Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known...

38
Gamma-Ray Bursts: 3. Short GRBs Brian Metzger, Columbia University

Transcript of Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known...

Page 1: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Gamma-Ray Bursts:3. Short GRBs

Brian Metzger, Columbia University

Page 2: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Binary Neutron Star Mergers

NSNS NSNS

!

˙ N merge ~ 10-5 "10-4 yr -1

10 Known Galactic NS-NS Binaries10 Known Galactic NS-NS Binaries(Lorimer 2008)

TTmergemerge = 300 = 300 MyrMyr

((Kalogera Kalogera et al. 2004)et al. 2004)

Hulse-Taylor Pulsar!

"1PdPdt

=485G3

c 5M 2

a4 aa

ΩΩGravitational WavesGravitational Waves

Page 3: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor
Page 4: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

LIGO (North America)LIGO (North America) Virgo (Italy)Virgo (Italy)

LIGO 6th Science RunLIGO 6th Science Run(2010) Range ~ 20-50 (2010) Range ~ 20-50 MpcMpc

““AdvancedAdvanced”” LIGO+Virgo LIGO+Virgo(~2016) Range ~ 300-600 (~2016) Range ~ 300-600 MpcMpc

Credit: K

ip ThorneC

redit: Kip Thorne

““chirpchirp””

Ground-BasedInterferometers

Gravitational Waves from Inspiral and Merger

Page 5: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Courtesy M

. Shibata (Tokyo U

)

Numerical Simulation - Two 1.4 MNumerical Simulation - Two 1.4 M NSs

Page 6: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Courtesy M

. Shibata (Tokyo U

)

Numerical Simulation - Two 1.4 MNumerical Simulation - Two 1.4 M NSs

Page 7: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Remnant Accretion Disk

• Disk Mass ~0.01 - 0.1 M & Size ~ 10-100 km• Hot (T > MeV) & Dense (ρ ~ 108-1012 g cm-3)• Neutrino Cooled: (τν ~ 0.01-100)• Equilibrium ⇒ Ye ~ 0.1

Lee et al. 2004

!

e" + p#$ e + n

!

e+ + n"# e + p vsvs..

!

˙ M ~ 10"2 "10M! s-1

Short GRBEngine?

Accretion RateAccretion Rate

!

t visc ~ 0.1 M•

3M!

"

# $

%

& '

1/ 2(0.1"

# $

%

& ' )1 Rd

100 km"

# $

%

& '

3 / 2 H /R0.5

"

# $

%

& ' )2

s

(e.g. Ruffert & Janka 1999; Shibata & Taniguchi 2006; Faber et al. 2006; Chawla et al. 2010; Duez et al. 2010; Foucalt 2012; Deaton et al. 2013)

Page 8: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Relativistic Jets and Short GRBsR

ezzo

lla e

t al.

2010

MHD Powered

ν Powered

Aloy et al. 2005

Zhang & MacFadyen 2009

Page 9: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

BATSE Bursts

Nakar 07

Short & Long Gamma-Ray Bursts

Nakar 07

Page 10: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

BATSE Bursts

Supernova Connection

Long GRBs =Death of Massive Stars

Nakar 07

Short & Long Gamma-Ray Bursts

Nakar 07GRB 030329 ⇔ SN 2003dh

Stanek et al. 2003

Star-Forming Host Galaxies (zavg~2-3)

Page 11: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

BATSE Bursts

Supernova Connection

Long GRBs =Death of Massive Stars

Nakar 07

Short & Long Gamma-Ray Bursts

Nakar 07GRB 030329 ⇔ SN 2003dh

Stanek et al. 2003

Short??????

Star-Forming Host Galaxies (zavg~2-3)

Page 12: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

SwiftSwift

KECK Bloom+06

GRB050509b

HUBBLE Fox+05

GRB050709

z = 0.225SFR < 0.1 M yr-1

z = 0.16SFR = 0.2 M yr-1B

loom+ 06

GRB050724Berger+05

z = 0.258SFR < 0.03 M yr-1

Short GRB Host Galaxies

Page 13: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

SwiftSwift

KECK Bloom+06

GRB050509b

HUBBLE Fox+05

GRB050709

z = 0.225SFR < 0.1 M yr-1

z = 0.16SFR = 0.2 M yr-1B

loom+ 06

GRB050724Berger+05

z = 0.258SFR < 0.03 M yr-1

Short GRB Host Galaxies

GRB050724

• Lower redshift(z ~ 0.1-1)

• Eiso~ 1049-51 ergs

• Older ProgenitorPopulation

(e.g. Fong+ 2010; Leibler & Berger 2010)

Bloom

+06No Supernova

Page 14: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Berg

er 2

013

Page 15: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor
Page 16: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Radial Offsets from Host GalaxyBe

rger

201

3

NS receive kick velocity vk ~ 100 km s-1 > vesc⇒ short GRBs may occur outside host galaxy

Faucher-Giguere &Kaspi 2006

In place pulsar velocity (km s-1)

!

