Green function for di usion equation - UCF Physicsschellin/teaching/phz3113/lec13-3.pdf · Green...

3

Click here to load reader

Transcript of Green function for di usion equation - UCF Physicsschellin/teaching/phz3113/lec13-3.pdf · Green...

Page 1: Green function for di usion equation - UCF Physicsschellin/teaching/phz3113/lec13-3.pdf · Green function for di usion equation Consider the di usion equation, @2u @x2 = 1 2 @u @t

Green function for diffusion equation

• Consider the diffusion equation,

∂2u

∂x2=

1

α2

∂u

∂t

• Let’s solve using the inverse Fourier transform,

u(x , t) =

∫ ∞−∞

u(k , t)e ikxdx

• Substitution in the differential equation allows us to easilyintegrate the time dependence...

−k2u(k , t) =1

α2

∂u(k, t)

∂t

• We obtain by integration u(k, t) = u(k , t = t ′)e−α2k2(t−t′)

• We could also do it by separation of variables, practice it thatway too....

Page 2: Green function for di usion equation - UCF Physicsschellin/teaching/phz3113/lec13-3.pdf · Green function for di usion equation Consider the di usion equation, @2u @x2 = 1 2 @u @t

Green function for diffusion equation, continued

• Assume we have a point source at t = t ′, so thatu(x , t = t ′) = δ(x − x ′)• We can then find u(k , t = t ′) for the Fourier transform of thepoint source

u(k , t = t ′) =1

∫ ∞−∞

δ(x − x ′)e−ikxdx =e−ikx ′

• Finally we find u(x , t) for t > t ′ from the inverse Fouriertransform

u(x , t) =1

∫ ∞−∞

e ik(x−x ′)e−k2α2(t−t′)dk

• The integral can be done by “completing the squares”

Page 3: Green function for di usion equation - UCF Physicsschellin/teaching/phz3113/lec13-3.pdf · Green function for di usion equation Consider the di usion equation, @2u @x2 = 1 2 @u @t

Green function for diffusion equation, continued

• The result of the integral is actually the Green functionG (x , x ′; t, t ′)

G (x , x ′; t, t ′) =1

[4πα2(t − t ′)]1/2e−(x−x ′)2/4α2(t−t′)

• Notice that the Green function only depends on x − x ′ and t − t ′

• We find that at all times,∫∞−∞ G (x , x ′; t, t ′)dx = 1

• Then if we have a t = 0 distribution u(x , t = 0), we can findu(x , t) just by doing the integral,

u(x , t) =

∫ ∞−∞

G (x , x ′; t, 0)u(x ′, t = 0)dx ′