Gasification & Combustion - Sollabsfera.sollab.eu/downloads/Schools/Solar_Gasification_of...9 Qsolar...

19
1 2nd SFERA WINTER SCHOOL 24 th to 25 th March, Zurich, Switzerland Solar Gasification of petroleum coke Alfonso Vidal Alfonso Vidal Energy Department Energy Department CIEMAT CIEMAT - - PSA PSA 2 C(s) + H 2 O(l) CO(g) + H 2 (g) Gasification & Combustion GASIFICATIÓN (750-2000 ºC, 1-40 bar) GASIFICATIÓN (750-2000 ºC, 1-40 bar) Carbon Hollín Cenizas SynGas Steam Oxygen or air SFERA Winter School Solar Fuels & Materials Page 282

Transcript of Gasification & Combustion - Sollabsfera.sollab.eu/downloads/Schools/Solar_Gasification_of...9 Qsolar...

1

2nd SFERA WINTER SCHOOL24th to 25th March, Zurich, Switzerland

Solar Gasification of petroleum coke

Alfonso VidalAlfonso VidalEnergy DepartmentEnergy DepartmentCIEMATCIEMAT--PSAPSA

2

C(s) + H2O(l) CO(g) + H2(g)

Gasification & Combustion

GASIFICATIÓN(750-2000 ºC, 1-40 bar)

GASIFICATIÓN(750-2000 ºC, 1-40 bar)

Carbon

Hollín

Cenizas

SynGas

Steam

Oxygen

orair

SFERA Winter School Solar Fuels & Materials Page 282

3

0

10

20

30

40

50

550 650 760 870 980 1090 1200 1310

Temperatura, ºC

Gas

com

po

sitio

n, %

mo

l

0

10

20

30

40

50

550 650 760 870 980 1090 1200 1310

Temperatura, ºC

Gas

com

po

sitio

n, %

mo

lH2 CO

CH4

CO2

H2O

H2O H2

COCO2

CH4

TP

H2O H2 CO CO2 CH4

1 atm11 atmatm 20 atm2020 atmatm

C + CO2 2 CO

C + H2O CO + H2

C + 2 H2 CH4 CO + H2O H2 + CO2

CO + 3 H2 CH4 + H20

T

P

T T

P

Thermodynamics

4

• Gasification is a commercial technology, widely used around the world and is poised for significant worldwide growth

• World gasification capacity is 45.000 MWth equivalent• Worldwide gasification capacity is projected to grow 70 percent by

2015, with 80 percent of the growth occurring in Asia. (See WorldSyngas Capacity Growth).

• Gasification also opens the way for carbon-based feedstocks to compete with natural gas and petroleum to produce value added products.

• Chemicals• Fertilizers• Fuels (pipeline gas & F-T liquids)

• Gasification can be used to produce electricity via Integrated GasificationCombined Cycle (IGCC). IGCC cleanest coal/residue-based alternative for power generation, reducing natural gas dependency for electricity.

• It is a versatile process that can use all carbon-based feedstocks, including coal, petroleum residues, biomass, etc Gasification adds value to world coal reserves and other “distressed” fuels/feedstocks.

• Implications for: National Energy Security, Fuel Diversity, GeographicalConversion Diversity

Gasification

SFERA Winter School Solar Fuels & Materials Page 283

5

Gasification products

6

Gasifier Types

25.4 GWth (56%)0.9 GWth (2%)18.7 GWth (42%)Installed Capactiy

ConocoPhillips, Future Energy, GE Energy, ICCT, Shell, Texaco.

HTW, KRW, KBR transport reactor, Winkler

BGL, LurgiTechnology Providers

1000-1500ºC700-1100ºC300-600ºCGas Temperature

1-40 bar1-25 bar1-100 barPressure

Solid and gas flow together in an “entrained” bed. Short residence times and high temperature operation. High carbon conversion is achieved through the use of high-purity oxygen. These gasifiersoperate in the slagging mode.

