GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of...

59
GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Transcript of GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of...

Page 1: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

GEF 2220: DynamicsJ. H. LaCasce

Department for Geosciences

University of Oslo

GEF 2220: Dynamics – p.1/59

Page 2: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Primitive equations

Momentum:

∂tu + ~u · ∇u + fyw − fzv = −

1

ρ

∂xp + ν∇2u

∂tv + ~u · ∇v + fzu = −

1

ρ

∂yp + ν∇2v

∂tw + ~u · ∇w − fyu = −

1

ρ

∂zp − g + ν∇2w

GEF 2220: Dynamics – p.2/59

Page 3: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Primitive equations

Continuity:

∂tρ + ~u · ∇ρ + ρ∇ · ~u = 0

Ideal gas:

p = ρRT

Thermodynamic energy:

cvdT

dt+ p

dt= cp

dT

dt− α

dp

dt=

dq

dt

GEF 2220: Dynamics – p.3/59

Page 4: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Momentum equations

Two types of forces:

1) Real 2) Apparent

Two ways to write the derivative:

1) Lagrangian 2) Eulerian

GEF 2220: Dynamics – p.4/59

Page 5: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Derivatives

Example: derive the continuity equation using the Eulerianapproach.

Then derive it using the Lagrangian approach.

Then derive it in pressure coordinates. What’s best for this,Lagrangian or Eulerian?

GEF 2220: Dynamics – p.5/59

Page 6: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Rotation

Acceleration:

(d~uR

dt)R = (

d~uF

dt)F − 2~Ω × ~uR − ~Ω × ~Ω × ~r

Two additional terms:

Coriolis acceleration → −2~Ω × ~uR

Centrifugal acceleration → −~Ω × ~Ω × ~r

GEF 2220: Dynamics – p.6/59

Page 7: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Estimating forces

1) What is the centrifugal force for a parcel at the Equator?

Show that it is small compared to g.

2) What is the Coriolis force on a parcel moving eastward at10 m/sec at 45 N?

Find the direction and magnitude. Which componentmatters?

What happens in the Southern Hemisphere?

GEF 2220: Dynamics – p.7/59

Page 8: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

First law of thermodynamics

heat added = change in internal energy + work done:

dq = de + dw

At constant volume:

dq = cvdT + p dα

or, at constant pressure:

dq = cpdT − αdp

GEF 2220: Dynamics – p.8/59

Page 9: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Scaling

∂tu + u

∂xu + v

∂yu + w

∂zu + fyw − fzv = −

1

ρ

∂xp

U

T

U2

L

U2

L

UW

DfW fU

HP

ρL

10−4 10−4 10−4 10−5 10−6 10−3 10−3

GEF 2220: Dynamics – p.9/59

Page 10: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Geostrophy

From scaling the horizontal momentum equations atweather scales:

fzv =1

ρ

∂xp, fzu = −

1

ρ

∂yp

or, in pressure coordinates:

fv =∂

∂xΦ, fu = −

∂yΦ

GEF 2220: Dynamics – p.10/59

Page 11: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Geostrophy

p/ ρL

Hfu

GEF 2220: Dynamics – p.11/59

Page 12: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Geostrophy

L

fu

GEF 2220: Dynamics – p.12/59

Page 13: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Geostrophy

Given the pressure or geopotential, can derive the winds

Example: What is the pressure gradient required at theearth’s surface at 45 N to maintain a geostrophic wind of 30m/sec?

Low geopotential height to left of the wind in NorthernHemisphere

Lies to the right in Southern Hemisphere

Balance fails at equator, because fz = 2Ωsin(0) = 0

GEF 2220: Dynamics – p.13/59

Page 14: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Geostrophy

Is a diagnostic relation

• Given the pressure, can calculate the horizontal velocities

But geostrophy cannot be used for prediction

GEF 2220: Dynamics – p.14/59

Page 15: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Prediction

Must retain the 10−4 terms:

∂tu + u

∂xu + v

∂yu − fzv = −

1

ρ

∂xp

∂tv + u

∂xv + v

∂yv + fzu = −

1

ρ

∂yp

The equations are quasi-horizontal: neglect vertical motion

GEF 2220: Dynamics – p.15/59

Page 16: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Other momentum balances

Constant, circular motion:

u2

θ

r+ fuθ =

1

ρ

∂rp

Scaling:

