gell-Mann, and F. Zachariasen, Phys. Rev. 126,2204 (1962); D. %'ong, Phys. Rev. 126, 1220 (1962).4H. Stapp (private communication).SM. Hull, K. Lassila, H. Ruppel, F. McDonald, and

G. Breit, Phys. Rev. 122, 1606 (1961).6C. de Vries, R. Hofstadter, and R. Herman, Phys.

Rev. Letters 8, 381 (1962).7J. Ball and D. %'ong (to be published).

EVIDENCE FOR A PRIMARY COSMIC-HAY PARTICLE WITH ENERGY 10 eV~

John LinsleyLaboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received 10 January 1963)

Analysis of a cosmic-ray air shower recordedat the NIT Volcano Ranch station in February1962 indicates that the total number of particlesin the shower (Serial No. 2-4834) was 5x10'0.The total energy of the primary particle whichproduced the shower was 1.0x10~ eV. The show-er was about twice the size of the largest we hadreported previously (No. 1-15832, recorded inMarch 1961).'The existence of cosmic-ray particles having

such a great energy is of importance to astrophys-ics because such particles (believed to be atomicnuclei) have very great magnetic rigidity. It isbelieved that the region in which such a particleoriginates must be large enough and possess astrong enough magnetic field so that REI» (1/300)x(E/Z), where R is the radius of the region (cm)and H is the intensity of the magnetic field (gauss).E is the total energy of the particle (eV) and Z isits charge. Recent evidence favors the choiceZ = 1 (proton primaries) for the region of highestcosmic -ray energies. ' For the pr esent event oneobtains the condition RB» 3 x 10' . This conditionis not satisfied by our galaxy (for which RH ~ 5x10", halo included) or known objects within it,such as supernovae.The technique we use has been described else-

where. ' An array of scintillation detectors isused to find the direction (from pulse times) andsize (from pulse amplitudes) of shower eventswhich satisfy a triggering requirement. In thepresent case, the direction of the shower wasnearly vertical (zenith angle 10+ 5'). The valuesof shower density registered at the various pointsof the array are shown in Fig. 1. It can be ver-ified by close inspection of the figure that thecore of the shower must have struck near the

point marked "A," assuming only (1) that showerparticles are distributed symmetrically about anaxis (the "core"), and (2) that the density of par-ticl.es decreases monotonically with increasingdistance from the axis. The observed densities

0.6

KlLOMETERS

FIG. 1. Plan of the Volcano Ranch array in February1962. The circles represent 3.3-m2 scintillation de-tectors. The numbers near the circles are the showerdensities (particles/m ) registered in this event, No.2-4834. Point A is the estimated location of theshower core. The circular contours about that pointaid in verifying the core location by inspection.

146

VOLUME 10, NUMBER 4 PHYSICAL RK VIEW LKTTKRS 15 I'EBRUARY 196)

cleon-nucleon scattering see, for example, M. L. Gold-berger, Q. T. Grisaqu, S. %'. MacDow'ell, and D. Y.Kong, Phys. Rev. 120, 2250 (1960). Other methods ofcalculating phase shifts in terms of scalar and vectorparticle exchanges have been considered by a numberof authors. See, for example, R. Bryan, C. Dismukes,and W. Ramsay (to be published).3R. Blankenbecler and M. L. Goldberger, Phys.

Rev. 126, 766 (1962); G. F. Che~ and S. C. Frautschi,

Phys. Rev. Letters 7, 394 (1961);S. Frautschi,M. Gell-Mann, and F. Zachariasen, Phys. Rev. 126,2204 (1962); D. %'ong, Phys. Rev. 126, 1220 (1962).4H. Stapp (private communication).SM. Hull, K. Lassila, H. Ruppel, F. McDonald, and

G. Breit, Phys. Rev. 122, 1606 (1961).6C. de Vries, R. Hofstadter, and R. Herman, Phys.

Rev. Letters 8, 381 (1962).7J. Ball and D. %'ong (to be published).

EVIDENCE FOR A PRIMARY COSMIC-HAY PARTICLE WITH ENERGY 10 eV~

John LinsleyLaboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received 10 January 1963)

Analysis of a cosmic-ray air shower recordedat the NIT Volcano Ranch station in February1962 indicates that the total number of particlesin the shower (Serial No. 2-4834) was 5x10'0.The total energy of the primary particle whichproduced the shower was 1.0x10~ eV. The show-er was about twice the size of the largest we hadreported previously (No. 1-15832, recorded inMarch 1961).'The existence of cosmic-ray particles having

such a great energy is of importance to astrophys-ics because such particles (believed to be atomicnuclei) have very great magnetic rigidity. It isbelieved that the region in which such a particleoriginates must be large enough and possess astrong enough magnetic field so that REI» (1/300)x(E/Z), where R is the radius of the region (cm)and H is the intensity of the magnetic field (gauss).E is the total energy of the particle (eV) and Z isits charge. Recent evidence favors the choiceZ = 1 (proton primaries) for the region of highestcosmic -ray energies. ' For the pr esent event oneobtains the condition RB» 3 x 10' . This conditionis not satisfied by our galaxy (for which RH ~ 5x10", halo included) or known objects within it,such as supernovae.The technique we use has been described else-

where. ' An array of scintillation detectors isused to find the direction (from pulse times) andsize (from pulse amplitudes) of shower eventswhich satisfy a triggering requirement. In thepresent case, the direction of the shower wasnearly vertical (zenith angle 10+ 5'). The valuesof shower density registered at the various pointsof the array are shown in Fig. 1. It can be ver-ified by close inspection of the figure that thecore of the shower must have struck near the

point marked "A," assuming only (1) that showerparticles are distributed symmetrically about anaxis (the "core"), and (2) that the density of par-ticl.es decreases monotonically with increasingdistance from the axis. The observed densities

0.6

KlLOMETERS

FIG. 1. Plan of the Volcano Ranch array in February1962. The circles represent 3.3-m2 scintillation de-tectors. The numbers near the circles are the showerdensities (particles/m ) registered in this event, No.2-4834. Point A is the estimated location of theshower core. The circular contours about that pointaid in verifying the core location by inspection.

146

Karl-Heinz Kampert – University Wuppertal

1962: The First 1020 eV Event

13 Taipei Colloq, 7.04.2015

Volcano Ranch Air ShowerArray, New Mexico

Extensive Air Shower

detector array

Page 14: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

VOLUME 10, NUMBER 4 PHYSICAL RK VIEW LKTTKRS 15 I'EBRUARY 196)

cleon-nucleon scattering see, for example, M. L. Gold-berger, Q. T. Grisaqu, S. %'. MacDow'ell, and D. Y.Kong, Phys. Rev. 120, 2250 (1960). Other methods ofcalculating phase shifts in terms of scalar and vectorparticle exchanges have been considered by a numberof authors. See, for example, R. Bryan, C. Dismukes,and W. Ramsay (to be published).3R. Blankenbecler and M. L. Goldberger, Phys.