The solid particles are fluidized with the gas and then the gases and remaining solid particles are separated. The gasifiertypically operates at a low temperature (non-slagging). Attempts are being made to operate at high temperature (slagging).

Moving bed, also known as fixed bed, gasifiers, feed coal in the top. The coal moves down through the reactor by gravity. Steam and oxygen are fed in through the bottom of the gasifier.

Process Description

Entrained Bed Fluid Bed Moving (fixed bed)Gasifier Type

SFERA Winter School Solar Fuels & Materials Page 284

7

2 2·2x yy

C H xH O x H xCO

Solar Gasification

MotivationWhy Solar Gasification:

o Gasification is a well established process in chemical industry

o Highly endothermic reaction (i.e. net process is endothermic by about40-50% of the feedstock’s LHV).

o Process heat can be provided completely by solar energy using solar-thermal concentrating systems. Implications for:

o Saving of (fossil) fuels. High level policy objective regarding security of energy supply (DS).

o Reduction of CO2-Emissions. High level policy objective regarding reduction of GHG emissions (DS)

8

C(s)

H2

H2O

1500° C++ C O+

+

MECHANISM

C(s) H2O C O2

H2

++ +1500°CNET

C(s) O2 C O2+

O2

C O +

COCO22 GenerationGeneration

C(s) H2O C O H2++ +NET

COCO22-- FreeFree

Thermal vs Solar Gasification

SFERA Winter School Solar Fuels & Materials Page 285

9

cokesolar LHVQ

OutputWork

η

η = 46 %E = 6.6 kWhe/kg

η = 35 %E = 3.5 kWhe/kg

η = 51 %E = 6.1 kWhe/kg

Syngas

Solar Gasification

Combined CycleFuel cell

RankineCycle

Petcoke

H2

QF.C.

QR.C.

Qquench

WC.C.

QC.C.

H2O

H2CO2

Water-GasShift Reactor

Qcombustion

WR.C.H2O

SolarReactor

Qreradiation

ConcentratedSolar Power

Qsolar

RankineCycle

Petcoke O2

Separator

Quench

CO2

H2

Fuel Cell

H2OCO2

HeatExchanger

H2

CO

H2OH2

CO

H2

CO

O2

CombinedCycle

H2OCO2

H2OH2CO

Quench

HeatExchanger

H2CO2

H2O

H2

CO2

WF.C.

O2

A

B2

B1

C

Combustion

QF.C.

QR.C.

Qquench

WC.C.

QC.C.

H2O

H2CO2

Water-GasShift Reactor

Qcombustion

WR.C.H2O

SolarReactor

Qreradiation

ConcentratedSolar Power

Qsolar

RankineCycle

Petcoke O2

Separator

Quench

CO2

H2

Fuel Cell

H2OCO2

HeatExchanger

H2

CO

H2OH2

CO

H2

CO

O2

CombinedCycle

H2OCO2

H2OH2CO

Quench

HeatExchanger

H2CO2

H2O

H2

CO2

WF.C.

O2

A

B2

B1

C

Combustion

10

0

200

400

600

800

1000g CO2 / kWhe

Petcoke-gasificación a syngas + CC

Petcoke-gasificación a H2 + fuel cell

Petcoke-combustión + ciclo Rankine

QF.C.

QR.C.

Qquench

WC.C.

QC.C.

H2O

H2CO2

Water-GasShift Reactor

Qcombustion

WR.C.H2O

SolarReactor

Qreradiation

ConcentratedSolar Power

Qsolar

RankineCycle

Petcoke O2

Separator

Quench

CO2

H2

Fuel Cell

H2OCO2

HeatExchanger

H2

CO

H2OH2

CO

H2

CO

O2

CombinedCycle

H2OCO2

H2OH2CO

Quench

HeatExchanger

H2CO2

H2O

H2

CO2

WF.C.