U

fR1

HP

ρfUR

First parameter is the Rossby number, ǫ

GEF 2220: Dynamics – p.16/59

Page 17: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Other momentum balances

If ǫ ≪ 1, geostrophic balance:

fuθ =1

ρ

∂rp

If ǫ ≪ 1, cyclostrophic balance:

u2

θ

r=

1

ρ

∂rp

or:

uθ = ±(r

ρ

∂rp)1/2

GEF 2220: Dynamics – p.17/59

Page 18: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Inertial oscillations

If ∂∂rp = 0, inertial motion:

u2

θ

r+ fuθ = 0

or:

uθ = −fr

GEF 2220: Dynamics – p.18/59

Page 19: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Gradient wind

If ǫ ≈ 1, gradient wind balance:

uθ = −1

2fr ±

1

2(f2r2 + 4 r f ug)

1/2

If ug < 0 (anticyclone), require:

|ug| <fr

4

If ug > 0 (cyclone), there is no limit

GEF 2220: Dynamics – p.19/59

Page 20: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Gradient wind balance

v−r2

v−r2

L H

p

fvp

fv

GEF 2220: Dynamics – p.20/59

Page 21: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Hydrostatic balance

Scale the vertical momentum equation:

∂tw + u

∂xw + v

∂yw + w

∂zw − fyu = −

1

ρ

∂zp − g

UW

L

UW

L

UW

L

W 2

DfU

V P

ρDg

10−7 10−7 10−7 10−10 10−3 10 10

GEF 2220: Dynamics – p.21/59

Page 22: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Hydrostatic balance

Remove the static contributions:

∂tw + u

∂xw + v

∂yw + w

∂zw − fyu = −

1

ρ0

∂zp′ −

ρ′

ρ0

g

10−7 10−7 10−7 10−10 10−3 10−1 10−1

Vertical accelerations unimportant at synoptic scales.

GEF 2220: Dynamics – p.22/59

Page 23: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Pressure coordinates

Use the hydrostatic balance to simplify equations

∂p

∂x|z = ρg

dz

dx|p ≡ ρ

∂Φ

∂x|p

where:

Φ ≡

∫ z

0

g dz

GEF 2220: Dynamics – p.23/59

Page 24: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Vertical velocities

Different vertical velocities:

d

dt=

∂t+

dx

dt

∂x+

dy

dt

∂y+

dp

dt

∂p

=∂

∂t+ u

∂x+ v

∂y+ ω

∂p

GEF 2220: Dynamics – p.24/59

Page 25: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Continuity

∂u

∂x+

∂v

∂y+

∂ω

∂p= 0

The flow is incompressible in pressure coordinates

ω = −

∫ p

p∗(

∂xu +

∂yv) dp

GEF 2220: Dynamics – p.25/59

Page 26: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Vertical motion

Showed that:

ω ≈ −ρgw

Note that upward motion corresponds to ω < 0

GEF 2220: Dynamics – p.26/59

Page 27: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Thermal wind

Geostrophy + hydrostatic balance → velocity shear

vg(p1) − vg(p0) =1

f

∂x(Φ1 − Φ0) ≡

g

f

∂xZ10

and:

ug(p1) − ug(p0) = −1

f

∂y(Φ1 − Φ0) ≡ −

g

f

∂yZ10

Shear proportional to layer thickness, Z10

GEF 2220: Dynamics – p.27/59

Page 28: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Thermal wind

Alternate expression:

vg(p1) − vg(p0) = −R

fln(

p1

p0

)∂T

∂x

ug(p1) − ug(p0) =R

fln(

p1

p0

)∂T

∂y

Shear proportional to the temperature gradient

GEF 2220: Dynamics – p.28/59

Page 29: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Thermal wind

Thus:

Z10 =R

gT ln(

p1

p0

)

Layer thickness proportional to its mean temperature

GEF 2220: Dynamics – p.29/59

Page 30: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Layer thickness

6

7

8

9

p

p2

1

v

v

1

2

GEF 2220: Dynamics – p.30/59

Page 31: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Definitions

Barotropic atmosphere: no vertical shear

Equivalent barotropic: constant direction with height

Baroclinic atmosphere: speed and direction change

GEF 2220: Dynamics – p.31/59

Page 32: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Jet stream

Example: At 30N, the zonally-averaged temperaturegradient is 0.75 Kdeg−1, and the average wind is zero at theearth’s surface. What is the mean zonal wind at the level ofthe jet stream (250 hPa)?