D =100 kpc v100 km s-1

"

# $

%

& '

tGyr"

# $

%

& '

Page 17: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Not that Short After All….

BATSE Examples (Norris & Bonnell 2006)

GRB080503SEE/SGRB ~ 30

Perley, BDM et al. 2009

GRB 050709

1/4 Swift Short Bursts have X-ray Tails

Rapid Variability ⇒ Ongoing Engine Activity

Energy up to ~30 times Burst Itself!

Extended EmissionExtended Emission

Page 18: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

???taccretion ~ 0.1-1 s

Why Two Timescales? Why the Delay?

?

Lee et al. (2004)Lee et al. (2004)

Page 19: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Loca

l Dis

k M

ass Σπr

2 (M

)

Angular MomentumAngular Momentum

EntropyEntropy

HeatingHeating CoolingCooling

!

"#"t

=3r""r

r1/ 2 ""r

$#r1/ 2( )%

& ' (

) *

!

T dSdt

= ˙ q visc " ˙ q #

Viscous Evolution of theRemnant Disk

Metzger, Piro & Quataert 2008, 2009

t = 0.01 s

t = 1 s

!

J = MdRdvK " MdRd1/ 2

# Rd " Md$2

BH

Page 20: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Late-Time Disk Outflows (‘Evaporation’)

• Recombination: n + p ⇒ He

• Thick Disks Marginally Bound

After t ~After t ~ 1 seconds, R ~ 300 km & 1 seconds, R ~ 300 km & T < 1 T < 1 MeVMeV

EEBINDBIND ~ GM ~ GMBHBHmmnn/2R ~/2R ~ 5 5 MeV MeV nucleonnucleon-1-1

ΔΔEENUCNUC ~ ~ 7 7 MeV MeV nucleonnucleon-1-1

Page 21: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Late-Time Disk Outflows (‘Evaporation’)

• Recombination: n + p ⇒ He

• Thick Disks Marginally Bound

⇒}After t ~After t ~ 1 seconds, R ~ 300 km & 1 seconds, R ~ 300 km & T < 1 T < 1 MeVMeV

EEBINDBIND ~ GM ~ GMBHBHmmnn/2R ~/2R ~ 5 5 MeV MeV nucleonnucleon-1-1

ΔΔEENUCNUC ~ ~ 7 7 MeV MeV nucleonnucleon-1-1

Sizable Fraction of Initial Disk Unbound!Sizable Fraction of Initial Disk Unbound!

BH

Disk BlowsApart

Page 22: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Axisymmetric Torus Evolution

• P-W potential with MBH = 3,10 M

• hydrodynamic α viscosity

• NSE recombination 2n+2p ⇒ 4He

• run-time Δt ~ 1000-3000 torb

• neutrino self-irradiation: “light bulb”+ optical depth corrections:

(Fernandez & Metzger 2012, 2013)

R ∈ [2,2000] Rg

Nr = 64 per decadeNθ = 56

angular emission pattern

peak emissionradius

Equilibrium TorusMt ~ 0.01-0.1 M

R0 ~ 50 kmuniform Ye = 0.1

Page 23: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor
Page 24: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Late Disk Outflows (Evaporation)

Time (s)

!

˙ M BH

!

˙ M out (with " recombination)

Mej ~ 0.05 M0.05 Mt t Vej ~ 0.1 c

!

˙ M out (NO " recombination)

outflow robust

• unbound outflowpowered by viscousheating and αrecombination

• neutrino heatingsubdominant

Page 25: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

???taccretion ~ 0.1-1 s

Why Two Timescales? Why the Delay?

?

Lee et al. (2004)Lee et al. (2004)

Page 26: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Stable Neutron Star Remnant?(e.g. Rasio 99; BDM+08; Ozel et al. 2010; Bucciantini et al. 2012; Zhang 13; Giacomazzo & Perna 13; Falcke & Rezzolla 13; Kiziltan 2013)

• Requires: low total mass binary, stiff EOS*, and/or mass loss during merger*supported by recent discovery of 2M NS by Demorest et al. 2011

• Rotating near centrifugal break-up with spin period P ~ 1 ms

• Magnetic field amplified by rotational energy ⇒ “Magnetar” ?

Giacomazzo & Perna 2013

(e.g. Thompson & Duncan 92; Price & Rosswog 2006; Zrake & MacFadyen 2013)

Page 27: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

(BDM et al. 2008; Bucciantini, BDM et al. 2012)

Magnetar wind confined by merger ejecta

Buc

cian

tini e

t al.