O2

A

B2

B1

C

Combustion

QF.C.

QR.C.

Qquench

WC.C.

QC.C.

H2O

H2CO2

Water-GasShift Reactor

Qcombustion

WR.C.H2O

SolarReactor

Qreradiation

ConcentratedSolar Power

Qsolar

RankineCycle

Petcoke O2

Separator

Quench

CO2

H2

Fuel Cell

H2OCO2

HeatExchanger

H2

CO

H2OH2

CO

H2

CO

O2

CombinedCycle

H2OCO2

H2OH2CO

Quench

HeatExchanger

H2CO2

H2O

H2

CO2

WF.C.

O2

A

B2

B1

C

Combustion

Emisiones específicas CO2

SFERA Winter School Solar Fuels & Materials Page 286

11

H2O → H2 + ½ O2

Water splitting thermodynamics

12

• Mature low-cost large-area heliostats below150€/m2

.

• Volumetric receivers and directly illuminatedreceivers demonstrated > 1000ºC and > 2 MW/m2

• Advanced controls developed

• Still 2.5x more expensive than fossil

• 60% cost reduction by 2015.

• First solar plants in Spain and EEUU

Status of Concentrating Solar Plants

SFERA Winter School Solar Fuels & Materials Page 287

13

•CSP technology showed especially strong growth in Spain and the UnitedStates since 2006. Installed capacities near 1 gigawatt (GW) and projectsunder development or construction exceed 15 GW worldwide.

•The BLUE scenario of the IEA publication, Energy Technology Perspectives2008, foresees that CSP will provide 5% of world electricity by 2050. Preliminary results of the forthcoming IEA CSP Roadmap suggest acontribution of 12% to global electricity supply by 2050.

Status of the Concentrating Solar Plants

14

High Temperature Solar Thermochemical Plants

2

-Solar

Reactor

Large-ScaleConcentration of

Solar Energy

Products

Heliostat Field

Tower

Quench

H

Reactants

SFERA Winter School Solar Fuels & Materials Page 288

15

CavityCavityCavity

VolumetricVolumetricVolumetric

Solar Receiver Types

16

MA1: Fundamentals Studies

MA2: Development of a lab-scale solar reactor

MA3: Lab-scales solar reactor

MA4: Development of a Solar reactor modelling

MA5: Solar reactor 500 kW pilot-scale demonstration

MA6: Conceptual design of 50 MW commercial plant

Phase 1Phase 1 Lab ScaleIntegrated System (5 kW)

Phase 2Phase 2 Scale Up Design(500 kW)

Phase 3Phase 3 Demo (500 kW) andCommercial Desgins (50 MW)

Phases

Main Activities

Solar thermochemical application for production of syngas from heavy crude oil

SYNPET ProjectProject SYNPETPartners: PDVSA (Venezuela), ETH/PSI (CH) and CIEMAT (Spain)

SFERA Winter School Solar Fuels & Materials Page 289

17

mol/mol0,012O/C

mol/mol0,56H/C

kJ/kg35.876LHV

%4,16Sulfur

%2,28Nitrogen

%1,47Oxygen

%4,14Hydrogen

%88,12Carbón

UnitsAmountElement

Feedstock: Petroleum coke

18

Phase I: Experimental Set-Up

1.09·10-12-2002.92·10-9-125k3 [1/Pa]

1.02·10-666.51.94·10-691.5k2 [mol/(g s Pa)]

4.74·10-31581.05·10-678.9k1 [mol/(g s Pa)]

k0 [ki]EA [kJ/mol]k0 [ki]EA [kJ/mol]

FlexicokePD coke

SFERA Winter School Solar Fuels & Materials Page 290

19

H2

CO

CO2

Flexicoke Petrozuata

Indi

rect

Irrad

iatio

n

Temperature [K] Temperature [K]