Rev. 126, 766 (1962); G. F. Che~ and S. C. Frautschi,

Phys. Rev. Letters 7, 394 (1961);S. Frautschi,M. Gell-Mann, and F. Zachariasen, Phys. Rev. 126,2204 (1962); D. %'ong, Phys. Rev. 126, 1220 (1962).4H. Stapp (private communication).SM. Hull, K. Lassila, H. Ruppel, F. McDonald, and

G. Breit, Phys. Rev. 122, 1606 (1961).6C. de Vries, R. Hofstadter, and R. Herman, Phys.

Rev. Letters 8, 381 (1962).7J. Ball and D. %'ong (to be published).

EVIDENCE FOR A PRIMARY COSMIC-HAY PARTICLE WITH ENERGY 10 eV~

John LinsleyLaboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received 10 January 1963)

Analysis of a cosmic-ray air shower recordedat the NIT Volcano Ranch station in February1962 indicates that the total number of particlesin the shower (Serial No. 2-4834) was 5x10'0.The total energy of the primary particle whichproduced the shower was 1.0x10~ eV. The show-er was about twice the size of the largest we hadreported previously (No. 1-15832, recorded inMarch 1961).'The existence of cosmic-ray particles having

such a great energy is of importance to astrophys-ics because such particles (believed to be atomicnuclei) have very great magnetic rigidity. It isbelieved that the region in which such a particleoriginates must be large enough and possess astrong enough magnetic field so that REI» (1/300)x(E/Z), where R is the radius of the region (cm)and H is the intensity of the magnetic field (gauss).E is the total energy of the particle (eV) and Z isits charge. Recent evidence favors the choiceZ = 1 (proton primaries) for the region of highestcosmic -ray energies. ' For the pr esent event oneobtains the condition RB» 3 x 10' . This conditionis not satisfied by our galaxy (for which RH ~ 5x10", halo included) or known objects within it,such as supernovae.The technique we use has been described else-

where. ' An array of scintillation detectors isused to find the direction (from pulse times) andsize (from pulse amplitudes) of shower eventswhich satisfy a triggering requirement. In thepresent case, the direction of the shower wasnearly vertical (zenith angle 10+ 5'). The valuesof shower density registered at the various pointsof the array are shown in Fig. 1. It can be ver-ified by close inspection of the figure that thecore of the shower must have struck near the

point marked "A," assuming only (1) that showerparticles are distributed symmetrically about anaxis (the "core"), and (2) that the density of par-ticl.es decreases monotonically with increasingdistance from the axis. The observed densities

0.6

KlLOMETERS

FIG. 1. Plan of the Volcano Ranch array in February1962. The circles represent 3.3-m2 scintillation de-tectors. The numbers near the circles are the showerdensities (particles/m ) registered in this event, No.2-4834. Point A is the estimated location of theshower core. The circular contours about that pointaid in verifying the core location by inspection.

146

VOLUME 10, NUMBER 4 PHYSICAL RK VIEW LKTTKRS 15 I'EBRUARY 196)

cleon-nucleon scattering see, for example, M. L. Gold-berger, Q. T. Grisaqu, S. %'. MacDow'ell, and D. Y.Kong, Phys. Rev. 120, 2250 (1960). Other methods ofcalculating phase shifts in terms of scalar and vectorparticle exchanges have been considered by a numberof authors. See, for example, R. Bryan, C. Dismukes,and W. Ramsay (to be published).3R. Blankenbecler and M. L. Goldberger, Phys.

Rev. 126, 766 (1962); G. F. Che~ and S. C. Frautschi,

Phys. Rev. Letters 7, 394 (1961);S. Frautschi,M. Gell-Mann, and F. Zachariasen, Phys. Rev. 126,2204 (1962); D. %'ong, Phys. Rev. 126, 1220 (1962).4H. Stapp (private communication).SM. Hull, K. Lassila, H. Ruppel, F. McDonald, and

G. Breit, Phys. Rev. 122, 1606 (1961).6C. de Vries, R. Hofstadter, and R. Herman, Phys.

Rev. Letters 8, 381 (1962).7J. Ball and D. %'ong (to be published).

EVIDENCE FOR A PRIMARY COSMIC-HAY PARTICLE WITH ENERGY 10 eV~

John LinsleyLaboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received 10 January 1963)

Analysis of a cosmic-ray air shower recordedat the NIT Volcano Ranch station in February1962 indicates that the total number of particlesin the shower (Serial No. 2-4834) was 5x10'0.The total energy of the primary particle whichproduced the shower was 1.0x10~ eV. The show-er was about twice the size of the largest we hadreported previously (No. 1-15832, recorded inMarch 1961).'The existence of cosmic-ray particles having

such a great energy is of importance to astrophys-ics because such particles (believed to be atomicnuclei) have very great magnetic rigidity. It isbelieved that the region in which such a particleoriginates must be large enough and possess astrong enough magnetic field so that REI» (1/300)x(E/Z), where R is the radius of the region (cm)and H is the intensity of the magnetic field (gauss).E is the total energy of the particle (eV) and Z isits charge. Recent evidence favors the choiceZ = 1 (proton primaries) for the region of highestcosmic -ray energies. ' For the pr esent event oneobtains the condition RB» 3 x 10' . This conditionis not satisfied by our galaxy (for which RH ~ 5x10", halo included) or known objects within it,such as supernovae.The technique we use has been described else-

where. ' An array of scintillation detectors isused to find the direction (from pulse times) andsize (from pulse amplitudes) of shower eventswhich satisfy a triggering requirement. In thepresent case, the direction of the shower wasnearly vertical (zenith angle 10+ 5'). The valuesof shower density registered at the various pointsof the array are shown in Fig. 1. It can be ver-ified by close inspection of the figure that thecore of the shower must have struck near the

point marked "A," assuming only (1) that showerparticles are distributed symmetrically about anaxis (the "core"), and (2) that the density of par-ticl.es decreases monotonically with increasingdistance from the axis. The observed densities

0.6

KlLOMETERS

FIG. 1. Plan of the Volcano Ranch array in February1962. The circles represent 3.3-m2 scintillation de-tectors. The numbers near the circles are the showerdensities (particles/m ) registered in this event, No.2-4834. Point A is the estimated location of theshower core. The circular contours about that pointaid in verifying the core location by inspection.

146

VOLUME 10, NUMBER 4 PHYSICAL RK VIEW LKTTKRS 15 I'EBRUARY 196)

cleon-nucleon scattering see, for example, M. L. Gold-berger, Q. T. Grisaqu, S. %'. MacDow'ell, and D. Y.Kong, Phys. Rev. 120, 2250 (1960). Other methods ofcalculating phase shifts in terms of scalar and vectorparticle exchanges have been considered by a numberof authors. See, for example, R. Bryan, C. Dismukes,and W. Ramsay (to be published).3R. Blankenbecler and M. L. Goldberger, Phys.

Rev. 126, 766 (1962); G. F. Che~ and S. C. Frautschi,

Phys. Rev. Letters 7, 394 (1961);S. Frautschi,M. Gell-Mann, and F. Zachariasen, Phys. Rev. 126,2204 (1962); D. %'ong, Phys. Rev. 126, 1220 (1962).4H. Stapp (private communication).SM. Hull, K. Lassila, H. Ruppel, F. McDonald, and

G. Breit, Phys. Rev. 122, 1606 (1961).6C. de Vries, R. Hofstadter, and R. Herman, Phys.

Rev. Letters 8, 381 (1962).7J. Ball and D. %'ong (to be published).