2011

Theoretical Light Curvesvs. observed X-ray tails

(magnetar outflow model from Metzger et al. 2011)

P0 = 1.5 ms,Bdip = 2×1015 GJet

MagnetarWind

MergerEjecta

Magnetar Spin-Down Powered Extended Emission

Jet may continue to inject energy into forward shock orproduce lower level prompt emission

(Zhang & Meszaros 2001; Dall’Osso et al. 2011; Rowlinson et al. 2013; Gompertz et al. 2013)

Page 28: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Radio constraints on long-lived NS merger remnants(BDM & Bower 2014)

• Rotational energy

eventually transferred to ISM⇒ bright radio emission

• Observed 7 short GRBs with VLAon timescales ~1-3 years after burst

• NO DETECTIONS ⇒ rules outstable NS remnant in 2 GRBs withknown high ISM densities

• Additional EVLA observations nowwould be much more constraining

• Upcoming radio surveys (e.g.ASKAP) will strongly constrainpopulation of stable NS mergerremnants ⇒ indirectly probes EoS

Frail et al. 2012

10-4 yr-1 gal-1

Rest-Frame Time Since GRB (years)

1.4

GH

z Lu

min

osity

(erg

s-1

)

Radio surveyconstraints

Page 29: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Accretion-Induced Collapse (AIC)• O-Ne WD built to Mchandra

• Collapse of rapidly-rotating WD ⇒Disk around PNS: Mdisk ~ 10-2 - 0.3 M

• Evolution similar to NS merger disks(Metzger+ 08,09)

(e.g. Nomoto & Kondo 1991)N

omot

o &

Kon

do 1

991

Page 30: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Similar Systems - Distinct OriginsNS-NSNS-NS / BH-NS/ BH-NS

MergersMergers

Accretion-Accretion-InducedInducedCollapseCollapse

BH

NS

M ~M ~ 0.01-0.1 M0.01-0.1 M

R ~ 100 km

Neutron Star Circinus X-1 Γ > 15 ! (Fender et al. 2004)

Page 31: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Magnetar wind confined by merger ejecta

Buc

cian

tini e

t al.

2011

Theoretical Light Curvesvs. observed X-ray tails

(magnetar outflow model from Metzger et al. 2011)

P0 = 1.5 ms,Bdip = 2×1015 GJet

MagnetarWind

MergerEjecta

Page 32: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

The Composition ofUltra High Energy Cosmic Rays

Pierre AugerObservatory

RM

S(X

max

)

〈X

max〉

Energy (eV)

protons

Iron

PAO Collaboration (review by Kotera & Olinto 2011)

Highest energyUHECRs dominated by

heavy nuclei !

Page 33: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Candidate Astrophysical Sources

Hillas: RL= E/ZeB < Rsource

UHECRcandidates

Source Size

Mag

netic

Fie

ld S

treng

th

Page 34: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Candidate Astrophysical Sources

UHECRcandidates

Source Size

Mag

netic

Fie

ld S

treng

th

Z < Z#

Z < 10 Z#

Z ~ ??

Hillas: RL= E/ZeB < Rsource

Page 35: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Nucleosynthesis in Thermally-Driven GRB Outflows(Lemoine 2002; Pruet et al. 2002; Beloborodov 2003)

!

n"nb

~ 4 #104 Lj,iso

1052erg s-1

$

% &

'

( )

*1/ 4 R0

107cm$

% &

'

( )

1/ 2 +j

300$

% &

'

( )

,t exp ~ ms

vs. Big Bang Nucleosynthesis

!

n"nb

~ 1010

#texp ~ min

d

α

Lem

oine

200

2

GRBFireball }

free nucleons

High entropy ⇒D bottleneck ⇒mostly 4He

α Recombination@ T ~ 100 keV

Page 36: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Nucleosynthetic Yield of Proto-Magnetar Winds

Mas

s Fr

actio

n in

Hea

vy N

ucle

i Xh

If proton-rich: Xh~ 0.3-0.8 (XHe=1-Xh) and 〈A〉 ~ 56 (Fe group)

If neutron-rich: Xh~ 1 and 〈A〉 ~> 90 (possibly r-process elements)

proton-rich wind

neutron-rich wind

Metzger, Giannios & Horiuchi 2011 (see also Kotera 2012)

Ω

Page 37: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

UHECR Acceleration by Internal ShocksM

axim

um C

osm

ic R

ay E

nerg

y

Opt

ical

Dep

th to

Pho

to-D

isin

tegr

atio

n

During this epoch, heavy nuclei can both reach energiesE > 1020 eV and survive destruction via γN ⇒ n N’

Page 38: Gamma-Ray Bursts · Binary Neutron Star Mergers NS NSNS! N ˙ merge-4~ 10-5"10 yr-1 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr (Kalogera et al. 2004)! Hulse-Taylor

Propagating Heavy Nuclei to Earth

!

"75 #170 E1020 eV$

% &

'

( ) *1.5 A

56$

% &

'

( )

1.3

MpcMean Free Path forPhotodisintegration by EBL/CMB:

Accessible Volume ∝ χ3 ∝ A3.9 ⇒ even a small fraction ofultra-heavy sources dominate composition at highest energies

E3 d

N/d

E

Log10(E)

(Calculation by D

. Allard)

Model vs. Auger Data (Preliminary!)XFe = 0.5, XHe = 0.5