Dire

ctIrr

adia

tion

Phase I: Experimental Results

20

Phase I: Reactor and System Modeling

SFERA Winter School Solar Fuels & Materials Page 291

21

Ar

EvaporatorH2O

ControllersSteam generatorBronkhorst

VentConcentratedsolar energy

5 kW Process reactor

Solid recovery(optional)

Data acquisition and control system

T

I0

P

T T TT

Reactor coolingsystem

Hot gascyclon

Filter

Data logger

FAr, FH2O

I0, T, P

Window purge

Coke feeder

GC

Ci, Xi

Ar

Phase I: Experimental Set-up at PSI solar furnace

22

Phase I: Experimental Set-Up

SFERA Winter School Solar Fuels & Materials Page 292

23

Direct absorbing particle receiver-reactors

Syngas

C (particles)

Steam

quartz window

Entrained flow reactors

Phase II: Construction and Evaluation 500 kW reactor

24

SSPS-CRS (Small Solar Power System-Central-ReceiverSystem)

SFERA Winter School Solar Fuels & Materials Page 293

25

The term ATEX comes from atmoshphere explosible. From 1- July-2003 only unitsthat meet the ATEX directive 94/9/EG for use in “areas with the risk of explosion“are permitted.

SynPet Project: ATEX Directive

26

SYNPET: Phase II

SFERA Winter School Solar Fuels & Materials Page 294

27

SynPet Project: Classification of Hazardous Areas (Zoning)

SAFETY

ZONE

ATEX

ZONE

28

SYNPET : 500 kW Reactor

ceramic cavity

ConcentratedSolar

Power

quartz window

syngas

petcoke

H2O nozzle

SFERA Winter School Solar Fuels & Materials Page 295

29

90º

180º

270º

Reactor Temperatures

5.1 0-1372ºC5.2 0-1372ºC5.3 0-1372ºC5.4 0-1372ºC

ThermoelementT

4.1 0-1372ºC4.2 0-1372ºC4.3 0-1372ºC4.4 0-1372ºC

ThermoelementT

2.1 0-1372ºC2.2 0-1372ºC2.3 0-1372ºC2.4 0-1372ºC

Thermoelement

3.1 0-1372ºC3.2 0-1372ºC3.3 0-1372ºC3.4 0-1372ºC

ThermoelementT

1.1 0-1372ºC1.2 0-1372ºC1.3 0-1372ºC1.4 0-1372ºC

ThermoelementT

10.1 -1000/+5000mbarPressure

8.1 Solar blind

Pyrometer

7.1 0-1767ºC7.2 0-1767ºC7.3 0-1767ºC7.4 0-1767ºC

LGTP

6.1 0-1372ºC6.2 0-1372ºC6.3 0-1372ºC6.4 0-1372ºC

ThermoelementT

Prepared by Agustín Pérez

TE10-21

TE10

TE10

TE10

TE10

TE10

TE10TE10

TE10

TE10

TE10

TE10

TE10

TE07B

TE07a

SYNPET : 500 kW Reactor

30

SYNPET : R&D Needs

Heat Recovery SystemsHeat recovery systems reveal essential for the economics of the process.

Reactor WindowWindowed pressurized solar reactors need substantial development.

SFERA Winter School Solar Fuels & Materials Page 296

31

SYNPET : �oo�er

�Lenght: 5130 mm• Weight: 960 kg• Water temperatura Inlet/Outlet: 25 / 40º C• Gas temperatura Inlet / Outlet : 1400ºC / 100 ºC• Pressure: 2 bar