EVIDENCE FOR A PRIMARY COSMIC-HAY PARTICLE WITH ENERGY 10 eV~

John LinsleyLaboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received 10 January 1963)

Analysis of a cosmic-ray air shower recordedat the NIT Volcano Ranch station in February1962 indicates that the total number of particlesin the shower (Serial No. 2-4834) was 5x10'0.The total energy of the primary particle whichproduced the shower was 1.0x10~ eV. The show-er was about twice the size of the largest we hadreported previously (No. 1-15832, recorded inMarch 1961).'The existence of cosmic-ray particles having

such a great energy is of importance to astrophys-ics because such particles (believed to be atomicnuclei) have very great magnetic rigidity. It isbelieved that the region in which such a particleoriginates must be large enough and possess astrong enough magnetic field so that REI» (1/300)x(E/Z), where R is the radius of the region (cm)and H is the intensity of the magnetic field (gauss).E is the total energy of the particle (eV) and Z isits charge. Recent evidence favors the choiceZ = 1 (proton primaries) for the region of highestcosmic -ray energies. ' For the pr esent event oneobtains the condition RB» 3 x 10' . This conditionis not satisfied by our galaxy (for which RH ~ 5x10", halo included) or known objects within it,such as supernovae.The technique we use has been described else-

where. ' An array of scintillation detectors isused to find the direction (from pulse times) andsize (from pulse amplitudes) of shower eventswhich satisfy a triggering requirement. In thepresent case, the direction of the shower wasnearly vertical (zenith angle 10+ 5'). The valuesof shower density registered at the various pointsof the array are shown in Fig. 1. It can be ver-ified by close inspection of the figure that thecore of the shower must have struck near the

point marked "A," assuming only (1) that showerparticles are distributed symmetrically about anaxis (the "core"), and (2) that the density of par-ticl.es decreases monotonically with increasingdistance from the axis. The observed densities

0.6

KlLOMETERS

FIG. 1. Plan of the Volcano Ranch array in February1962. The circles represent 3.3-m2 scintillation de-tectors. The numbers near the circles are the showerdensities (particles/m ) registered in this event, No.2-4834. Point A is the estimated location of theshower core. The circular contours about that pointaid in verifying the core location by inspection.

146

Karl-Heinz Kampert – University Wuppertal

1962: The First 1020 eV Event

15 Taipei Colloq, 7.04.2015

Volcano Ranch Air ShowerArray, New Mexico

particle densities

Page 15: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal Taipei Colloq, 7.04.2015

1965: Discovery of CMB

G. Gamow

Penzias & Wilson

Measurements @ 4.08 GHz (7.35 cm)

1978

16

Page 16: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal

1966: „End to the CR Spectrum ?“

17 Taipei Colloq, 7.04.2015

Linsley‘s event

Greisen, Zatsepin & Kuz‘min

Page 17: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal Taipei Colloq, 7.04.2015

threshold: EpEγ > (mΔ2 - mp2)

⇒ EGZK ≈ 6·1019 eV100

101

102

103

104

1018 1019 1020 1021 1022

Ener

gy L

oss

Path

leng

th (M

pc)

Energy (eV)

Expansion

CMBRz = 0

Photopion, p

Photopair, p

Total, p

Photopair,Fe

Photopion,Fe

ePhotodisintegration, F

18

Greisen-Zatsepin-Kuz‘min (1966)

GZK-effect: Rapid Energy Loss of p & nuclei in CMB

p

CMB

A

CMB

photo-pion production

photo disintegration

➙ GZK-Horizon ~ 60 Mpc

p+ �CMB ! � ! p+ ⇡0

A+ �CMB ! (A� 1) + n...

Page 18: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal Taipei Colloq, 7.04.2015

The GZK - HorizonExpect anisotropies forprotons at E>1019 eV

Page 19: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal Taipei Colloq, 7.04.2015

Situation ~8 years agoExperiments: AGASA, HiRes, Haverah Park, Yakutsk, SUGAR

20

• does the GZK-suppression exist? - Flux data contradictory AGASA ➙ no suppression HiRes ➙ possibly a suppression • Composition mostly protons • Apparent isotropy

Apparent continuation of spectrum in AGASA gave birth to exotic source and propagation scenarios• Top Down Models - Topological Defects, Super-Heavy Dark Matter Particles, WIMPzillas, Cryptons, ...

• Z-Burst Model ➙ massive neutrinos➙ expect EHE γ‘s and ν‘s

Energy (eV/particle)1310 1410 1510 1610 1710 1810 1910 2010

)1.

5 e

V-1

sr

-1 s

ec-2

J(E

) (m

2.5

Scal

ed fl

ux

E

1310

1410

1510

1610

1710

1810

1910

(GeV)ppsEquivalent c.m. energy 210 310 410 510 610

RHIC (p-p)-p)γHERA (

Tevatron (p-p)LHC (p-p)

ATICPROTONRUNJOB

KASCADE (QGSJET 01)KASCADE (SIBYLL 2.1)KASCADE-Grande (prel.)Akeno

HiRes-MIA

HiRes I

HiRes II

AGASA

AGASA

HIRES

Page 20: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal

A New Generation: Hybrid Observation of EAS

21 Taipei Colloq, 7.04.2015

Particle-density and-composition at ground

light traceat night-sky(calorimetric)

Also:Detection of Radio- & Microwave-Signals

Fluorescence light

Concept pioneered by thePierre Auger Collaboration(Fully operational since 06/2008)(Concept employed also by Telescope Array (TA))Pioneer of FD and first detection: Tanahashi, INS-Tokyo

1958, 1969

Kampert & Watson, EPJ H37 (2012) 359

Page 21: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal Taipei Colloq, 7.04.2015

Pierre Auger Observatory

22

3000 km2

~65 km

~65 k

m

CoihuecoHEAT

BLS

CLF

XLF

Loma Amarilla

Los Morados

Los Leones

1660 detector stationson 1.5 km grid

27 fluores. telescopesat periphery

160 radio antennas...Province Mendoza, Argentina

Page 22: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert Taipei Colloq, 7.04.2015

SANTIAGO

A R G E N T I N A

Pampa Amarilla Province of Mendoza 1400 m a.s.l. 35° South, 69° West 3000 km2

Page 23: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert 24 Taipei Colloq, 7.04.2015

...1660 stations in total

Water Cherenkov Station

Page 24: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert 25 Taipei Colloq, 7.04.2015

...1660 stations in total

Three 9“ PMT

12000 ltr water

solar panel

communicationGPS

electronics local trigger

40 MHz digit. 10 W

battery

Water Cherenkov Station

XP 1805

ISM band (0.9 GHz)

Page 25: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert 26 Taipei Colloq, 7.04.2015

Page 26: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert

Auger Hybrid Observatory

27 Taipei Colloq, 7.04.2015

Google maps

Page 27: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert 28 Taipei Colloq, 7.04.2015

24 telescopes (6 per site) 12 m2 mirrors, Schmidt optics 30°x30° deg field of view 440 PMTs/camera 10 MHz FADC readout

∅ 2.