20

15

10

p

GEF 2220: Dynamics – p.32/59

Page 33: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Temperature advection

Z1

Z1+ Zδ

δ

ZT

ZT+ Z

v1

v2

vT

Warm

Cold

GEF 2220: Dynamics – p.33/59

Page 34: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Temperature advection

Warm advection → veering

• Anticyclonic (clockwise) rotation with height

Cold advection → backing

• Cyclonic (counter-clockwise) rotation with height

GEF 2220: Dynamics – p.34/59

Page 35: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Geostrophy vs. thermal wind

Geostrophic wind parallel to geopotential contours

• Wind with high pressure to the right (NorthHemisphere)

Thermal wind parallel to thickness (mean temperature)contours

• Wind with high thickness to the right

GEF 2220: Dynamics – p.35/59

Page 36: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Divergence and vorticity

D = ∇ · ~u

The divergence in a region is constant and positive.What happens to the density of an air parcel?

ζ = ∇× ~u

What is the vorticity of a typical tornado? Assume solidbody rotation, with a velocity of 100 m/sec, 20 m fromthe center.

GEF 2220: Dynamics – p.36/59

Page 37: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Vorticity equation

(∂

∂t+ u

∂x+ v

∂y+ ω

∂p) ζa

= −ζa(∂u

∂x+

∂v

∂y) + (

∂u

∂p

∂ω

∂y−

∂v

∂p

∂ω

∂x) + (

∂xFy −

∂yFx)

where the absolute vorticity is:

ζa = ζ + f

GEF 2220: Dynamics – p.37/59

Page 38: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Scaling

∂tζ + u

∂xζ + v

∂yζ ∝

U2

L2≈ 10−10

ω∂

∂pζ ∝

LP≈ 10−11

v∂

∂yf ∝ U

∂f

∂y≈ 10−10

(∂u

∂p

∂ω

∂y−

∂v

∂p

∂ω

∂x) ∝

LP≈ 10−11

(ζ + f) (∂u

∂x+

∂v

∂y) ≈ f (

∂u

∂x+

∂v

∂y) ∝

fU

L≈ 10−9

GEF 2220: Dynamics – p.38/59

Page 39: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Scaling

Why is the divergence term unbalanced? Argued:

u = ug + ǫua, v = vg + ǫva

with ǫ ≈ 0.1. So the divergence is:

D =∂

∂xug −

∂yvg + ǫ(

∂xua +

∂yva)

1

f

∂x(−

∂Φ

∂y) +

1

f

∂y(∂Φ

∂x)

+ǫ(∂

∂xua +

∂yva) = ǫ(

∂xua +

∂yva)

GEF 2220: Dynamics – p.39/59

Page 40: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Scaling

Thus the divergence estimate is ten times smaller

Retain only the 10−10 terms:

(∂

∂t+ u

∂x+ v

∂y) (ζ + f) = −f (

∂u

∂x+

∂v

∂y)

GEF 2220: Dynamics – p.40/59

Page 41: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Rossby waves

No divergence:

(∂

∂t+ u

∂x+ v

∂y) (ζ + f) = 0

Linearize, with a constant mean flow U :

(∂

∂t+ U

∂x) ζ + v

∂yf = 0

Beta-plane approximation: f = f0 + βy.

(∂

∂t+ U

∂x) ζ + βv = 0

GEF 2220: Dynamics – p.41/59

Page 42: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Rossby waves

Write in terms of geopotential:

u = −1

f0

∂yΦ, v =

1

f0

∂xΦ

ζ =∂

∂xv −

∂yu =

1

f0

∇2Φ

So:

(∂

∂t+ U

∂x)∇2Φ + β

∂xΦ = 0

GEF 2220: Dynamics – p.42/59

Page 43: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Rossby waves

Substitute a wave solution:

Φ = A exp(ikx + ily − iωt)

Get:

(−iω + ikU)(−k2 − l2)A + ikA = 0

or the dispersion relation:

ω = Uk −βk

k2 + l2

GEF 2220: Dynamics – p.43/59

Page 44: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Rossby waves

Has a phase speed of:

cx =ω

k= U −

β

k2 + l2

Waves move west relative to mean flow

Larger waves move faster than smaller waves (waves aredispersive)

GEF 2220: Dynamics – p.44/59

Page 45: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Westward propagation

y=0

+

GEF 2220: Dynamics – p.45/59

Page 46: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Divergence

Example: Consider small area of air:

δA = δx δy

Show that:

d

dtζaA = 0

This is Kelvin’s theorem

GEF 2220: Dynamics – p.46/59

Page 47: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Divergence

Important for storm development.