32

�C�EW �����04 0.1� �W

C������ W�TE� ���� �06

�E����� W�TE� �����0�C������

T�WE�

��02

������EE0�

C���E�E0�

W��TEW�TE�

TE

0��

�C�-03

TE

060

���03

�T04�T03

TE0��

TE0�3

TE060

�T0�

������E�� 3 barT� 2�ºC

��������C�� C�2�C�4�

�2��2

T��C�E07

TE

0�4

TE0�6

���� 60

�T0�

�C06

W�TE��� 10 barT� 2�ºC��400 l�h

W�TE��� �T�T� 2�ºC

��1� m3�h

����� 10 barT� 2�ºC

��1700 l�min

�TE�� 2��� 10 barT� 200ºC��60���h

E�ECT��C�� �TE���E�E��T�� E04

�TE�� 1.1�2��� � bar

T� 160ºC��60���h

��

���02

-

0�

TE0��

�T02

�T01 �T02

�C�02�C�01

�T02�T01

��03

��04

��� C����E���E01

���

01

�T06

C��EB���E�

��01

�031.��W

������ �.�02

1.��W

�C02

������ �.�01

0.�� �W

�C01

��

C��E�� �T�T� 2�ºC���0l�h

�������E�E��T��E03 1.� �W

����� 6 barT� 2�ºC

��

R�����R

�-2�

�T06

�T07 �T17

W�TE��� � barT� 2�ºC

��1� m3�h

W�TE��� � barT� 2�ºC

��12 m3�h

��0�

E�ECT��

��C�������E�

E02

�C0�

�2 ����� 2 barT� �0ºC

�. 1�0���h

�E����T��E06

TE0�7

�T07

S���������������

��

�T01

�C04

�������� 2 bar

T� 1400ºC�. 200���h

W�TE� 1��� 6 barT� 2�ºC�. 6 m��h

�C03

�T

0�

�T

0� �T

04

TE

40

TE

41

C��2� ���� 10 bar ma�

T� 2�ºC��300l�h

-

�2TE

10

-33

�-36

Prepared by Agustín Pérez

�����TE�

����� 10 barT� 2�ºC

��1700 l�min

W�TE��� �T�T� 2�ºC��70l�h

W�TE��� 20bar ma�

T� 2�ºC��200l�h

�T02

���02

TE07

a-b

TE0�a-b

�T03

�T03

TE01a-d

TE02a-dTE03

a-dTE04a-d

TE0�

a-dTE06a-d C����T��.

�T01

SFERA Winter School Solar Fuels & Materials Page 297

33

34

SynPet Project: Installation & Assembling

SFERA Winter School Solar Fuels & Materials Page 298

3�

Test CampaignThe test program includes the following tasks:

Establishing operation procedures, especially for faster start up and shut down (including transition air to steam and steam to steam/coke, and vice versa).

Steady state tests for evaluation of performance (variation of solar flux conditions, mass flow and feed gas composition).

Transient tests (controlled defocus of heliostats). Thermal inertia, response to operating conditions, etc

Thermal evaluation of the heat recovery system and quartz window.

Development of control tools for normal operation in SCADA.

Chemical campaign. Chemical yields and receiver efficiencies, gas composition, maximum hydrogen conversion, etc

36

Test Campaign: Problems

SFERA Winter School Solar Fuels & Materials Page 299

37

Conclusions

• Hybrid solar/fossil endothermic processes offer a viable route for reducing CO2emissions and create a transition path towards solar hydrogen

• In view of the importance of coal as a primary source of energy for the foreseeable future and the fact that it is a greenhouse-intensive fuel, it is likely that efforts to incorporate renewable energy, such as solar, into the new coal gasification-basedtechnologies will increase in the future.

• The world is facing rapid growth in energy demand, persistently high energy prices, and a challenge to reduce carbon dioxide emissions from power generation and manufacturing. No single technology or resource can solve the problem, but gasification can be part of the solution along with oter technologies and energy efficiency programs.

• Solar Gasification offers the opportunity to solve one of the most important problemsof solar technology, that is, to provide an effective means of storage. Furthermore, thethermochemical plant could be run producing hydrogen all day and ccoupled with aIGCC to produce power, with the main advantage that could be in operation all day

Solar Gasification

3�

SFERA Winter School Solar Fuels & Materials Page 300