2 m

opt. Filter (MUG-6)

Camera with 440 PMTs

UV optical filter

Page 28: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

K.-H. Kampert, Univ. Wuppertal 29

nchargedrz01.mov

Page 29: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert 30 Taipei Colloq, 7.04.2015

Central CampusVisitors are welcome (almost 100 000 visitors already)

Page 30: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert 31 Taipei Colloq, 7.04.2015

Surface Detector (SD)507 plastic scintillator SDs

1.2 km spacing~700 km2

Fluorescence Detector(FD)3 stations

38 telescopes

TA detector in Utah

4

3 com. towers

14 telescopes

12 telescopes

12 telescopes

Refurbished HiRes

39.3°N, 112.9°W~1400 m a.s.l.

Middle Drum(MD)

Black Rock Mesa (BR)

LongRidge(LR)

CLF

ELS

2014/3/20 H. Sagawa @ VHEPA2014 FD and SD: fully operationalsince 2008/May

Page 31: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal Taipei Colloq, 7.04.2015

Auger and TA

32

Pierre Auger Observatory Province Mendoza, Argentina 1660 detector stations, 3000 km2 27 fluorescence telescopes

Telescope Array (TA) Delta, UT, USA 507 detector stations, 680 km2 36 fluorescence telescopes

same scale

Declination dependent exposure I

2

�100 �80 �60 �40 �20 0 20 40 60d [�]

0

1

2

3

4

5

6

7

8

e(d

)h km

2sr

yri

⇥103

Vertical + horizontalVerticalHorizontal

�100 �50 0 50 100d [�]

0

1

2

3

4

5

6

7

8

e(d

)h km

2yr

i

⇥103

Auger vertical + inclinedAuger vertical (01/2004 - 12/2012)Auger inclined (01/2004 - 12/2012)TA (05/2008 - 05/2012)

Auger: 01/2004 - 12/2012TA: 05/2008- 05/2012

TA exposure (3690 km^2 sr yr) taken from http://iopscience.iop.org/2041-8205/768/1/L1/ equivalent to 4 years

TA

Auger

Auger: 01/2004 - 12/2012TA: 05/2008 - 05/2012

Auger and TA can see the same sky

Auger exposure~10 times that of TA

Page 32: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal Taipei Colloq, 7.04.201533

Event Example in Auger Observatory

12 km

~ 20 km

OBSERVATORY

Page 33: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal Taipei Colloq, 7.04.201534

Event Example in Auger Observatory

12 km

~ 20 km

E = 68 EeVXmax=770 g/cm2

dE/

dx

(PeV

/g c

m2 )

Slant Depth (g cm2)

0

40

400 600 800 1000 2000

80

120

160Longitudinal Profile

Lateral Profile

1000

S(1000)

S(1000)=222 VEMθ = 54°S38=343 VEME = 71 EeV

10

100

1000

Sign

al (V

EM)

Distance to Shower Core (m)

12000 3000

OBSERVATORY

Cross Correlation

SD vertical energy calibration

Use events that were independently recorded by both SD and FDHigh quality selection incl. fiducial field of viewResolutions compared to Monte-Carlo simulations (rescaling: EMC

SD

⇥ 1.24 (avg.))Physical shower-to-shower fluctuations ⇡ 10%Sampling fluctuations: 15% (< 12%), E < 6EeV (E > 10EeV)

1019 1020

EFD / eV

101

102

S 38

/V

EM

Fit ±1 s

(Maximum-likelihood fit, 1475 events)

FD/ESDE0.5 1 1.5 20

0.05

0.1

0.15

0.2data

proton

iron

(Muon number: e.g. talk by B. Kegl, paper 0860)

7 / 15

1475 events highest energy event: 8·1019 eV

energy determination basedsolely on experimental observables!

Page 34: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

17.5 18.0 18.5 19.0 19.5 20.0 20.5log10( E /eV )

1036

1037

1038

E3J(E)

eV2km

−2sr

−1yr

−1

1035

863

1736

5622

0112

9532

4226

2720

1514

1052

202

2968

421

413

1301

486

2458

0739

8427

0017

0111

1667

642

718

890

457

31

1018 1019 1020E [eV ]

Auger 2013 preliminary

Karl-Heinz Kampert – University Wuppertal 35 Taipei Colloq, 7.04.2015

OBSERVATORY

Auger Combined E-Spectrum (0°-80°)

γ1=3.23±0.07 γ2=2.63±0.04

Eankle=5·1018 eV

* *

E50% =4·1019 eV

130 000 events

J(E;E > Ea) µ E�g2

1+ exp

✓ log10 E � log10 E1/2

log10 Wc

◆��1

g g

29

Is this the GZK-effect... ?

Update from: PRL 101, 061101 (2008), Physics Letters B 685 (2010) 239

Page 35: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

17.5 18.0 18.5 19.0 19.5 20.0 20.5log10( E /eV )

1036

1037

1038

E3J(E)

eV2km

−2sr

−1yr

−1

1035

863

1736

5622

0112

9532

4226

2720

1514

1052

202

2968

421

413

1301

486

24 5807 3984 2700

1701

1116

676

427

188

9045

73

1

1018 1019 1020E [eV ]

Auger 2013 preliminary

Karl-Heinz Kampert – University Wuppertal

17.5 18.0 18.5 19.0 19.5 20.0 20.5log10(E/eV)

1036

1037

1038

E3 J

(E)[e

V2

km-

2sr

-1

yr-

1 ] �E/E = 14 %

Proton, Ecut = 1020 eVProton, Ecut = 1020.5 eVIron, Ecut = 1020 eVIron, Ecut = 1020.5 eV

1018 1019 1020E [eV]

p-sources

Fe-sources

GZK-Effect or Exhausted Sources?

36 Taipei Colloq, 7.04.2015

J(E;E > Ea) µ E�g2

1+ exp

✓ log10 E � log10 E1/2

log10 Wc

◆��1

g g

29

GZK- effect

“Galactic” (Allard-type) scenario: fixed k = 5

γ log10 Ecut(Fe) J0 H(%) He(%) N(%) Si(%) Fe(%) χ2 /dofk=5, 4 m 1.25 19.9 40.4 74.3 14.8 8.8 - 2.0 57.19/29

colour code for the spectrum plots:“4 masses”: A = 1 (blue), 2 ≤ A ≤ 4 (gray), 9 ≤ A ≤ 26 (green) and 27 ≤ A ≤ 56 (red)“5 masses”: A = 1 (blue), 2 ≤ A ≤ 4 (gray), 9 ≤ A ≤ 22 (green), 23 ≤ A ≤ 38 (violet), 39 ≤ A ≤ 56 (red)