Example: Consider flow with constant divergence:

∂xu +

∂yv = D

Example: show that divgence favors anticyclonic vorticity,convergence favors cyclonic. Show why anticyclonicvorticity is bounded and cyclonic not. This is why cyclonesare more intense.

GEF 2220: Dynamics – p.47/59

Page 48: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Forecasting

Method:

Obtain Φ(x, y, t0) from measurements on p-surface

Calculate ug(t0), vg(t0), ζg(t0)

Calculate ζg(t1)

Invert ζg to get Φ(t1)

Start over

Obtain Φ(t2), Φ(t3),...

GEF 2220: Dynamics – p.48/59

Page 49: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Barotropic potential vorticity

Imagine atmosphere as a layer with constant density. Then:

∂u

∂x+

∂v

∂y= −

∂w

∂z

So:

(∂

∂t+ u

∂x+ v

∂y) (ζ + f) = (ζ + f)

∂w

∂z

Derive:

d

dt(ζ + f

h) = 0

GEF 2220: Dynamics – p.49/59

Page 50: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Layer potential vorticity

GEF 2220: Dynamics – p.50/59

Page 51: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Adiabat

Same idea applies to motion on an adiabatic

Flow between two isentropic surfaces trapped if zeroheating

Derive Ertel’s potential vorticity:

d

dt[(ζ + f)

∂θ

∂p] = 0

GEF 2220: Dynamics – p.51/59

Page 52: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Vorticity summary

d

dt(ζ + f) = −(ζ + f) (

∂u

∂x+

∂v

∂y)

or:

d

dt(ζ + f

h) = 0

Vorticity changes due to meridional motion

Vorticity changes due to divergence

Change in layer thickness

GEF 2220: Dynamics – p.52/59

Page 53: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Planetary boundary layer

Small scale (unresolved) eddies mix momentum vertically:

∂tu + u

∂xu + v

∂yu + w

∂zu − fv = −

1

ρ

∂xp −

∂zu′w′

∂tv + u

∂xv + v

∂yv + w

∂zv + fu = −

1

ρ

∂yp −

∂zv′w′

GEF 2220: Dynamics – p.53/59

Page 54: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

PBL equations

Too many unknowns, so parameterize the eddy stresses

Two cases:

Stable boundary layer: stratified, sheared flow

Unstable boundary layer: convective mixing, no shear

GEF 2220: Dynamics – p.54/59

Page 55: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Convective boundary layer

With empirical surface stress:

fh(v − vg) = CdV u

and:

−fh(u − ug) = CdV v

GEF 2220: Dynamics – p.55/59

Page 56: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Stable boundary layer

f(v − vg) =∂

∂z(Az

∂zu)

and:

−f(u − ug) =∂

∂z(Az

∂zv)

Example 1: the Ekman layer (Az = const.)

Example 2: the Surface layer (Az = k2z2 ∂∂zV)

GEF 2220: Dynamics – p.56/59

Page 57: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Boundary layer effects

Most important is how PBL affects troposphere

Permits downgradient winds

Divergence/convergence causes vertical motion intotroposphere

Weakens pressure system, causing them to spin down

GEF 2220: Dynamics – p.57/59

Page 58: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

Spin-down

Example: Ekman layer. Can derive:

D

Dt(ζ + f) = −

fd

2Hζ

If f = const., then:

ζ(t) = ζ(0) exp(−t/τE)

where:

τE ≡2H

fd

GEF 2220: Dynamics – p.58/59

Page 59: GEF 2220: Dynamics · GEF 2220: Dynamics J. H. LaCasce Department for Geosciences University of Oslo GEF 2220: Dynamics – p.1/59

General circulation

HH

H

LL

L L

HH

Ferrel

Hadley

Jet stream

Jet stream

(indirect)

(direct)

Trade winds

GEF 2220: Dynamics – p.59/59