18 18.5 19 19.5 20 20.5

3710

3810

(E/eV)10

log

]-1 yr-1

sr-2 km2

J [eV

3 E

(E/eV)10

log18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20

]-2

> [g

cmm

ax<X

600

650

700

750

800

850

900HHeNFe

EPOS 1.99

(E/eV)10

log18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20

]-2

) [g c

mm

ax(Xσ

0

10

20

30

40

50

60

70

H

He

NFe

5/15

expo 2

k=5, 4 masses

exhausted sources

Emax

Z / Z ⇥ Emax

pAllard et al. 2011

p

He

NFe

Page 36: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

]2slant depth [g/cm200 400 600 800 1000 1200 1400 1600

)]2 e

nerg

y de

posi

t [Pe

V/(g

/cm

0

10

20

30

40

50 Auger event

]2slant depth [g/cm200 400 600 800 1000 1200 1400 1600

)]2 e

nerg

y de

posi

t [Pe

V/(g

/cm

0

10

20

30

40

50 Auger eventphoton

]2slant depth [g/cm200 400 600 800 1000 1200 1400 1600

)]2 e

nerg

y de

posi

t [Pe

V/(g

/cm

0

10

20

30

40

50 Auger event

proton

]2slant depth [g/cm200 400 600 800 1000 1200 1400 1600

)]2 e

nerg

y de

posi

t [Pe

V/(g

/cm

0

10

20

30

40

50 Auger event

iron

Karl-Heinz Kampert – University Wuppertal

Longitudinal Shower Development ➙ Primary Mass

37 Taipei Colloq, 7.04.2015

OBSERVATORY

Example of a 3·1019 eV EAS event in FD

KHK, Unger, APP 35 (2012)EPOS 1.99 Simulations

Page 37: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal

Decomposition of Xmax-Distributions

38 Taipei Colloq, 7.04.2015

00.20.40.60.8

1

p f

ract

ion

00.20.40.60.8

1

He

fra

ctio

n

00.20.40.60.8

1

N f

ract

ion

00.20.40.60.8

1

Fe

fra

ctio

n

Sibyll 2.1QGSJET II-4

EPOS-LHC

1018 1019 1020

E [eV]

p

He

N

supp

ress

ion

regi

on

Auger collaboration, Phys. Rev. D 90, 122006 (2014)

? ? ? ?

Fe

we seem to see the exhaustion of sources!

Page 38: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal

Smoking Gun of GZK-effect

Cosmogenic+neutrinos+

4+

Detec?on+in+EeV+range+may+provide+complementary+informa?on+to+direct+UHECR+detec?on+on:++UHECR+nature+(p,+mixed,+Fe),+origin+(evolu?on+of+the+sources,+maximum+energy+a^ainable,…)+

[eV]νE1710 1810 1910 2010 2110

]-1

sr

-1 s

-2 d

N/d

E [

GeV

cm

2E

-1010

-910

-810

-710

-610

-510

-410Single flavour

p, best fit with Fermi-LAT bound (Ahlers)

eV (B. Sarkar)20=10maxp, FRII & SFR, E

eV (B. Sarkar)20=26 x 10maxFe, FRII & SFR, E

eV (Kotera)21.5 - 1020=Z x 10maxp & mixed, SFR & GRB, E

p+ �CMB ! � !

39 Taipei Colloq, 7.04.2015

! p+ ⇡0! �EeV! n+ ⇡+! ⌫EeV

GZK-p

GZK-Fe

GZK-p

GZK-Fe

TopDown models

KHK, Unger, APP 35 (2012)

Cosmogenic Neutrinos and Photons – a guaranteed signal in presence of GZK –

Page 39: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal

Energy[eV]

1810

1910

2010

]-1

y-1

sr

-2 [km

0In

tegra

l F

lux E

>E

-310

-210

-110

1

upper limits 95% C.L.

SD

Hyb 2011

Hyb 2009A

A

Y

Y

TA

SHDM

SHDM'

TD

Z-burst

GZK

40 Taipei Colloq, 7.04.2015

Absence of Photons ⇒ TopDown ruled out

GZK

Photon upper limits rule out Top-Down Modelsand start to constrain GZK-expectatinons

OBSERVATORY

2011

SD 2015

2 orders of magnitude improvement during last 10 years!photon upper limits

top down models

Update from: Astropart. Phys. 31 (2009) 399; ICRC2015

Page 40: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert 41 Taipei Colloq, 7.04.2015

ντ$

Inclined+showers++&+UHE+neutrinos+

•  Protons+&+nuclei+ini?ate+showers+high+in+the+atmosphere.++–  Shower+front+at+ground:++

•  mainly+composed+of+muons+•  electromagne?c+component+absorbed+in+atmosphere.+

•  Neutrinos+can+ini?ate+“deep”+showers+close+to+ground.+–  Shower+front+at+ground:+

electromagne?c+++muonic+components+

6+

�������������������

���

�������������������

���

Searching+for+neutrinos+�+searching+for+inclined+showers+

+with+electromagne?c+component+

Search for EeV Neutrinosin inclined showers

Page 41: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

11

The limit applies in the energy interval ⇠ 1.0⇥1017 eV�2.5⇥ 1019 eV where the cumulative number of events asa function of neutrino energy increases from 5% to 95%of the total number, i.e. where ⇠ 90% of the total eventrate is expected. It is important to remark that thisis the most stringent limit obtained so far with Augerdata, and it represents a single limit combining the threechannels where we have searched for UHE neutrinos. Thelimit to the flux normalization in Eq. (3) is obtained in-tegrating the denominator of Eq. (2) in the whole energyrange where Auger is sensitive to UHE neutrinos. Thisis shown in Fig. 4 , along with the 90% C.L. limits fromother experiments as well as several models of neutrinoflux production (see caption for references). The denom-inator of Eq. (2) can also be integrated in bins of energy,and a limit on k can also be obtained in each energy bin[35]. This is displayed in Fig. 5 where the energy binshave a width of 0.5 in log10 E⌫ , and where we also showthe whole energy range where there is sensitivity to neu-trinos. The limit as displayed in Fig. 5 allows us to showat which energies the sensitivity of the SD of the PierreAuger Observatory peaks.

The search period corresponds to an equivalent of 6.4years of a complete Auger SD array working continuously.The inclusion of the data from 1 June 2010 until 20 June2013 in the search represents an increase of a factor ⇠ 1.8in total time quantified in terms of equivalent full Augeryears with respect to previous searches [17, 18]. Furtherimprovements in the limit come from the combination ofthe three analysis into a single one, using the procedureexplained before that enhances the fraction of identifiedneutrinos especially in the DGH channel.

In Table III we give the expected total event rates forseveral models of neutrino flux production.

Several important conclusions and remarks can bestated after inspecting Figs. 4 and 5 and Table III:

1. The maximum sensitivity of the SD of theAuger Observatory is achieved at neutrino energiesaround EeV, where most cosmogenic models of ⌫production also peak (in a E2

⌫ ⇥ dN/dE⌫ plot).

2. The current Auger limit is a factor ⇠ 4 below theWaxman-Bahcall landmark on neutrino productionin optically thin sources [13]. The SD of the AugerObservatory is the first air shower array to reachthat level of sensitivity.

3. Some models of neutrino production in astrophys-ical sources such as Active Galactic Nuclei (AGN)are excluded at more than 90% C.L. For the model#2 shown in Fig. 14 of [32] we expect ⇠7 neutrinoevents while none was observed.

yields a value of Nup = 2.39 slightly smaller than the nominal2.44 of the Feldman-Cousins approach.

[eV]νE1710 1810 1910 2010 2110

]-1

sr

-1 s

-2 d

N/d

E [

GeV

cm

2 E -910

-810

-710

-610

-510Single flavour, 90% C.L.

IceCube 2013 (x 1/3) [30]

Auger (this work)

ANITA-II 2010 (x 1/3) [29]

modelsνCosmogenic p, Fermi-LAT best-fit (Ahlers '10) [33]p, Fermi-LAT 99% CL band (Ahlers '10) [33]p, FRII & SFR (Kampert '12) [31]

Waxman-Bahcall '01 [13]

[eV]νE1710 1810 1910 2010 2110

]-1

sr

-1 s

-2 d

N/d

E [

GeV

cm

2 E -910

-810

-710

-610

-510Single flavour, 90% C.L.

IceCube 2013 (x 1/3) [30]

Auger (this work)

ANITA-II 2010 (x 1/3) [29]

modelsνCosmogenic

Fe, FRII & SFR (Kampert '12) [31]

p or mixed, SFR & GRB (Kotera '10) [9]

Waxman-Bahcall '01 [13]

Figure 4. Top panel: Upper limit (at 90% C.L.) to the nor-malization of the di↵use flux of UHE neutrinos as given inEqs. (2) and (3), from the Pierre Auger Observatory. Wealso show the corresponding limits from ANITAII [29] andIceCube [30] experiments, along with expected fluxes for sev-eral cosmogenic neutrino models that assume pure protonsas primaries [31, 33] as well as the Waxman-Bahcall bound[13]. All limits and fluxes converted to single flavor. We usedNup = 2.39 in Eq. (2) to obtain the limit (see text for de-tails). Bottom panel: Same as top panel, but showing severalcosmogenic neutrino models that assume heavier nuclei as pri-maries, either pure iron [31] or mixed primary compositions[9].

4. Cosmogenic ⌫ models that assume a pure primaryproton composition injected at the sources andstrong (FRII-type) evolution of the sources arestrongly disfavored by Auger data. An exampleis the upper line of the shaded band in Fig. 17in [31] (also depicted in Figs. 4 and 5), for which⇠4 events are expected and as consequence thatflux is excluded at ⇠98% C.L. Models that assumea pure primary proton composition and normalizetheir expectations to the GeV �-ray flux observa-tions by the Fermi-LAT satellite detector are alsodisfavored. For instance for the model shown as asolid line in the bottom right panel of Fig. 5 in [33](also depicted in Figs. 4 and 5 in this work), cor-responding to the best-fit to the cosmic-ray spec-

Karl-Heinz Kampert – University Wuppertal

Upper Limits on Neutrinos

42 Taipei Colloq, 7.04.2015

Auger Collaboration, subm. to PRD 2015

Neutrino upper limits start to constraincosmogenic neutrino fluxes of p-sources

Page 42: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

11

The limit applies in the energy interval ⇠ 1.0⇥1017 eV�2.5⇥ 1019 eV where the cumulative number of events asa function of neutrino energy increases from 5% to 95%of the total number, i.e. where ⇠ 90% of the total eventrate is expected. It is important to remark that thisis the most stringent limit obtained so far with Augerdata, and it represents a single limit combining the threechannels where we have searched for UHE neutrinos. Thelimit to the flux normalization in Eq. (3) is obtained in-tegrating the denominator of Eq. (2) in the whole energyrange where Auger is sensitive to UHE neutrinos. Thisis shown in Fig. 4 , along with the 90% C.L. limits fromother experiments as well as several models of neutrinoflux production (see caption for references). The denom-inator of Eq. (2) can also be integrated in bins of energy,and a limit on k can also be obtained in each energy bin[35]. This is displayed in Fig. 5 where the energy binshave a width of 0.5 in log10 E⌫ , and where we also showthe whole energy range where there is sensitivity to neu-trinos. The limit as displayed in Fig. 5 allows us to showat which energies the sensitivity of the SD of the PierreAuger Observatory peaks.

The search period corresponds to an equivalent of 6.4years of a complete Auger SD array working continuously.The inclusion of the data from 1 June 2010 until 20 June2013 in the search represents an increase of a factor ⇠ 1.8in total time quantified in terms of equivalent full Augeryears with respect to previous searches [17, 18]. Furtherimprovements in the limit come from the combination ofthe three analysis into a single one, using the procedureexplained before that enhances the fraction of identifiedneutrinos especially in the DGH channel.

In Table III we give the expected total event rates forseveral models of neutrino flux production.

Several important conclusions and remarks can bestated after inspecting Figs. 4 and 5 and Table III:

1. The maximum sensitivity of the SD of theAuger Observatory is achieved at neutrino energiesaround EeV, where most cosmogenic models of ⌫production also peak (in a E2

⌫ ⇥ dN/dE⌫ plot).

2. The current Auger limit is a factor ⇠ 4 below theWaxman-Bahcall landmark on neutrino productionin optically thin sources [13]. The SD of the AugerObservatory is the first air shower array to reachthat level of sensitivity.

3. Some models of neutrino production in astrophys-ical sources such as Active Galactic Nuclei (AGN)are excluded at more than 90% C.L. For the model#2 shown in Fig. 14 of [32] we expect ⇠7 neutrinoevents while none was observed.

yields a value of Nup = 2.39 slightly smaller than the nominal2.44 of the Feldman-Cousins approach.

[eV]νE1710 1810 1910 2010 2110

]-1

sr

-1 s

-2 d

N/d

E [

GeV

cm

2 E -910

-810

-710

-610

-510Single flavour, 90% C.L.

IceCube 2013 (x 1/3) [30]

Auger (this work)

ANITA-II 2010 (x 1/3) [29]

modelsνCosmogenic p, Fermi-LAT best-fit (Ahlers '10) [33]p, Fermi-LAT 99% CL band (Ahlers '10) [33]p, FRII & SFR (Kampert '12) [31]

Waxman-Bahcall '01 [13]

[eV]νE1710 1810 1910 2010 2110

]-1

sr

-1 s

-2 d

N/d

E [

GeV

cm

2 E -910

-810

-710

-610

-510Single flavour, 90% C.L.

IceCube 2013 (x 1/3) [30]

Auger (this work)

ANITA-II 2010 (x 1/3) [29]

modelsνCosmogenic

Fe, FRII & SFR (Kampert '12) [31]

p or mixed, SFR & GRB (Kotera '10) [9]

Waxman-Bahcall '01 [13]

Figure 4. Top panel: Upper limit (at 90% C.L.) to the nor-malization of the di↵use flux of UHE neutrinos as given inEqs. (2) and (3), from the Pierre Auger Observatory. Wealso show the corresponding limits from ANITAII [29] andIceCube [30] experiments, along with expected fluxes for sev-eral cosmogenic neutrino models that assume pure protonsas primaries [31, 33] as well as the Waxman-Bahcall bound[13]. All limits and fluxes converted to single flavor. We usedNup = 2.39 in Eq. (2) to obtain the limit (see text for de-tails). Bottom panel: Same as top panel, but showing severalcosmogenic neutrino models that assume heavier nuclei as pri-maries, either pure iron [31] or mixed primary compositions[9].

4. Cosmogenic ⌫ models that assume a pure primaryproton composition injected at the sources andstrong (FRII-type) evolution of the sources arestrongly disfavored by Auger data. An exampleis the upper line of the shaded band in Fig. 17in [31] (also depicted in Figs. 4 and 5), for which⇠4 events are expected and as consequence thatflux is excluded at ⇠98% C.L. Models that assumea pure primary proton composition and normalizetheir expectations to the GeV �-ray flux observa-tions by the Fermi-LAT satellite detector are alsodisfavored. For instance for the model shown as asolid line in the bottom right panel of Fig. 5 in [33](also depicted in Figs. 4 and 5 in this work), cor-responding to the best-fit to the cosmic-ray spec-

Karl-Heinz Kampert – University Wuppertal

Upper Limits on Neutrinos

43 Taipei Colloq, 7.04.2015

Auger Collaboration, subm. to PRD 2015

Neutrino upper limits start still abovecosmogenic neutrino fluxes for Fe-sources

Page 43: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal

UHECR Sky surprisingly isotropic

44 Taipei Colloq, 7.04.2015

J(E;E > Ea) µ E�g2

1+ exp

✓ log10 E � log10 E1/2

log10 Wc

◆��1

g g

29

dipole like anisotropy

hot/warm spot

TA (5σ pre-trial) (3.4σ post-trial)

Auger (3σ pre-trial)

TA: ApJ 790:L21 (2014)

Auger: APP 34(2010) 314

E>57 EeVE>8 EeV

Auger Collaboration ApJ (2015) in pressAmplitude: (4.4±1.0)%; p=6.4·10-5

17.5 18.0 18.5 19.0 19.5 20.0 20.5log10( E /eV )

1036

1037

1038

E3J(E)

eV2km

−2sr

−1yr

−1

1035

863

1736

5622

0112

9532

4226

2720

1514

1052

202

2968

421

413

1301

486

24 5807 3984 2700

1701

1116

676

427

188

9045

73

1

1018 1019 1020E [eV ]

Auger 2013 preliminary

Cen A

Feain et al.,ApJ 740 (2011) 17

?

Page 44: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal

Weak excess of events around Cen A

45 Taipei Colloq, 7.04.2015

0 20 40 60 80

100 120 140 160

0 20 40 60 80 100 120 140 160 180

Num

ber o

f eve

nts

Angular distance from Cen A [deg]

E>58 EeV

68% isotropic95% isotropic

99.7% isotropicdata

Feain et al., ApJ 740 (2011) 17

fmin=2e-4, out to 15° there are 14 events, 4.5 expected, P=1.4%

Auger 1411.6111; ApJ (2015) in press

15°

14 events observedexpect 4.5p=1.5%

E > 58 EeV

giant lobes ~ 280 kpcphysical age ~ 560 Myr

distance ~ 3.8 Mpc

16° moon

Page 45: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal

Résumé

46 Taipei Colloq, 7.04.2015

Data from the Auger Observatory indicate that the flux suppression is mostly due to seeing the exhaustion of the sources:

1) change towards a heavier composition

2) constraints on GZK photonsand neutrinos

3) highly isotropic sky

Neutron Stars

white dwarfts

Active Galactic Nuclei ?

jets from radioInterplanetary

Space

Galact.disk

halo

eV proton

galaxies

GalacticClusters

Size

Mag

net

ic F

ield

stre

ng

th (G

auß

)

1AU

SNR

1012

10 6

1

10 –6

1km 10 6 km 1pc 1kpc 1Mpc

IGM

10 20

{

LHC

GRB ?Emax ~ βs·z·B·L

Fe

Logical next step: Measure composition event-by-event into the flux suppression region➨ composition becoming increasingly heavier?➨ enable composition enhanced anisotropy studies➨ do particle physics at √s≈100 TeV

Page 46: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal

UHECR: Near Future

47 Taipei Colloq, 7.04.2015

Auger upgrade: mass compositionwith ground array

origin of the flux suppression

hadronic interactionsbeyond LHC

TAx4

By H. Sagawa for TAx4 design,

G. Thomson, ECRS 2014

500 more SDs with

2.1 km spacing

700 ї 3000 km2

10 refurb. HiRes FDs

Submit TAx4 proposals

in Japan and US

in Oct. 2014, and build

in 2015 - 2016.

29

more rapidincrease of statistics

TA upgrade: area * 4

Page 47: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal

UHECR: Long Term Plan

48 Taipei Colloq, 7.04.2015

Global Cosmic Ray Observatory (GCOS)few sites in N+S, 90 000 km2

感谢您的关注!

Page 48: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal Taipei Colloq, 7.04.2015

Bounds on LIV and Smoothness of Class. Space-Time

49

Klinkhamer/Risse; PRD77 (2008) 016002; 117901; Klinkhamer, AIP Conf.Proc.977:181-201,2008

• Conservative limit on any small-scale structure of space:LEP/LHC: ℓ≤10-19 m ≈ ℏc/(1 TeV).

• Use published 27 Auger events + 1 AGASA + 1 Fly‘s-Eye↪ single scale classical space-time foam at

UHECRs: b ≤ 10-26 m ≈ ℏc/(2·1010 GeV)

• Conjecture: fundamental length scale of quantum space time may be different from Planck length and may be linked to cosmological constant

Observation of 1020 eV eventsproofs absence of Vacuum Cherenkov-Radiation ➙ Provides limits on smoothness of space & LIV-effects

by far best (3 to 8 orders of magn.!) existing bounds of Standard Model Extension parameters of nonbirefringent modified Maxwell theory

Results complemented by TeV γ-rays

34th International Conference on High Energy Physics, Philadelphia, 2008

Figure 2: Sketch of a static classical spacetime-foam manifold.

5. DISCUSSION

Calculations [15] of standard photons and Dirac particles propagating in simple classical spacetime-foam models

reproduce a restricted (isotropic) version of model (1)–(2):

2 !κtr ="!b

#!l$4

, (!κo+)mn = (!κe−)mn = 0 , (8)

for randomly orientated defects with an effective size !b and an average separation !l (cf. Fig. 2). The heuristics of

the result is well understood, as the type of Maxwell solution found for the classical spacetime foam is analogous to

the solution from the so-called “Bethe holes” for waveguides [16]. In both cases, the standard Maxwell plane wave

is modified by the radiation from fictitious multipoles located in the holes or defects. But there is a difference: for

Bethe, the holes are in a material conductor, whereas for us, the defects are “holes” in space itself.

The UHECR bound (6c) implies that a single-scale"!b ∼ !l

$classical spacetime foam is ruled out. This conclusion

holds, in fact, for arbitrarily small defect size !b , as long as a classical spacetime makes sense. That is, down to

distances at which the classical-quantum transition occurs, possibly of order lPlanck ≡%

! GN/c3 ≈ 1.6 × 10−35 m.

This result is really like having a null experiment and there is an analogy with the Michelson–Morley experi-

ment [17]: theorists expect novel effects which are not seen by experimentalists.

In turn, this suggests the need for radically new concepts. Then, there was the “relativity of simultaneity”

introduced by Einstein [18]. Now, regarding the quantum origin of spacetime, there is . . . (alas, margin too narrow!)

References

[1] E.F. Beall, Phys. Rev. D 1, 961 (1970), Sec. III A, Cases 1 and 2.

[2] S.R. Coleman and S.L. Glashow, Phys. Lett. B 405, 249 (1997), arXiv:hep-ph/9703240.

[3] S. Chadha and H.B. Nielsen, Nucl. Phys. B 217, 125 (1983).

[4] D. Colladay and V.A. Kostelecky, Phys. Rev. D 58, 116002 (1998), arXiv:hep-ph/9809521.

[5] V.A. Kostelecky and M. Mewes, Phys. Rev. D 66, 056005 (2002), arXiv:hep-ph/0205211.

[6] H. Muller et al., Phys. Rev. Lett. 99, 050401 (2007), arXiv:0706.2031.

[7] S. Reinhardt et al., Nature Phys. 3, 861 (2007).

[8] C.D. Carone, M. Sher, and M. Vanderhaeghen, Phys. Rev. D 74, 077901 (2006), arXiv:hep-ph/0609150.

[9] M.A. Hohensee, R. Lehnert, D.F. Phillips, and R.L. Walsworth, arXiv:0809.3442.

[10] C. Kaufhold and F.R. Klinkhamer, Nucl. Phys. B 734, 1 (2006), arXiv:hep-th/0508074.

[11] B. Altschul, Phys. Rev. Lett. 98, 041603 (2007), arXiv:hep-th/0609030.

[12] C. Kaufhold and F.R. Klinkhamer, Phys. Rev. D 76, 025024 (2007), arXiv:0704.3255.

[13] F.R. Klinkhamer and M. Risse, Phys. Rev. D 77, 117901 (2008), arXiv:0806.4351.

[14] F.R. Klinkhamer and M. Schreck, to appear in Phys. Rev. D, arXiv:0809.3217.

[15] S. Bernadotte and F.R. Klinkhamer, Phys. Rev. D 75, 024028 (2007), arXiv:hep-ph/0610216.

[16] H.A. Bethe, Phys. Rev. 66, 163 (1944).

[17] A.A. Michelson and E.W. Morley, Am. J. Sci. 34, 333 (1887).

[18] A. Einstein, Annalen Phys. 17, 891 (1905) [reprinted in: Annalen Phys. 14, 194 (2005)].

4

Page 49: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal

]2 [g/cmmaxX500 600 700 800 900 1000 1100 1200

/g]

2 [

cmm

axdN

/dX

-110

1

10

2 g/cm+2.4-2.3 = 55.8 fΛ

dPdX1

= 1�int

e�X1/�int

�p�Air = hmAiri�int

p-Air Cross-Section from Xmax distribution

50 Taipei Colloq, 7.04.2015

Data: 1018 eV < E < 1018.5 eV

In practice: σp-Air by tuning models to describe Λ seen in data

X1: point of 1st interactionΔX1

ΔXmax≈ ΔX1

Difficulties: • mass composition can alter Λ• fluctuations in Xmax

• experimental resolution ~ 20 g/cm2

Λint

top of atmosphere

Page 50: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal

Inelastic Proton-Proton Cross-Section

Standard Glauber conversion + propagation of modeling uncertainties

(Pro

ton-

Prot

on)

[m

b]in

elσ

30

40

50

60

70

80

90

100

110

[GeV]s310 410 510

ATLAS 2011CMS 2011ALICE 2011TOTEM 2011UA5CDF/E710Auger ICRC 2011

QGSJet01QGSJetII.3Sibyll2.1Epos1.99Pythia 6.115Phojet

σinelpp =

!

90 ± 7stat (+9−11)sys ± 1.5Glauber

"

mb√spp = [57 ± 6] TeV

The 1.5mb do not reflect the total theoretical uncertainty, since there are other

models available for the conversion.Ralf Ulrich ([email protected]) Measurement of the Proton-Air Cross-Section with the Pierre Auger Observatory 12 / 19

p-Air and pp Cross section @ √s=57 TeV

51 Taipei Colloq, 7.04.2015

(Energy/eV)10

log11 12 13 14 15 16 17 18 19 20

Cro

ss s

ecti

on

(p

ro

ton

-air

) [m

b]

200

300

400

500

600

700

QGSJet01c

QGSJetII.3

Sibyll 2.1

Epos 1.99

Energy [eV]

1110

1210

1310

1410

1510

1610

1710

1810

1910

2010

[TeV]pp

sEquivalent c.m. energy -1

10 1 102

10

Nam et al. 1975

Siohan et al. 1978

Baltrusaitis et al. 1984

Mielke et al. 1994

Honda et al. 1999

Knurenko et al. 1999

ICRC07 HiRes

Aglietta et al. 2009

Aielli et al. 2009

This work

0.9TeV 2.36TeV 7TeV 14TeV

LHC

Conversion from p-airto p-p cross section

by Glauber-approach

σp-Air= (505 ± 22stat (+26)sys ) mb –34

σpp = [92 ± 7stat (+9 )sys ± 7.0Glauber] mb –11

LHC OBSERVATORY

OBSERVATORY

inel

prod

σpp = [133 ± 13stat (+17 )sys ± 16Glauber] mb –20

tot

Auger

Auger Collaboration, PRL 109, 062002 (2012)

Page 51: ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7 ...web.phys.ntu.edu.tw/colloquium/2015Spring/Joint colloquia_files/Slid… · Karl-Heinz Kampert – University Wuppertal

Karl-Heinz Kampert – University Wuppertal

Interaction Models lack Muons in EAS

52 Taipei Colloq, 7.04.2015

Auger Collaboration, Phys. Rev. D 91, 032003 (2015); editors suggestion

680 700 720 740 760 780 800 820Xmax / g cm− 2

7.1

7.2

7.3

7.4

7.5

7.6

log 1

0Nµ

Augerdata

pHe

NFe

E = 1019 eV, θ = 67°EPOS LCHQGSJet II-04QGSJet II-03QGSJet01

Auger data 0.601 ± 0.016+ 0.168− 0.203 (sys. )

EPOS LHCp 0.197

Fe 0.482

lnA 0.315 ± 0.007± 0.039 ( sys. )

QGSJet II-04p 0.162

Fe 0.453

lnA 0.235 ± 0.007± 0.037 ( sys. )

QGSJet II-03p -0.026

Fe 0.258

lnA 0.026 ± 0.007± 0.043 ( sys. )

QGSJet01p 0.091

Fe 0.370

lnA 0.116 ± 0.004± 0.047 ( sys. )

0.0 0.2 0.4 0.6 0.8

lnR µ (1019 eV )

µ-deficit points to deficiencies of hadronic interaction modelsLHC forward physics program highly relevantjoint efforts by people from both communities